Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Calendars</td>
<td>2</td>
</tr>
<tr>
<td>About the University</td>
<td>3</td>
</tr>
<tr>
<td>Graduate Study at the University</td>
<td>4</td>
</tr>
<tr>
<td>Other Graduate Study at the University</td>
<td>5</td>
</tr>
<tr>
<td>Degree Programs Available</td>
<td>6</td>
</tr>
<tr>
<td>Admission</td>
<td>8</td>
</tr>
<tr>
<td>Tuition and Fees</td>
<td>9</td>
</tr>
<tr>
<td>Financial Aid</td>
<td>11</td>
</tr>
<tr>
<td>Student Services</td>
<td>14</td>
</tr>
<tr>
<td>Academic Policies and Procedures</td>
<td>21</td>
</tr>
<tr>
<td>Degree Requirements</td>
<td>32</td>
</tr>
<tr>
<td>Programs, Faculty, and Courses</td>
<td>38</td>
</tr>
<tr>
<td>Research Centers, Bureaus, and Institutes</td>
<td>200</td>
</tr>
<tr>
<td>Administration</td>
<td>205</td>
</tr>
<tr>
<td>Governance of the University</td>
<td>206</td>
</tr>
<tr>
<td>Divisions of the University</td>
<td>207</td>
</tr>
<tr>
<td>Maps</td>
<td>212</td>
</tr>
<tr>
<td>Index</td>
<td>221</td>
</tr>
</tbody>
</table>

Important Notice:

Please note that only the printed version of this catalog is the official document of Rutgers, The State University of New Jersey. While Rutgers offers its catalogs on the Internet as a convenience, the university’s online catalogs are unofficial, as is academic information offered at other Rutgers’ web sites.

The university reserves the right for any reason to cancel or modify any course or program listed herein. In addition, individual course offerings and programs may vary from year to year as circumstances dictate.

About the Cover:

The antique map of Africa reflects the most current project of the Rutgers Center for Historical Analysis (RCHA). The RCHA brings together internationally distinguished scholars, the university community, and the New Jersey public to engage in research, education, and public service on historical topics of broad community relevance. The RCHA’s programs are designed to put current social trends and issues in historical perspective and to overcome the fragmentation of knowledge that keeps us from seeing the wider dimensions of problems.

The RCHA’s project for the academic years 1997–1999 was “The Black Atlantic: Race, Nation, and Gender.” This project traced the globalization of African culture and the formation of the Black Atlantic since the beginning of the modern slave trade. The forced migration of Africans during the modern slave trade marked the beginning of the globalization of African culture and the formation of the Black Atlantic. Since then, hundreds of thousands of African people have crossed and recrossed the Atlantic, and migrated between Atlantic countries. This movement of Africans and their descendants has continually remade diasporic ethnicities and political cultures by allowing for the exchange of religion, aesthetic traditions, expressive culture, and strategies for resistance.

Today in Canada, the United States, the Caribbean, Central and South America, and Europe, there are creole societies that have recognizably African roots. They are linked by a legacy of Africanisms that made music, arts, and religion primary expressions of the Black Atlantic’s cultural distinctiveness—a distinctiveness shaped by a common history and memory of chattel slavery, peonage, exploitative wage labor, racism, and racial forms of class subordination. This project interrogated the meaning of the Black Atlantic; not just the process of its formation, but the ways its people forged their identities, the ways they have both resisted and accommodated modern capitalism and conventional gender roles.

The RCHA’s project for the academic years 1991–2001 is “Utopia, Violence, Resistance: Remaking and Unmaking Humanity.”
Academic Calendars

Dates are subject to change.

1999–2000

September
 1 Wednesday Fall term begins.
 6 Monday Labor Day holiday.

November
 24 Wednesday Friday classes meet.
 25 Thursday Thanksgiving recess begins.
 28 Sunday Thanksgiving recess ends.

December
 10 Friday Reading period.
 13 Monday Regular classes end.
 14 Tuesday Reading period.
 15 Wednesday Fall exams begin.
 22 Wednesday Fall exams end.
 23 Thursday Winter recess begins.

January
 17 Monday Winter recess ends.
 18 Tuesday Spring term begins.

March
 12 Sunday Spring recess begins.
 19 Sunday Spring recess ends.

