Rutgers, The State University of New Jersey
Undergraduate-New Brunswick
 
About the University
Undergraduate Education in New Brunswick/Piscataway
Programs of Study For Liberal Arts Students
Douglass College
Livingston College
Rutgers College
University College
Cook College
Mason Gross School of the Arts
Ernest Mario School of Pharmacy
Rutgers Business School: Undergraduate-New Brunswick
School of Communication, Information and Library Studies (SCILS)
School of Engineering
General Information
Descriptions of Fields of Study
Applied Sciences in Engineering
Biomedical Engineering
Bioresource (Bioenvironmental) Engineering
Ceramic and Materials Engineering
Chemical and Biochemical Engineering
Civil and Environmental Engineering
Electrical and Computer Engineering
Industrial and Systems Engineering
Mechanical and Aerospace Engineering
Facilities
Academic Policies and Procedures
Degree Requirements
Programs of Study
Four-Year Engineering Curricula
Five-Year Engineering Curricula
Transfer Programs With Camden and Newark
Other Academic Programs
Course Listing
Administration and Faculty
Edward J. Bloustein School of Planning and Public Policy
General Information
Camden Newark New Brunswick/Piscataway
Catalogs
New Brunswick/Piscataway Undergraduate Catalog 2005-2007 School of Engineering Descriptions of Fields of Study Mechanical and Aerospace Engineering  

Mechanical and Aerospace Engineering

The evolution of our technology into the 21st century has reinforced the importance of the broad technical and professional training of both the mechanical and the aerospace engineer. Each may make his or her professional contribution in many diverse industries, ranging from the automobile and aerospace industries to the manufacture of computers, biomedical devices, and the automation and control of systems. Regardless of the particular product involved, mechanical and aerospace engineers rely upon knowledge of matter and energy conversions, motions, and forces obtained from computer simulations and experimental investigations of processes and systems. Each type of engineer is able to design mechanisms, machines, and structures to serve a specific purpose, such as the manufacture of high-tech materials, including ceramics, composites and biomaterials, and high tech equipment, including spacecraft, robots, and human implants. They also are trained to determine, both experimentally and theoretically, the heat, energy, and mechanical stress that occurs within engineering devices. Examples include internal combustion engines, electronic equipment, robots, solar energy systems, artificial organs, rocket engines, steam and gas turbines, and nuclear reactors. The curriculum in mechanical and aerospace engineering provides these skills and prepares students for graduate study and research.

The undergraduate program in mechanical and aerospace engineering trains students in a technically sound, challenging, and professional manner, laying the foundation for a productive career and enabling graduates to make positive contributions to their profession and society. This is achieved with a thorough preparation in the humanities, mathematics, and basic sciences as well as up-to-date mechanical and aerospace engineering fundamentals and applications using the most advanced tools and methods available. In the senior year, the capstone design and manufacturing course allows students to solve open-ended, multicriteria engineering problems. Emphasis is placed on team work, project management, conceptualization, detailed design, computational analysis, and manufacturing. At the end of the yearlong course, students will have experienced a full product development cycle from concept to construction and testing.


 
For additional information, contact RU-info at 732/932-info (4636) or colonel.henry@rutgers.edu.
Comments and corrections to: Campus Information Services.

2005 Rutgers, The State University of New Jersey. All rights reserved.