Biomedical Engineering 125
|
14:125:201Introduction to Biomedical Engineering (3) Overview of applications of engineering in medicine and health care. Introduction to biological and biomedical problems using fundamental concepts and tools from electrical, mechanical, and chemical engineering. Prerequisites: 01:640:152, 01:750:124. |
14:125:210Biomedical Devices and Systems   Time and frequency domain analysis of electrical networks; hydrodynamic, mechanical, and thermal analogs; basic medical electronics, and energy conversion systems. Design of biological sensors. Prerequisites: 01:640:251, 01:750:227 and 229, 14:125: 201. |
14:125:211Biomedical Devices and Systems Laboratory (1) Experiments and demonstrations dealing with basic medical electronics and signal analysis. Provides an overview of current biomedical technology and its uses. Prerequisites: 14:125:201 and 01:640:251, 01:750:227 and 229. |
14:125:303Biomedical Transport Phenomena (3) Biomedical mass transport processes involving diffusion, diffusion-convection, and diffusion-reaction schemes; Introduction to biofluid dynamics; transport processes in the cardiovascular system, hemorheology, extracorporeal mass transport devices, and tissue engineering. Prerequisites: 14:125:210, 01:640:251, 01:750:227 and 228. |
14:125:305Numerical Modeling in Biomedical Systems (3) Introduction to modeling and simulation techniques in the analysis of biomedical systems. Application of numerical methods for the solution of complex biomedical process problems. Development and use of PC software for the analysis and solution of engineer- ing problems. Prerequisites: 14:125:210, 01:640:244, 01:750:227 and 228. |
14:125:306. Kinetics and Thermodynamics of Biological Systems (3) Fundamentals of thermodynamics and kinetic analysis as applied to biomedical systems and technologies. Essential principles in thermodynamics introduced, including First Law, Second Law, and interrelationships among thermodynamic variables. Fundamental tools in kinetic analysis are also covered, including interpretation of rate data, enzyme kinetics, and pharmacokinetics. Application to biological systems and biomedical technologies are provided. Prerequisites: 01:119:102, 01:160:160, 01:640:244, 14: 125:305. |
14:125:308. Introduction to Biomechanics (3) Relationship between applied and resultant forces and stresses acting on the musculoskeletal system. Basic concepts of vectors, internal and external forces, functional anatomy, trusses and equilibria of spatial force systems, moments, and work and energy concepts. Stress and strain tensors, principal forces and failure analysis from classical mechanics. Prerequisites: 01:640:244, 01:750:228 and 230, 14:125: 305, 14:440:221. |
14:125:315. BME Measurement and Analysis Laboratory (2)   Experiments and demonstrations dealing with the measurement and analysis of various physiological quantities of cardiovascular and respiratory systems, and the measurement of cellular viability, metabolism, morphogenesis, and protein and nucleic acid composition. Prerequisite: 14:125:210, 211, 303, and 305. |
14:125:401-402. Biomedical Engineering Senior Design I and II (3,3) Students gain design experience in the biomedical engineering field by completing a design project under the supervision of a faculty member. Project can either be design of a biomedical instrument or carrying out of an experimental study. Prerequisites: 14:125:210, 211, 303, and 305. |
14:125:403Cardiovascular Engineering (3) Introduction to modeling and measurement methods for the cardiovascular system, analysis of blood flow dynamics, the function of the heart, and noninvasive approaches. Applications to cardiovascular instrumentation, basic cardiovascular system research, assist devices, and disease processes. Prerequisites: 14:125:303, 315, or permission of instructor. |
14:125:404 Introduction to Biomaterials (3) Introduction to material properties, testing, biomaterial requirements, and device design. Main objective is to convey basic knowledge of this large volume of information and to provide an elementary understanding of the terminology used in academic and commercial settings. Prerequisite: 14:125:308. |
14:125:405Introduction to Neural Processes (3) Introduction to the function of the nervous system and its building blocks, the neurons. Basic functional characteristics of neurons as individual elements and as parts of neuronal assemblies; generator and action potentials; conduction in nerve fibers and across synaptic junctions; analysis of sensory and neuromuscular systems; EEG and EKG waveforms. Introduction to artificial and electronic equivalents of neurons or neural networks. Prerequisite: 14:125:305 or permission of instructor. |