May
 1 Monday Regular classes end.
 2 Tuesday Reading period.
 3 Wednesday Reading period.
 4 Thursday Spring exams begin.
 11 Thursday Spring exams end.
 23 Tuesday Commencement.
 30 Tuesday Summer Session begins.

August
 16 Wednesday Summer Session ends.

2000–2001

September
 4 Monday Labor Day holiday.
 5 Tuesday Fall term begins.

November
 21 Tuesday Thursday classes meet.
 22 Wednesday Friday classes meet.
 23 Thursday Thanksgiving recess begins.
 26 Sunday Thanksgiving recess ends.

December
 14 Thursday Reading period begins.
 15 Friday Fall exams begin.
 22 Friday Fall exams end.
 23 Saturday Winter recess begins.

January
 15 Monday Winter recess ends.
 16 Tuesday Spring term begins.

March
 11 Sunday Spring recess begins.
 18 Sunday Spring recess ends.

April
 30 Monday Regular classes end.

May
 1 Tuesday Reading period begins.
 3 Thursday Spring exams begin.
 9 Wednesday Spring exams end.
 17 Thursday Commencement.
 29 Tuesday Summer Session begins.

August
 15 Wednesday Summer Session ends.
About the University

Rutgers, The State University of New Jersey, with more than 48,000 students on campuses in Camden, Newark, and New Brunswick, is one of the major state university systems in the nation. The university comprises twenty-nine degree-granting divisions: twelve undergraduate colleges, eleven graduate schools, and six schools offering both undergraduate and graduate degrees. Five are located in Camden, eight in Newark, and sixteen in New Brunswick.

Rutgers has a unique history as a colonial college, a land-grant institution, and a state university. Chartered in 1766 as Queen’s College, the eighth institution of higher learning to be founded in the colonies, the school opened its doors in New Brunswick in 1771 with one instructor, one sophomore, and a handful of first-year students. During this early period, the college developed as a classical liberal arts institution. In 1825, the name of the college was changed to Rutgers to honor a former trustee and revolutionary war veteran, Colonel Henry Rutgers.

Rutgers College became the land-grant college of New Jersey in 1864, resulting in the establishment of the Rutgers Scientific School with departments of agriculture, engineering, and chemistry. Further expansion in the sciences came with the founding of the New Jersey Agricultural Experiment Station in 1880, the College of Engineering in 1914 (now the School of Engineering), and the College of Agriculture (now Cook College) in 1921. The precursors to several other Rutgers divisions also were founded during this period: the College of Pharmacy in 1892, the New Jersey College for Women (now Douglass College) in 1918, and the School of Education (now a graduate school) in 1924.

Rutgers College assumed university status in 1924, and legislative acts in 1945 and 1956 designated all its divisions as The State University of New Jersey. During these years, the university expanded significantly with the founding of an evening division, University College, in 1934, and the addition of the University of Newark in 1946 and the College of South Jersey at Camden in 1950.

Since the 1950s, Rutgers has continued to expand in the area of graduate education. The Graduate School–New Brunswick, Graduate School–Newark, and Graduate School–Camden serve their respective campuses. In addition, several professional schools have been established in such fields as management and labor relations, social work, criminal justice, planning and public policy, applied and professional psychology, the fine arts, and communication, information, and library studies. A number of these schools offer undergraduate programs as well. Livingston College was founded in 1969 to provide a diverse community of students the opportunity to pursue undergraduate degrees in the liberal arts and professions.

Today, Rutgers continues to grow, both in its facilities and in the variety and depth of its educational and research programs. The university’s goals for the future include the continued provision of the highest quality undergraduate and graduate education, along with increased support for outstanding research to meet the needs of society and fulfill Rutgers’ role as The State University of New Jersey.

Institutional and Specialized Accreditation

Rutgers, The State University of New Jersey, is accredited by the Commission on Higher Education of the Middle States Association of Colleges and Schools, 3624 Market Street, Philadelphia, PA 19104-2680; 215/662-5606. The Commission on Higher Education of the Middle States Association of Colleges and Schools is an institutional accrediting agency recognized by the U.S. Secretary of Education and the Council for Higher Education Accreditation. That accreditation was renewed and endorsed in 1998 at the time of its last review. Documents describing the institution’s accreditation may be downloaded from the university’s website at http://www.rci.rutgers.edu/~oirap.msa/index.html or may be reviewed during regular office hours by contacting the Office of Institutional Research and Academic Planning, Rutgers, The State University of New Jersey, 85 Somerset Street, New Brunswick, NJ 08901-1281; 732/932-7956.

