Rutgers, The State University of New Jersey
Undergraduate-New Brunswick
About the University
Undergraduate Education in New Brunswick
Programs of Study and Courses for Liberal Arts Students
School of Arts and Sciences
School of Environmental and Biological Sciences
Mason Gross School of the Arts
Ernest Mario School of Pharmacy
Rutgers Business School: Undergraduate-New Brunswick
School of Communication and Information
School of Engineering
General Information
Fields of Study
Applied Sciences in Engineering
Bioenvironmental Engineering
Biomedical Engineering
Chemical and Biochemical Engineering
Civil and Environmental Engineering
Electrical and Computer Engineering
Industrial and Systems Engineering
Materials Science and Engineering
Mechanical and Aerospace Engineering
Academic Policies and Procedures
Degree Requirements
Programs of Study
Four-Year Engineering Curricula
Five-Year Engineering Curricula
Transfer Program with Camden and Newark
Other Academic Programs
Course Listing
Administration and Faculty
Edward J. Bloustein School of Planning and Public Policy
School of Management and Labor Relations
General Information
Divisions of the University
Camden Newark New Brunswick/Piscataway
New Brunswick Undergraduate Catalog 2013–2015 School of Engineering Fields of Study Bioenvironmental Engineering  

Bioenvironmental Engineering

Bioenvironmental engineering utilizes the physical and biological sciences in solving problems related to plants, animals, food, wastes, and our natural environment. Graduates of this program have a unique engineering education enabling them to apply the rapid advances being made in the biological and environmental sciences for the benefit of humankind. This program prepares students for immediate employment as practicing engineers with industrial companies, government agencies, and private consulting firms; for international service; or for additional study at the graduate level.

The objectives of the curriculum are as follows:

  • to apply student creativity in solving complex environmental engineering design problems, to approach unstructured and interdisciplinary problems, to synthesize and design potential solutions, and to evaluate the impact of their solutions within the broader context of society;    
  • to provide the following technical skills: the collection, analysis, and interpretation of data relevant to problems arising in the bioresource and environmental sectors; the methodological and computational skills with which to operate effectively within the bioresource and environmental engineering sectors; skills in current technologies and fundamentals to enable students to adapt to the changing field;
  • to provide the following leadership skills: facilitate, lead, coordinate, and participate in interdisciplinary teams as well as to understand organizational processes and behavior; to effectively communicate their solutions in the context of written, oral, and electronic media; to participate in professional association and activities in the field;
  • to position students for lifelong learning;
  • to teach students to understand and be sensitive to the importance of professional ethics and uphold these ethics in their professional practice.  

Bioenvironmental engineering is concerned with maintaining the quality of man's natural environment. It involves the application of physical, biological, and environmental sciences to land use and waste management problems, air and water pollution, and the conservation of our natural resources. The student gains an understanding of the requirements and tolerances of natural, living ecosystems and the engineering expertise needed to solve serious environmental problems facing our society. This major is for the undergraduate student wanting to gain a full measure of exposure and preparation to practice as a professional environmental engineer following graduation.

The bioenvironmental engineering curriculum provides a strong foundation in engineering, chemistry, and the biological sciences. Upper-level major courses give the graduate the tools to bridge the gap between the sciences and engineering. The faculty has extensive experience in teaching, research, and consulting with private firms and government agencies.

Both four- and five-year programs are available. Students normally matriculate into the four-year program through the School of Engineering or enter the five-year program through School of Environmental and Biological Sciences (SEBS). The latter is a dual-degree program resulting in two bachelor of science (B.S.) degrees, one from the School of Engineering and one from SEBS. The B.S. degree program in engineering is accredited by the Engineering Accreditation Commission of ABET as an environmental engineering program. Both programs prepare graduates for taking the Fundamentals of Engineering (FE) examination pursuant to becoming a licensed professional engineer.

During the first two years, most of the studies involve mathematics, chemistry, physics, computer programming, writing, humanities, and engineering sciences. The remainder of the academic program involves required and elective courses that prepare the graduate for professional engineering practice in his or her chosen field of interest. The coursework is complemented with appropriate laboratory experience.    

For additional information, contact RU-info at 732-445-info (4636) or
Comments and corrections to: Campus Information Services.

© 2013 Rutgers, The State University of New Jersey. All rights reserved.