Rutgers, The State University of New Jersey
Graduate School-New Brunswick
About the University
Graduate Study At the University
Other Graduate Study At the University
Degree Programs Available
Tuition and Fees
Financial Aid
Student Services
Academic Policies and Procedures
Degree Requirements
Programs, Faculty, and Courses
Course Information
African Studies 016
Agricultural Engineering
Alcohol Studies 047
Animal Sciences 067
Anthropology 070
Art History 082
Arts, Visual and Theater
Asian Studies 098
Biochemistry 115
BIOMAPS 118 (Programs in Quantitative Biology)
Biomedical Engineering 125
Bioresource Engineering 127
Biotechnology 126
Cell and Developmental Biology 148
Cellular and Molecular Pharmacology
Ceramic and Materials Science and Engineering 150
Chemical and Biochemical Engineering 155
Chemistry 160
Civil and Environmental Engineering 180
Classics 190
Cognitive Science 185
Communication, Information, and Library Studies 194
Communication Studies
Comparative Literature 195
Computer Science 198
Curatorial Studies
Ecology and Evolution 215
Economics 220
Education 300
Educational Psychology; Educational theory, Policy, and Administration; Learning and Teaching
Electrical and Computer Engineering 332
Members of the Graduate Faculty
Graduate Courses
Graduate Courses Cont.
Engineering Geophysics
English, Literature In (English 350, Composition Studies 352)
English as a Second Language 356
Entomology 370
Environmental Change, Human Dimensions of 378
Environmental Sciences 375
Food and Business Economics 395
Food Science 400
French 420
Geography 450
Geological Sciences 460
Geospatial Information Science 455
German 470
History 510
Human Resource Management
Industrial and Systems Engineering 540
Industrial Relations and Human Resources 545
Interdisciplinary Ph.D. Program 554
Italian 560
Labor and Employment Relations
Library Studies
Linguistics 615
Literatures In English
Mathematics 640, 642
Mechanical and Aerospace Engineering 650
Mechanics 654
Medicinal Chemistry 663
Medieval Studies 667
Microbiology and Molecular Genetics 681
Molecular and Cell Biology 695
Molecular Biophysics 696
Molecular Biosciences
Music 700
Neuroscience 710
Nutritional Sciences 709
Oceanography 712
Operations Research 711
Packaging Science and Engineering
Pharmaceutical Science 720
Pharmacology, Cellular and Molecular 718
Philosophy 730
Physics and Astronomy 750
Physiology and Integrative Biology 761
Plant Biology 765
Plant Pathology
Plant Science and Technology
Political Science 790
Psychology 830
Psychology, Applied and Professional
Public Health 832
Public Policy
Quaternary Studies 841
Russian, Central and East European Studies 859
Social Work 910
Social Work: Administration, Policy and Planning, and Direct Practice
Sociology 920
Spanish 940
Statistics 960
Theater Arts
Toxicology 963
Urban Planning and Policy Development 970
Urban Planning, City and Regional
Visual Arts
Wireless Communications Certificate
Women's and Gender Studies 988
Research Centers, Bureaus, and Institutes
Governance of the University
Divisions of the University
Camden Newark New Brunswick/Piscataway
  Graduate School-New Brunswick 2003-2005 Programs, Faculty, and Courses Electrical and Computer Engineering 332 Graduate Courses Cont.  

Graduate Courses Cont.