Certain undergraduate programs on the Camden, Newark, and New Brunswick campuses of Rutgers are subject to specialized accreditation. For further information about specialized accreditation, including the names of associations that accredit university programs, please contact the Office of Institutional Research and Academic Planning.

Licensure

Rutgers, The State University of New Jersey, is duly licensed by the New Jersey Commission on Higher Education. For more information, please contact its Office of Programs and Services at 609/292-2955.
Graduate Study at the University

GRADUATE SCHOOL–NEW BRUNSWICK

Graduate instruction at the university began with course offerings by the faculty of Rutgers College in 1876, and the first Doctor of Philosophy degree was conferred in 1884. Detailed regulations governing graduate degrees were established in 1912, a graduate faculty was separately organized in 1932, and the Graduate School–New Brunswick was formally established in 1952. Graduate programs also developed on the Newark campus, and these were the basis for the establishment of the Graduate School–Newark in 1974. A similar expansion led to the establishment of the Graduate School–Camden in 1981.

There are now seventeen units granting graduate degrees in the university; in addition to the three graduate schools already referred to, there are schools offering graduate professional degrees in the arts; criminal justice; education; law; communication, information, and library studies; management; management and labor relations; planning and public policy; applied and professional psychology; and social work. The Graduate School–New Brunswick has faculties in the academic arts and sciences, as well as several professional fields, and is responsible, together with the Graduate School–Newark, for all philosophical degrees in the university at the doctoral level. The school's enrollment of about 4,000 students is distributed among fifty-eight graduate programs. The faculty is drawn from virtually all the academic divisions of the university.

The traditional goal of undergraduate instruction is a liberal education in the arts and sciences, and the traditional goal of graduate instruction is an education that fosters creative research, criticism, and scholarship in a particular discipline. The two goals are complementary. "The subjects pursued for the sake of a general education," Alfred North Whitehead observed, "are special subjects specially studied." Most members of the graduate faculty at the university teach both graduate and undergraduate courses and are as concerned with general education as with specialization. They know that a university is supposed to be an organization of men and women dedicated to bringing about improved orderings in human knowledge and experience, and that the measure of its success is the degree to which its faculty and students are able to ameliorate and enrich the life of human societies.

The size of the graduate community is a result of the large number of programs offered by many departmental and interdepartmental graduate programs; the actual enrollment of each is limited. Most graduate degree programs offer their instruction in small classes and seminars, provide for close association between students and faculty members, encourage independent study, and work with their students to create programs flexible enough to meet mutual interests and needs. Students and faculty members are engaged in common pursuits of understanding and learning, and the Graduate School–New Brunswick encourages their cooperative exploration of the subjects that interest them without the impediments of routine and the rigidities of mechanical requirements.

The graduate students who earn their degrees at the university are equipped with a rigorous grounding in their own disciplines and with markedly broader intellectual experience and agility than they possessed when they began; they will go on to careers in the professions, industry, business, museums, research institutions, college or university teaching, or other work demanding highly specialized training, with an enhanced capacity for leadership and a cultivated ability to contribute something of value to their own lives and the present and future lives of others.
Other Graduate Study at the University

In addition to the degree programs offered by the Graduate School–New Brunswick, the following divisions of the university offer postbaccalaureate programs in New Brunswick and Piscataway.

College of Pharmacy. The college offers the Pharm.D. degree. M.P.H. and D.P.H. degrees in public health are offered. The school also offers an M.P.P. degree and an M.P.A.P. (pending) in public policy and an M.C.R.P. degree and an M.C.R.S. (pending) in urban planning and policy development. In addition, the school offers a number of joint degrees in public policy, urban planning and policy development, and urban studies and community health that are described in the school’s catalog.

Graduate School of Applied and Professional Psychology. The school offers the Doctor of Psychology (Psy.D.) degree in professional psychology, with specializations in the areas of clinical psychology, school psychology, and organizational psychology. It awards the Master of Psychology (Psy.M.) en passant to the doctorate.

Graduate School of Education. In the field of educational psychology, the school offers Ed.M. and Ed.D. degrees in counseling psychology; educational statistics and measurement; learning, cognition, and development; and special education.

