Rutgers, The State University of New Jersey
Graduate School-New Brunswick
 
About the University
Graduate Study At the University
Other Graduate Study At the University
Degree Programs Available
Admission
Tuition and Fees
Financial Aid
Student Services
Academic Policies and Procedures
Degree Requirements
Programs, Faculty, and Courses
Course Information
African Studies 016
Agricultural Engineering
Alcohol Studies 047
Animal Sciences 067
Anthropology 070
Art History 082
Arts, Visual and Theater
Asian Studies 098
Biochemistry 115
BIOMAPS 118 (Programs in Quantitative Biology)
Biomedical Engineering 125
Bioresource Engineering 127
Biotechnology 126
Cell and Developmental Biology 148
Cellular and Molecular Pharmacology
Ceramic and Materials Science and Engineering 150
Chemical and Biochemical Engineering 155
Members of the Graduate Faculty
Programs
Graduate Courses
Chemistry 160
Civil and Environmental Engineering 180
Classics 190
Cognitive Science 185
Communication, Information, and Library Studies 194
Communication Studies
Comparative Literature 195
Computer Science 198
Curatorial Studies
Ecology and Evolution 215
Economics 220
Education 300
Educational Psychology; Educational theory, Policy, and Administration; Learning and Teaching
Electrical and Computer Engineering 332
Engineering Geophysics
English, Literature In (English 350, Composition Studies 352)
English as a Second Language 356
Entomology 370
Environmental Change, Human Dimensions of 378
Environmental Sciences 375
Food and Business Economics 395
Food Science 400
French 420
Geography 450
Geological Sciences 460
Geospatial Information Science 455
German 470
History 510
Human Resource Management
Industrial and Systems Engineering 540
Industrial Relations and Human Resources 545
Interdisciplinary Ph.D. Program 554
Italian 560
Labor and Employment Relations
Library Studies
Linguistics 615
Literatures In English
Mathematics 640, 642
Mechanical and Aerospace Engineering 650
Mechanics 654
Medicinal Chemistry 663
Medieval Studies 667
Meteorology
Microbiology and Molecular Genetics 681
Molecular and Cell Biology 695
Molecular Biophysics 696
Molecular Biosciences
Music 700
Music
Neuroscience 710
Nutritional Sciences 709
Oceanography 712
Operations Research 711
Packaging Science and Engineering
Pharmaceutical Science 720
Pharmacology, Cellular and Molecular 718
Pharmacy
Philosophy 730
Physics and Astronomy 750
Physiology and Integrative Biology 761
Plant Biology 765
Plant Pathology
Plant Science and Technology
Political Science 790
Psychology 830
Psychology, Applied and Professional
Public Health 832
Public Policy
Quaternary Studies 841
Russian, Central and East European Studies 859
Social Work 910
Social Work: Administration, Policy and Planning, and Direct Practice
Sociology 920
Spanish 940
Statistics 960
Theater Arts
Toxicology 963
Urban Planning and Policy Development 970
Urban Planning, City and Regional
Visual Arts
Wireless Communications Certificate
Women's and Gender Studies 988
Research Centers, Bureaus, and Institutes
Administration
Governance of the University
Divisions of the University
Camden Newark New Brunswick/Piscataway
Catalogs
  Graduate School-New Brunswick 2003-2005 Programs, Faculty, and Courses Chemical and Biochemical Engineering 155 Programs  

Programs

The graduate program in chemical and biochemical engineering has three major elements: engineering science, applied chemistry, and biochemical engineering. Engineering science includes the transport processes, with an emphasis on mass transfer, thermodynamics, and applied mathematics. Applied chemistry encompasses surface chemistry, applied chemical kinetics, catalysis, synthesis, and properties of polymers, semipermeable membranes, and electrochemistry. Biochemical engineering deals with microbial and enzyme technology, fermentations, applied biochemical kinetics and catalysis, biological separations, and applied molecular biology.

The program combines academic instruction with practical application by stressing student projects. It encourages students to be creative and to show originality in applying basic and advanced chemical and biochemical engineering principles to solve research and design problems. Program participants develop practical applications for industrial processing and for improving environmental quality. At the same time, they gain a better understanding of chemical and biochemical reactions. Research efforts focus on advancing basic scientific theories and developing useful applications.

Master's degree candidates may elect a thesis or nonthesis option. The thesis option consists of a minimum of 30 credits- 24 course credits and 6 credits for a thesis on a research or design problem. In the nonthesis option, a candidate must complete 30 course credits and submit a critical essay. The nonthesis option is suited to the student who has extensive research experience or full-time professional responsibilities in industry. The program for the Ph.D. normally consists of a minimum of 30 credits of course work and 24 to 42 credits of research beyond the B.S. degree. The total number of credits required is 72. The course work for the Ph.D. and M.S. degrees includes the following core courses: chemical engineering analysis; advanced transport phenomena I and II; advanced chemical engineering thermodynamics; and kinetics, catalysis, and reactor design. The master of philosophy degree is available to doctoral candidates. The doctoral qualifying examination, given each year, stresses fundamentals of chemical engineering and advancements in the profession as reflected in the current graduate instructional program.

Before they complete the program, all students must give an oral presentation on their research or area of interest. There is no language or residency requirement.

Faculty and students in the program are involved in a broad range of research areas. Research in biochemical engineering includes such topics as enzyme and microbial engineering, biomembrane transport theory, plant and insect cell culture, imaging and biosensing, mammalian cell culture, and biomedical engineering. Chemical environmental efforts involve the use of basic chemical engineering principles such as mass, momentum, and energy balances; reactor theory; and system simulation to solve problems of surface water and groundwater quality; advanced biological and physiochemical treatment systems; solid-waste management; incineration; and hazardous substance evaluation and disposal. Pharmaceutical engineering research focuses on such topics as solids mixing, granular materials and particulate suspensions, powder processing, and crystallization. Alternate fuels research includes enhanced alcohol fermentation and electrochemical engineering, with an emphasis on battery failure analysis. Liquid-liquid extraction, supercritical extraction processes, and flow simulation in mixing processes are examples of mass transfer applications. Work in statistical thermodynamics is an option.

Graduate assistantships and fellowships are available for both first-year and advanced graduate students. Students participating in the research program on a sponsored basis receive a stipend for either a 10-month or a 12-month period and have their tuition remitted. Support usually is associated with sponsoring grants or contracts, and specific information on available projects is provided by the graduate director. It is common for an exchange of information on assistantships or fellowships to occur during consideration of admission when program officials try to identify students` interests.


 
For additional information, contact RU-info at 732/932-info (4636) or colonel.henry@rutgers.edu.
Comments and corrections to: Campus Information Services.

© 2005 Rutgers, The State University of New Jersey. All rights reserved.