Rutgers, The State University of New Jersey
Rutgers Business School
 
Message from the Dean
About the University
About the School
Degree Programs
Full-Time M.B.A. Program
Part-Time M.B.A. Program
MBA Concentrations
Executive M.B.A. Program
International Executive M.B.A. Program in Singapore
Graduate Accounting Programs
Master of Financial Analysis
Master of Information Technology and Analytics
Degree Requirements
Admissions
Master of Quantitative Finance
Master of Science in Business of Fashion
Master of Science in Digital Marketing
Master of Science in Healthcare Analytics and Intelligence (formerly Master of Science in Healthcare Services Management)
Master of Science in Marketing Analytics and Insights
Master of Science in Supply Chain Management
Master of Supply Chain Analytics
Gateway/Accelerated Programs
Dual-Degree
Doctor of Business Administration
Ph.D. in Management
M.B.A. Degree Requirements
Specialty Master's Degree Requirements
Certificates
International Programs
Course List and Descriptions
Admissions
Registration
Tuition and Fees Rates
Financial Aid
Student Life and Services
Academic Policies and Procedures
Faculty and Administration
Divisions of the University
Camden Newark New Brunswick/Piscataway
Catalogs
  Rutgers Business School: Graduate Programs-Newark and New Brunswick 2024-2026 Degree Programs Master of Information Technology and Analytics Degree Requirements  

Degree Requirements


For the most up-to-date course descriptions please visit the website.

Master of Information Technology and Analytics (M.I.T.A.) Program Curriculum (effective spring 2021)

Foundation Courses
Choose any three of the following four courses, 3 credits each:
  • 22:544:643  Information Security
  • 22:544:603  Business Data Management
  • 22:544:641  Analytics for Business Intelligence (or 22:544:650  Data Mining)
  • 22:544:613  Introduction to Data Structures and Algorithms (or 16:198:512  Introduction to Data Structures and Algorithms)
Concentrations
Students who opt for a concentration need to complete at least three courses from the respective concentration. Operations Research and Business Analytics
  • 26:711:651  Linear Programming
  • 26:711:652  Nonlinear Programming
  • 26:711:653  Discrete Optimization
  • 26:960:575  Introduction to Probability
  • 26:960:580  Stochastic Processes
Data Science and Machine Learning
  • 26:198:642  Multimedia Information Systems
  • 22:544:605  Introduction to Software Development
  • 26:198:641  Advanced Database
  • 22:198:646  Data Analysis and Visualization
  • 22:544:631  Algorithmic Machine Learning
  • 22:544:635  Neural Networks and Deep Learning
  • 22:544:634  Optimization Methods for Machine Learning
  • 22:544:637  Reinforcement Learning
Cyber Security
  • 22:544:643  Information Security
  • 26:198:645  Data Privacy
  • 22:544:605  Introduction to Software Development
  • 22:544:640  Fundamentals of Blockchain and Distributed Ledgers
Elective Courses
Master level and Ph.D. level courses are listed separately. Students registering for a Ph.D. level course require a special permission.
Master level courses:
  • 22:544:688  MITA Capstone Project
  • 22:544:605  Introduction to Software Development
  • 22:544:608  Business Forecasting
  • 22:544:638  MITA Internship (0 credits)
  • 22:544:646  Data Analysis and Visualization
  • 22:544:660  Business Analytics Programming
  • 22:544:670  Information Technology Strategy
  • 22:799:659  Supply Chain Solutions with ERP/SAP I
  • 22:799:660  Supply Chain Solutions with ERP/SAP II
  • 22:799:661  Introduction to Project Management
  • 16:198:520  Introduction to Artificial Intelligence
Ph.D. level courses:
  • 26:711:651  Linear Programming
  • 26:711:652  Nonlinear Programming
  • 26:711:653  Discrete Optimization
  • 26:960:575  Introduction to Probability
  • 26:960:580  Stochastic Processes
  • 26:198:622  Machine Learning
  • 26:198:641  Advanced Database Systems
  • 26:198:642  Multimedia Information Systems
  • 26:198:645  Data Privacy
  • 26:198:685  Special Topics in Information Systems
Applications of Machine Learning to Big Data
Big Data: Management, Analysis, and Applications
Data-Intensive Analytics
  • 26:711:555  Stochastic Programming
  • 26:711:557  Dynamic Programming
  • 26:711:685  Special Topics in Operations Research/Management Science
  • 26:960:576  Financial Time Series
  • 26:960:577  Introduction to Statistical Linear Models
  • 22:711:685  Dynamic Pricing and Revenue Management
Policy on Ph.D. level courses (26 level codes)
The M.I.T.A. students are allowed to take any Ph.D. level course offered in the Department of Management Science and Information Systems as an elective. However, to protect the quality of those Ph.D. level courses, which are primarily for Ph.D. students, they are not explicitly mentioned in the electives list. To use Ph.D. and other graduate courses from other departments as electives, students must request and receive approval from the program directors on a case-by-case basis.

Policy on Business Courses in RBS
Some students with a strong prior technical background may be interested in taking graduate courses (e.g., M.B.A. courses) with strong business content from other RBS departments. Qualified M.I.T.A. students may take up to two such courses with the program directors' approval.

You can view current and past schedules for Rutgers here: http://sis.rutgers.edu/soc/#home.
Course descriptions of courses beginning with school 22 can be found at the M.B.A. Curriculum page, course descriptions for courses beginning with school 26 are listed under the Ph.D. course descriptions.
 
For additional information, contact RU-info at 848-445-info (4636).
Comments and corrections to: Campus Information Services.



© 2024 Rutgers, The State University of New Jersey. All rights reserved.
Catalogs Home