In the area of educational theory, policy, and administration, an Ed.M. degree is offered in administration and supervision in elementary education; administration and supervision in secondary education; adult and continuing education; school business administration; social and philosophical foundations; and social studies education. Also offered are Ed.S. and Ed.D. degrees in educational administration and supervision and school business administration.

In the area of learning and teaching, the school offers Ed.M., Ed.S., and Ed.D. degrees in elementary/early childhood; English/language arts education; language education; mathematics education; literacy education; and science education.

Mason Gross School of the Arts. The school offers M.F.A. degrees in theater arts and visual arts and the M.M., D.M.A., and A.Dipl. degrees in music.

School of Communication, Information and Library Studies. The school offers an M.C.I.S. degree in communication and information studies and an M.L.S. degree in library and information science.

School of Management and Labor Relations. The school offers an M.H.R.M. degree in human resource management and an M.L.E.R. degree in labor and employment relations.

School of Social Work. M.S.W. degrees are offered in administration, policy, and planning, and in direct practice.

At Rutgers–Newark, programs are offered by the Graduate School–Newark, the Graduate School of Management, the School of Criminal Justice, and the School of Law–Newark. At Rutgers–Camden, programs are offered by the Graduate School–Camden, the School of Law–Camden, and the School of Business–Camden.

Each of the university’s graduate-level schools publish catalogs that are available upon request. More complete descriptions of the schools located in New Brunswick also can be found under their respective program listings in this catalog.

LOCATION

New Brunswick, with a population of about 42,000, is located in central New Jersey at Exit 9 of the New Jersey Turnpike and along the New York-Philadelphia railroad line. It is approximately thirty-three miles from New York City, and frequent express bus service is available from a station near the College Avenue campus to terminals in central Manhattan. Princeton is sixteen miles to the south, Philadelphia about sixty miles, and Washington under two hundred miles. The libraries, theaters, concert halls, museums, galleries, research institutes, clubs, and other educational, cultural, and recreational resources of the New York-Philadelphia region are easily accessible to the interested student. Rutgers attracts many distinguished visitors, lecturers, and performing artists not always available to less favorably situated institutions. Newark, the state’s largest city, and Camden, which faces Philadelphia across the Delaware River, are characteristic northeastern American metropolitan centers. A distance of twenty miles separates the Newark campus of the university from the New Brunswick-Piscataway campuses, and a few faculty members and graduate students involve themselves in activities at both locations. The distance between New Brunswick and Camden is about fifty-five miles, and interchanges are consequently less frequent, although the faculty participating in New Brunswick-Piscataway graduate programs includes members from Camden and from Newark.
Degree Programs Available

Advanced degrees in the subjects listed below are conferred by the university upon recommendation of the faculty of the Graduate School–New Brunswick. Further information about the specific areas of specialization in which degree programs are conducted may be found under the general subject headings in the Programs, Faculty, and Courses chapter.

