Bioenvironmental Engineering 117
|
11:117:100
Introduction to Bioenvironmental Engineering (1)
Overview of specializations within bioenvironmental engineering. Expanding role of biological and environmental sciences in engineering. Analysis of selected problems. Review of professional opportunities.
|
11:117:413
Unit Processes in Bioenvironmental Engineering I (3)
Physical and chemical processes and operations commonly applied for water and wastewater treatment, including coagulation, flocculation, sedimentation, filtration, adsorption, ion exchange, membrane separation, precipitation, oxidation, and disinfection; principles of chemical reaction kinetics, modeling of ideal and non-ideal batch and flow-through reactors.
Prerequisites: 11:375:203, 01:640:152.
|
11:117:414
Unit Processes in Bioenvironmental Engineering II (3)
Biological principles and operations for wastewater treatment, bioremediation, and energy production including: microbial ecology; energetics, stoichiometry, and kinetics of microbial growth; kinetics of pollution degradation; modeling of ideal bioreactors; design criteria for specific wastewater treatment processes; and new developments in use of microorganisms in bioenvironmental engineering.
Prerequisites: 11:375:201, 11:117:413; or permission of instructor.
|
11:117:423
Bioenvironmental Engineering Unit Processes Laboratory I (1)
Demonstration of physicochemical operations used in drinking water and wastewater treatment, including reactor design and residence time distribution, coagulation, flocculation, sedimentation, filtration, carbon adsorption, chemical oxidation. and oxygen transfer.
Corequisite: 11:117:413.
|
11:117:424
Bioenvironmental Engineering Unit Processes Laboratory II (1)
Demonstration and investigation of biological processes used in the treatment of wastewater, including: natural biological processes in biotreatment ponds; biodegradability and biodegradation kinetics; activated sludge reactors; anaerobic digestion for bioenergy production; use of laboratory methods and analytical equipment to assess biological processes; and introduction to activated sludge simulation software.
Corequisites: 01:160:171, 01:160:211, and 11:117:414.
|
11:117:450
Applied Instrumentation and Control (4)
Development of field sampling protocols and procedures, statistical analysis of field measurements, computation of sampling and instrumentation errors, design and use of environmental sensors, and development of field sampling systems to collect environmental data.
Prerequisite: 11:375:203.
|
11:117:462
Design of Solid Waste Treatment Systems (3)
Analysis and design of integrated solid waste management systems, including waste minimization, quantity estimates, waste characteristics, life-cycle thinking in waste management, collection, composting, materials recovery, recycling, incineration, and landfilling.
Prerequisites: 01:640:152, 11:375:201, and 14:180:215.
|
11:117:468
Hazardous Waste Treatment Engineering (3)
Engineering and process design aspects of hazardous waste management and remediation of hazardous waste sites, waste reduction and recovery, regulatory process, case studies and engineering solutions to model hazardous waste problems.
Prerequisite: 11:117:413 or permission of instructor.
|
11:117:474
Air Pollution Engineering (3)
Engineering design techniques for air quality control. Control of particulate and gas emissions from stationary sources. Control of mobile source emissions. Design for indoor air quality and regional air quality control.
Prerequisite: 14:180:387 or 14:650:312.
|
11:117:488
Bioenvironmental Engineering Design I (2)
Design morphology. Case studies and special design problems. Solutions developed using creative design processes that include analysis, synthesis, and iterative decision making. Safety and professional ethics.
Open only to seniors in bioenvironmental engineering.
|
11:117:489
Bioenvironmental Engineering Design II (2)
Completion of bioenvironmental engineering senior design project. Evaluation. Presentation of final report.
Prerequisite: 11:117:488.
|
11:117:492
Energy Conversion for Biological Systems (3)
Principles of energy conversion techniques and their application to various biomechanical systems including solar energy systems, composting, methane and alcohol production, and the internal combustion engine.
Prerequisite: 14:650:351.
|
11:117:493
Unit Processes for Biological Materials (3)
Theory and application of unit operations for handling and processing of biological materials, with emphasis on particulate solids separation, comminution, mixing, heat transfer, and dehydration.
Pre- or corequisite: 14:155:308 or 14:650:351.
|
11:117:494
Land and Water Resources Engineering (3)
Engineering aspects of land and water conservation: basic hydrology, soil-water-plant relationships, erosion control, surface and subsurface drainage, flood control, irrigation, nonpoint source pollution.
Prerequisite: 11:375:423.
|
11:117:495
Environmental Systems Analysis for Engineers (3)
Principles of procedural and heuristic systems analysis. Overview of engineering economics. Techniques of simulation and optimization. Topics of applied intelligence. Solutions for environmental engineering problems by systems analysis methods.
Prerequisite: 11:375:423.
|
11:117:496
Planning and Design of Land Treatment Systems (3)
Engineering design of land treatment systems for municipal and industrial wastewater, including spray irrigation, overland flow, infiltration/percolation, and subsurface soil adsorption systems. Facilities planning.
Prerequisite: 14:180:387.
|
11:117:497,498
Special Problems in Bioresource Engineering (BA,BA)
Studies of special interest in some selected area of bioenvironmental engineering.
Prerequisite: Permission of undergraduate program director.
|