The graduate program in chemical and biochemical engineering has three major elements: engineering science, applied chemistry, and biochemical engineering. Engineering science includes the transport processes, with an emphasis on mass transfer, thermodynamics, and applied mathematics. Applied chemistry encompasses surface chemistry, applied chemical kinetics, catalysis, synthesis, and properties of polymers, semipermeable membranes, and electrochemistry. Biochemical engineering deals with microbial and enzyme technology, fermentations, applied biochemical kinetics and catalysis, biological separations, and applied molecular biology.
The program combines academic instruction with practical application by stressing student projects. It encourages students to be creative and to show originality in applying basic and advanced chemical and biochemical engineering principles to solve research and design problems. Program participants develop practical applications for industrial processing and for improving environmental quality. At the same time, they gain a better understanding of chemical and biochemical reactions. Research efforts focus on advancing basic scientific theories and developing useful applications.
Master's degree candidates may elect a thesis or nonthesis option. The thesis option consists of a minimum of 30 credits- 24 course credits and 6 credits for a thesis on a research or design problem. In the nonthesis option, a candidate must complete 30 course credits and submit a critical essay. The nonthesis option is suited to the student who has extensive research experience or full-time professional responsibilities in industry. The program for the Ph.D. normally consists of a minimum of 30 credits of course work and 24 to 42 credits of research beyond the B.S. degree. The total number of credits required is 72. The course work for the Ph.D. and M.S. degrees includes the following core courses: chemical engineering analysis; advanced transport phenomena I and II; advanced chemical engineering thermodynamics; and kinetics, catalysis, and reactor design. The master of philosophy degree is available to doctoral candidates. All doctoral students are required to defend their thesis proposal by the end of their second year in the program. Their is no language or residency requirement.
Before they complete the program, all students must give an oral presentation on their research or area of interest. There is no language or residency requirement.
Faculty and students in the program are involved in a broad range of research areas. Research in biochemical engineering includes such topics as enzyme and microbial engineering, biomembrane transport theory, plant and insect cell culture, imaging and biosensing, mammalian cell culture, and biomedical engineering. Chemical environmental efforts involve the use of basic chemical engineering principles such as mass, momentum, and energy balances; reactor theory; and system simulation to solve problems of surface water and groundwater quality; advanced biological and physiochemical treatment systems; solid-waste management; incineration; and hazardous substance evaluation and disposal. Pharmaceutical engineering research focuses on such topics as solids mixing, granular materials and particulate suspensions, powder processing, crystallization, and nanopharmaceutics for drug delivery. Alternate fuels research includes enhanced alcohol fermentation and electrochemical engineering, with an emphasis on battery failure analysis. Liquid-liquid extraction, supercritical extraction processes, and flow simulation in mixing processes are examples of mass transfer applications. Work in statistical thermodynamics is an option.
Graduate assistantships and fellowships are available for both first-year and advanced graduate students. Students participating in the research program on a sponsored basis receive a stipend for either a 10-month or a 12-month period and have their tuition remitted. Support usually is associated with sponsoring grants or contracts, and specific information on available projects is provided by the graduate director. It is common for an exchange of information on assistantships or fellowships to occur during consideration of admission when program officials try to identify students' interests.