Agricultural Economics (M.S.)
Animal Sciences (M.S., Ph.D.)
Anthropology (M.A., Ph.D.)
Art History (M.A., Ph.D.)
Biochemistry (M.S., Ph.D.)
Biomedical Engineering (M.S., Ph.D.)
Bioresource Engineering (M.S.)
Cell and Developmental Biology (M.S., Ph.D.)
Ceramic and Materials Science and Engineering (M.S., Ph.D.)
Chemical and Biochemical Engineering (M.S., Ph.D.)
Chemistry (M.S., M.S.T., Ph.D.)
Civil and Environmental Engineering (M.S., Ph.D.)
Classics (M.A., M.A.T., Ph.D.)
Communication, Information, and Library Studies (Ph.D.)
Comparative Literature (M.A., Ph.D.)
Computer Science (M.S., Ph.D.)
Ecology and Evolution (M.S., Ph.D.)
Economics (M.A., Ph.D.)
Education (Ph.D.)
Electrical and Computer Engineering (M.S., Ph.D.)
English, Literatures in (M.A., Ph.D.)
Entomology (M.S., Ph.D.)
Environmental Sciences (M.S., Ph.D.)
Food Science (M.S., Ph.D.)
French (M.A., M.A.T., Ph.D.)
Geography (M.A., M.S., Ph.D.)
Geological Sciences (M.S., Ph.D.)
German (M.A., Ph.D.)
History (M.A., Ph.D.)
Industrial and Systems Engineering (M.S., Ph.D.)
Industrial Relations and Human Resources (Ph.D.)
Italian (M.A., M.A.T., Ph.D.)
Linguistics (M.A., Ph.D.)
Mathematics (M.S., Ph.D.)
Mechanical and Aerospace Engineering (M.S., Ph.D.)
Mechanics (M.S., Ph.D.)
Microbiology and Molecular Genetics (M.S., Ph.D.)
Music (M.A., Ph.D.)
Nutritional Sciences (M.S., Ph.D.)
Oceanography (M.S., Ph.D.)
Operations Research (M.S., Ph.D.)
Pharmaceutical Science (M.S., Ph.D.)
Pharmacology, Cellular and Molecular (M.S., Ph.D.)
Philosophy (M.A., Ph.D.)
Physics and Astronomy (M.S., M.S.T., Ph.D.)
Physiology and Neurobiology (M.S., Ph.D.)
Plant Biology (M.S., Ph.D.)
Political Science (M.A., Ph.D.)
Psychology (M.S., Ph.D.)
Public Health (Ph.D.) (Offered jointly with and administered by UMDNJ–RWJMS)
Public Policy (M.S.)
Social Work (Ph.D.)
Sociology (M.A., Ph.D.)
Spanish (M.A., M.A.T., Ph.D.)
Statistics (M.S., Ph.D.)
Toxicology (M.S., Ph.D.)
Urban Planning and Policy Development (M.S., Ph.D.)
Women’s Studies (M.A.)

SPECIAL PROGRAMS

Interdisciplinary Ph.D. Programs

In addition to the formally established doctoral programs, special interdisciplinary Ph.D. programs may be arranged for individual students who wish to pursue subjects that cut across the boundaries of program curricula. A student who seeks the Ph.D. in an area requiring the services of two or more program faculties should consult interested faculty members and then submit a formal proposal to the dean of the Graduate School–New Brunswick, outlining a program of study. Courses, examinations, the dissertation topic, and the names of faculty members who have consented to serve as the student’s committee must have the approval of the directors of the graduate programs involved. Requests for special programs will normally be considered only after the student has satisfactorily completed at least one year of work in the Graduate School–New Brunswick. Upon receiving the written approval of the faculties concerned, the dean will appoint the ad hoc committee that will supervise the remainder of the student’s program of graduate study and research, and the student will be transferred to the interdisciplinary Ph.D. program (curriculum code 554).

Joint Programs

Rutgers, The State University of New Jersey, and the University of Medicine and Dentistry of New Jersey–Graduate School of Biomedical Sciences also offer joint Ph.D. and M.S. degrees to candidates for the degree in biochemistry, biomedical engineering, cell and developmental biology/anatomy, microbiology and molecular genetics, cellular and molecular pharmacology, physiology and neurobiology, and toxicology.

A joint doctoral program in public health is offered in cooperation with the University of Medicine and Dentistry of New Jersey–Robert Wood Johnson Medical School. This program is administered by UMDNJ–RWJMS. Inquiries should be addressed to the New Jersey Graduate Program in Public Health, Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, 170 Frelinghuysen Road, Piscataway, NJ 08854-8020.

Combined M.D./Ph.D. Degree

The University of Medicine and Dentistry of New Jersey–Robert Wood Johnson Medical School and the Graduate School–New Brunswick/University of Medicine and Dentistry of New Jersey–Graduate School of Biomedical Sciences offer a combined M.D./Ph.D. program.

Students will be selected for the program on the basis of previous academic work, M.C.A.T. or G.R.E. test scores, and letters of recommendation.
For further information and an application form, please contact the Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey–Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854-5635.

Simultaneous Degrees

A student admitted to one degree program may simultaneously pursue a second degree in another program. The director of the graduate program offering the second degree must notify the Office of the Dean of the Graduate School in writing concerning the student’s acceptance by that program. Students, however, can only be registered in one program at a time.

Certificate Programs and Core Curricula

The Graduate School–New Brunswick offers programs of concentration that complement formal degree programs. These programs do not themselves offer degrees, but are designed to facilitate certain interdisciplinary specializations without impeding the student’s progress toward the degree. These specialized options are of several kinds. Some are done without formal acknowledgment, such as that in packaging science and engineering, while others are extensions of existing degree programs, such as the museum studies certificate offered in connection with the M.A. degree in art history. Programs leading to an interdisciplinary Ph.D. also may be arranged (see the section on Interdisciplinary Ph.D. Programs).