16:332:569(F) Database System Engineering (3) Relational data model, relational database management system, relational query languages, parallel database systems, database computers, and distributed database systems.
16:332:570(S) Robust Computer Vision (3) A toolbox of advanced methods for computer vision using robust estimation, clustering, probabilistic techniques, invariance. Applications include feature extraction, image segmentation, object recognition, and 3-D recovery. Prerequisite: 16:332:561.
16:332:571(S) Virtual Reality Technology (3) Introduction to virtual reality. Input/output tools. Computing architecture. Modeling. Virtual reality programming. Human factors. Applications. Future systems. Prerequisite: 16:332:560.
16:332:573(S) Data Structures and Algorithms (3) Programming in C and C++. Data structures and algorithms commonly used in engineering software applications. Stacks, linked lists, queues, sorting, trees, search trees, hashing, heaps, graphs, and graph algorithms. Computation models and complexity. .
16:332:574(F) Computer-Aided Digital VLSI Design (3) Advanced computer-aided digital VLSI chip design, CMOS technology, domino logic, precharged busses, case studies of chips, floor planning, layout synthesis, routing, compaction circuit extraction, multilevel circuit simulation, circuit modeling, fabrication processes, and other computer-aided design tools.
16:332:575(S) VLSI Array Processors (3) VLSI technology and algorithms; systolic and wavefront-array architecture; bit-serial pipelined architecture; DSP architecture; transputer; interconnection networks; wafer-scale integration; neural networks. Prerequisite: 16:332:574.
16:332:576(S) Testing of Ultra Large Scale Circuits (3) Algorithms for test-pattern generation for combinational, sequential, and CMOS circuits. Design of circuits for easy testability. Design of built-in self-testing circuits. Prerequisite: 16:332:563.
16:332:577(S) Analog and Low-Power Digital VLSI Design (3) Transistor design and chip layout of commonly used analog circuits, such as OPAMPs, A/D, and D/A converters; sample-and-hold circuits; filters; modulators; phase-locked loops; and voltage-controlled oscillators. Low-power design techniques for VLSI digital circuits, and system-on-a-chip layout integration issues between analog and digital cores. Prerequisite: 16:332:574.
16:332:579Advanced Topics in Computer Engineering (3) In-depth study of topics pertaining to computer engineering, such as microprocessor system design; fault-tolerant computing; real-time system design. Subject areas vary from year to year. Prerequisite: Permission of instructor.
16:332:580(F) Electric Waves and Radiation (3) Static-boundary value problems, dielectrics, wave equations, propagation in lossless and lossy media, boundary problems, waveguides and resonators, radiation fields, antenna patterns and parameters, arrays, transmit-receive systems, antenna types. Prerequisite: Elementary electromagnetics.
16:332:581(F) Introduction to Solid-State Electronics (3) Introduction to quantum mechanics; WKB method; perturbation theory; hydrogen atom; identical particles; chemical bonding; crystal structures; statistical mechanics; free-electron model; quantum theory of electrons in periodic lattices.
16:332:583(F) Semiconductor Devices I (3) Charge transport; diffusion and drift current; injection, lifetime, recombination, and generation processes; p-n junction devices; transient behavior; FETs, I-V, and frequency characteristics; MOS devices C-V, C-f, and I-V characteristics; operation of bipolar transistors.
16:332:584(S) Semiconductor Devices II (3) Review of microwave devices, O- and M-type devices, microwave diodes, Gunn, IMPATT, TRAPATT, scattering parameters and microwave amplifiers, heterostructures and III-V compound-based BJTs and FETs. Prerequisite: 16:332:583.
16:332:587(F) Transistor Circuit Design (3) Design of discrete transistor circuits; amplifiers for L.F., H.F., tuned, and power applications biasing; computer-aided design; noise; switching applications; operational amplifiers; linear circuits.
16:332:588(S) Integrated Transistor Circuit Design (3) Design of digital integrated circuits based on NMOS, CMOS, bipolar, BiCMOS, and GaAs FETs; fabrication and modeling; analysis of saturating and nonsaturating digital circuits, sequential logic circuits, semiconductor memories, gate arrays, PLA and GaAs LSI circuits. Prerequisite: 16:332:587.
16:332:590(S) Integrated Circuits (3) Basic processing of ICs, diffusion, and ion implantation; isolation methods; integrated resistors and inductors; junction capacitors; diodes, FET, MOS and bipolar transistors; thermal effects and basic linear integrated circuits. Prerequisite: 16:332:583.
16:332:591(F) Optoelectronics I (3) Principles of laser action, efficiency, CW and pulse operation, mode locking, output coupling, equivalent circuits, gaseous and molecular lasers, solid-state lasers, single and double heterojunction lasers, different geometrics, fabrication, degradation, and application to holography, communication, medicine, and fusion. Prerequisites: 16:332:580, and 581 or 583.
16:332:592(S) Optoelectronics II (3) Photodetectors, including avalanche, Schottky, p-i-n, and multi element detectors; display devices, including semiconductor, liquid crystals, electrochromics, electroluminescent panels; optoisolaters; fiber optics communication and optoelectronics in information systems. Prerequisite: 16:332:591.
16:332:593(S) Electronics Packaging (3) Overview of microelectronic packaging. Calculation of resistance, inductance, capacitance, and RF skin effects. Interconnect-transfer functions and signal integrity. Packaging analysis and simulations of power, ground, and cross-talk noise. Prerequisites: 16:332:580 and 587.
16:332:594(F) Solar Cells (3) Photovoltaic material and devices, efficiency criteria, Schottky barrier, p-n diode, heterojunction and MOS devices, processing technology, concentrator systems, power system designs, and storage. Prerequisite: 16:332:583 or equivalent.
16:332:596(S) Semiconductor Surfaces (3) Surface composition and structure of semiconductor, ultrahigh vacuum technology, Auger electron spectroscopy, low-energy electron diffraction, photoemission spectroscopy, secondary ion mass-spectroscopy.
16:332:597(S) Material Aspects of Semiconductors (3) Preparation of elemental and compound semiconductors. Bulk crystal growth techniques. Epitaxial growth techniques. Impurities and defects and their incorporation. Characterization techniques to study the structural, electrical, and optical properties. Prerequisite: 16:332:581.
16:332:599Advanced Topics in Solid-State Electronics (3) Topics vary and include semiconductor materials, surfaces, and devices; optoelectronic devices; sensors; photovoltaics; fiber optics; and analog/digital circuit design. Prerequisite: Permission of instructor.
16:332:601,602Special Problems (BA,BA) Investigation in selected areas of electrical engineering. Prerequisite: Permission of instructor.
16:332:618Seminar in Systems Engineering (1) Presentation involving current research given by advanced students and invited speakers. Term papers required.
16:332:638Seminar in Digital Signal Processing (1) Presentation involving current research given by advanced students and invited speakers. Term papers required.
16:332:658Seminar in Communications Engineering (1) Presentation involving current research given by advanced students and invited speakers. Term papers required.
16:332:678Seminar in Computer Engineering (1) Presentation involving current research given by advanced students and invited speakers. Term papers required.
16:332:698Seminar in Solid-State Electronics (1) Presentation involving current research given by advanced students and invited speakers. Term papers required.
16:332:699Colloquium in Electrical and Computer Engineering (0) Eminent figures in electrical and computer engineering invited as guest lecturers on current research topics and major trends. Each full-time M.S. and Ph.D. student must take the colloquium, and each must have 80 percent attendance records. M.S. students must take the colloquium for two terms but get 0 credits. Ph.D. students must take the colloquium for four terms but get 0 credits.
16:332:701,702Research in Electrical Engineering (3,3)
For additional information, contact RU-info at 732/932-info (4636) or
Comments and corrections to: Campus Information Services.

2005 Rutgers, The State University of New Jersey. All rights reserved.