14:125:407Fundamentals of Computer Tomography (3) Principles of 3D reconstruction from projections in medicine. Mathematics of reconstruction from projections; application to X ray, Magnetic Resonance Emission Tomography, and Ultrasound. Prerequisites: 14:125:305, 315, or permission of instructor. |
14:125:410Sensory Processes, Mechanisms, and Computational Models (3) General principles of information processing in the human sensory organs, as well as in the early, low-level neural mechanisms and pathways that transmit the signals to the cortex. Emphasis placed on the sensory organs and pathways of vision and audition. Comparison of the modalities of vision and audition, especially in the way that temporal and spatial frequencies are processed and analyzed. Mechanisms covered from a neurophysiological, a computational modeling, and a psychophysical point of view. Prerequisites: 14:125:305 and 315. |
14:125:414Vision Research and Instrumentation (3) Comprehensive overview of the visual system, beginning with fundamental properties and progressing to the level of current research in vision. Evaluation of experimental and modeling results in vision research, in-depth review of journal articles, and hands-on demonstrations of state-of-the-art visual system instrumentation. Prerequisite: 14:125:315. |
14:125:416Pattern Recognition in Machines and Biological Systems (3) Principles of pattern recognition in the visual system within the context of information processing in living organisms and computers. Topics include pattern formation, interpretation, and classification; computer vision compared to biological vision. Prerequisite: 14:125:315. |
14:125:424Biomedical Instrumentation Laboratory (3) Practical hands-on designs of biomedical instrumentation including biopotential and physiological signal processing amplifiers, electrodes, biosensor and transducers, electro-optical, acoustic, and ultrasonic devices. Individual final design project and presentation is required. Prerequisite: 14:125:315 or equivalent. |
14:125:432Cytomechanics (3) Structural and mechanical components of cells, with emphasis on the regulatory roles of physical forces in cell function. |
14:125:450Science and Engineering in Medicine (3) Scientific principles on which a variety of medical instruments are based and evaluation of the impact of these technologies on the practice of medicine. Review of the technologies from pathology, neurosurgery, ophthalmology, radiology, cardiothoracic surgery, orthopaedic surgery, and plastic surgery. Prerequisite: 14:125:210 or permission of instructor. |
14:125:461Tissue Engineering I: Fundamentals and Tools (3) Fundamentals of polymer scaffolds and their use in artificial tissues. Regulation of cell responses in the rational design and development of engineered replacement tissue. Understanding the biological, chemical, and mechanical components of intra- and intercellular communication. Preliminary discussions on real-life clinical experiences. Prerequisites: 14:125:201, 303, or permission of instructor. |
14:125:462Tissue Engineering II: Biomedical and Biotechnological Applications (3) Applications of tissue engineering. Emphasis on applying fundamental principles and concepts to problems in clinical medicine and large-scale industrial manufacturing. Topics include skin replacement, cartilage tissue repair, bone tissue engineering, nerve regeneration, corneal and retinal transplants, ligaments and tendons, blood substitutes, artificial pancreas, artificial liver, tissue integration with prosthetics, vascular grafts, cell encapsulation, and angiogensis. Prerequisites: 14:125:201, 303, or permission of instructor. |
14:125:491,492Special Problems in Biomedical Engineering (3,3) Independent study under the guidance of a faculty member in specific areas of interest in biomedical engineering. Prerequisite: By permission. |
14:125:496,497Co-op Program in Biomedical Engineering (3,3) Provides the student with the opportunity to practice and apply knowledge and skills in various biomedical engineering environments. Provides a capstone experience to the undergraduate experience by integrating prior course work into a working engineering environment. Prerequisites: Senior standing in biomedical engineering and special permission. |