Interdisciplinary certificate programs and core curricula provide a more formal means for participating in a cross-disciplinary area and for encouraging collaborative work. Students who complete their degrees while also meeting the requirements of a certificate program will receive a certificate indicating their specific concentration of study. All certificate options require students to take courses outside of their degree programs and to write a major paper or thesis on a topic appropriate to the particular certificate. Some programs also offer interdisciplinary seminars.

Core curricula are designed somewhat differently. In contrast to certificate programs, students must formally apply to and be admitted into core curricula. They typically provide fellowship or traineeship support for enrolled students. Basic courses, seminars, and laboratory rotations allow students to explore problems at the boundaries of degree programs and even postpone commitment to a given degree program for a time. Students completing such curricula must also meet the requirements of the degree program in which they are matriculated.

Specific details concerning the certificate programs and core curricula may be found in the Programs, Faculty, and Courses chapter.

Certificate Programs

- Alcohol Studies
- Asian Studies
- Cognitive Science
- Human Dimensions of Environmental Change
- Medieval Studies
- Museum Studies
- Quaternary Studies
- Russian, Central and East European Studies
- Wireless Communications
- Women’s Studies

Core Curricula

- Biotechnology
- Molecular and Cell Biology
- Molecular Biophysics
- Molecular Biosciences

Nondegree Graduate Study

The Nondegree Graduate Study Office, 18 Bishop Place (732/932-7711), cooperates with the Graduate School–New Brunswick in facilitating the admission of part-time, nonmatriculated students. Nondegree graduate study is available at the discretion of the academic programs.

With the approval of the appropriate graduate program director, up to 12 credits earned in courses successfully completed in the nondegree program may be applied to satisfy requirements for students subsequently admitted to degree programs. Admission to a nondegree program, however, is completely independent and distinct from admission to a degree program. Each requires a separate application and fee. Admission to nondegree study does not guarantee admission to a degree program. Students are not permitted to accumulate more than 12 credits in nondegree study prior to matriculation in a degree program. Students admitted to nondegree study are subject to, and must comply with, the rules, regulations, and deadlines of the Graduate School–New Brunswick.
Admission

REQUIREMENTS
A bachelor's degree, or its equivalent, from a recognized institution of higher education is required of applicants to the Graduate School–New Brunswick. An average of B or better in previous academic work is expected. Additional evidence of potential for graduate study is demonstrated by letters of recommendation and by scores on the Graduate Record Examination, which are required for all programs. Applicants should refer to the current application form and instructions for the specific requirements and prerequisites of each program. The applicant's character, integrity, and general fitness to practice a particular profession also may be considered in the admissions process. Admission is competitive; some applicants who meet or surpass minimum requirements may be denied acceptance. Admission is recommended by faculty of the graduate program to which the individual applies and must be approved by the dean of the Graduate School–New Brunswick or the dean's representative.

APPLICATIONS
Admission materials are available from the Office of Graduate and Professional Admissions, Rutgers, The State University of New Jersey, 18 Bishop Place, New Brunswick, NJ 08901-8530 (732/932-7711). These materials also may be downloaded from the Graduate Admissions web site: www.rutgers.edu/students/gradad.html. A complete application consists of the application form, the application fee, letters of recommendation, official transcripts of previous academic work, personal statement or essay, and test scores. Additional materials may be required by some programs. Detailed procedures and instructions accompany the application form.

DEADLINES
Application deadlines vary by program and are listed in current admissions materials. Applications for assistantships and fellowships that are received after March 1 are disadvantaged but are considered as long as awards are available. Many programs have established different financial aid deadlines, which are cited in the application information. International students applying from abroad must submit application materials by November 1 for spring term admission and April 1 for fall term admission, unless the individual program deadline is earlier. Programs reserve the right to change stated deadlines.

TESTS
The Graduate School–New Brunswick requires applicants for matriculated status to submit results of the General Graduate Record Examination (GRE). GRE information and application forms may be obtained by writing the Graduate Record Examination Program, Educational Testing Service, P.O. Box 6000, Princeton, NJ 08541-6000. Some programs also require additional tests.
Graduate programs may require that test scores more than five years old be validated, either by evidence of continued work in the field or by reexamination.

INTERNATIONAL APPLICANTS
International applicants are required to take the Test of English as a Foreign Language (TOEFL) if English is not their native language. For further information about the test, write to TOEFL/TSE Services, P.O. Box 6151, Princeton, NJ 08541-6151, U.S.A. Satisfactory English proficiency is a prerequisite for graduate study at the university. Admitted students may be required to take a test of English proficiency soon after arrival at the university and may be obligated to take course work in English as a Second Language (ESL). These courses are cited in the Programs, Faculty, and Courses chapter.
New international students appointed as teaching assistants are required to take an oral proficiency test regardless of their TOEFL scores. Nonimmigrant students also must present evidence of adequate financial resources to meet educational and living expenses.

NOTIFICATION OF DECISIONS
Applicants will receive written notification of admissions decisions from the Office of Graduate and Professional Admissions. Admission will be confirmed on a Certificate of Admission, which may list certain conditions. Such conditions should be satisfied prior to registration unless otherwise indicated. Admission to the Graduate School–New Brunswick does not constitute admission to candidacy for an advanced degree.
Candidacy is explained elsewhere in this catalog. Students who fail to register for the term to which they were admitted should contact the graduate admissions office for further instructions.
Tuition and Fees

FEE SCHEDULE

1999–2000 Academic Year

Note: The university reserves the right to alter the amounts indicated on the following schedule at any time before the first day of classes of a term.

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Fee, nonrefundable</td>
<td>$50.00</td>
</tr>
<tr>
<td>Tuition *</td>
<td></td>
</tr>
<tr>
<td>Full-time New Jersey resident, per term</td>
<td>$3,388.00</td>
</tr>
<tr>
<td>Full-time non-New Jersey resident, per term</td>
<td>$4,968.00</td>
</tr>
<tr>
<td>Part-time New Jersey resident, per credit</td>
<td>$279.30</td>
</tr>
<tr>
<td>Part-time non-New Jersey resident, per credit</td>
<td>$412.30</td>
</tr>
<tr>
<td>Student Fee, per term</td>
<td></td>
</tr>
<tr>
<td>Full-time (12 or more credits)</td>
<td>$333.25</td>
</tr>
<tr>
<td>Part-time (11 or fewer credits)</td>
<td>$89.00</td>
</tr>
<tr>
<td>Matriculation continued or 1 credit of research</td>
<td>$7.00</td>
</tr>
<tr>
<td>Meal Plans, per term</td>
<td></td>
</tr>
<tr>
<td>Any 105 meals to any 285 meals</td>
<td>$980.00–1,375.00</td>
</tr>
<tr>
<td>Any 50 meals to any 75 meals (commuter)</td>
<td>$405.00–585.00</td>
</tr>
<tr>
<td>Miscellaneous Fees</td>
<td></td>
</tr>
<tr>
<td>Computer fee (full-time)</td>
<td>$100.00</td>
</tr>
<tr>
<td>Computer fee (part-time) (progressive)</td>
<td>$20.00</td>
</tr>
<tr>
<td>(incremental increase)</td>
<td></td>
</tr>
<tr>
<td>Basic health insurance program (optional) †, per term (part-time students only)</td>
<td>$90.73</td>
</tr>
<tr>
<td>Major medical insurance plan, per year †</td>
<td>$257.00/337.00</td>
</tr>
<tr>
<td>Spouse, per year ‡</td>
<td>$257.00/337.00</td>
</tr>
<tr>
<td>Each child, per year ‡</td>
<td>$257.00/337.00</td>
</tr>
<tr>
<td>Late registration fee</td>
<td>$50.00</td>
</tr>
<tr>
<td>Late payment fee (for one day to one week and/or check not honored for payment)</td>
<td>$50.00</td>
</tr>
<tr>
<td>Partial payment fee</td>
<td>$10.00</td>
</tr>
<tr>
<td>Late payment fee for partial payments (for one day to one week)</td>
<td>$10.00</td>
</tr>
<tr>
<td>For each additional week or part thereof</td>
<td>$5.00</td>
</tr>
<tr>
<td>Drop/add fee, per change</td>
<td></td>
</tr>
<tr>
<td>(applies to change of registration due to student error or choice after the second week of classes)</td>
<td>$5.00</td>
</tr>
<tr>
<td>Microfilming of doctoral dissertation</td>
<td>$50.00</td>
</tr>
<tr>
<td>Transcript of record fee, per copy</td>
<td>$3.00</td>
</tr>
<tr>
<td>Student I.D. fee</td>
<td>$5.00</td>
</tr>
<tr>
<td>Restoral Fee</td>
<td></td>
</tr>
<tr>
<td>Fee, per term</td>
<td>$279.30</td>
</tr>
<tr>
<td>Maximum fee (through five terms)</td>
<td>$1,396.50</td>
</tr>
<tr>
<td>(applies to certain students who allow their registration to lapse and wish to be restored to active status as degree candidates)</td>
<td></td>
</tr>
</tbody>
</table>

Note: All breakage and damage to university property is charged for in full. The university is not responsible for loss by fire or theft of private property in its buildings.

* For an explanation of New Jersey residency status, see Student Residency for Tuition Purposes in the Academic Policies and Procedures chapter.

† Required for international students.

‡ This insurance is optional ($50,000 limit/$100,000 limit).

STUDENT FEE AND OTHER CHARGES

The student fee covers student use of the student centers and the health centers, membership in the Graduate Student Association, and certain administrative services. The relatively low fee charged to graduate students does not include the fee for intercollegiate athletics, which entitles undergraduates to discounted prices for tickets.

Special fees charged for some undergraduate courses apply also to graduate students enrolling in those courses. Deposits of varying amounts, covering the cost of materials and breakage, are required in certain laboratory courses in the sciences; unused portions of such fees are returned.

TERM BILLS

Instructions for registration and payment of term bills are sent by mail to the student’s home address for the first and second terms, with due dates indicated.

It is the student’s responsibility to obtain, complete, and return the term bill on time. Students who fail to do so are charged a late payment fee of $50 for the first week, plus $5 for each additional week or part of a week that payment is late. Graduate students enrolled for 6 or more credits who are unable to pay their term bills in full by the due date or by the first day of class may pay their bill according to the partial payment plan outlined below.

Payment of the term bill may be made in person or by mail. Checks or money orders are preferred and should be made payable to Rutgers, The State University. Cash should not be sent through the mail. Payment also can be made by Visa®, MasterCard®, or Discover® Card. Transactions that are declined by the bank are considered unpaid and are returned to the student. Refunds of credit card payments will be processed by a check issued by Rutgers to the student.

PARTIAL PAYMENT PLAN

Students enrolled for 6 or more credits who are unable to pay their term bill in full may arrange with the local cashier’s office to pay their bill, if it indicates a net balance due of $200 or more, in three installments under the partial payment plan, as follows:

1. First payment: 50 percent of the net balance due plus a $10 nonrefundable partial payment fee payable on or before the date indicated on the term bill.
2. Second payment: 25 percent of the net balance due on or before September 15 for the fall term and on or before February 1 for the spring term.
3. Third payment: net balance due on or before October 15 for the fall term and on or before March 1 for the spring term.

Any student submitting a term bill after classes have begun for the term must make payment according to the following schedule:

1. First payment: 75 percent of the net balance due plus a $10 nonrefundable partial payment fee.
2. Second payment: net balance due on or before October 15 for fall term and on or before March 1 for spring term.

* For an explanation of New Jersey residency status, see Student Residency for Tuition Purposes in the Academic Policies and Procedures chapter.
The nonrefundable fee for this partial payment plan is $10 per term and must be included with the first payment. Any subsequent installment not paid on time incurs an initial late fee of $10 for the first week or part of a week that payment is late, plus a $5 late fee for each additional week or part of a week that payment is late. The university reserves the right to increase the partial payment plan fee if it is deemed necessary.

LIVING EXPENSES

Full-time graduate students, who are New Jersey residents without financial assistance from the university, paid tuition and student fees totaling $7,142 for the 1998–1999 academic year. Single students living in university housing paid rent of $3,752 for the academic year. Food for the academic year was $2,700 if the full meal plan was selected. Books and supplies may have cost another $1,000. The expenses of clothing, laundry, travel, treats, etc., vary according to individual circumstances, but may be estimated at $3,000. A total figure of approximately $17,000 per academic year is realistic.

Students who are not New Jersey residents pay higher tuition and may incur additional expenses during the summer period. As much as $3,000 more may be required.

REGISTRATION

Activation of Registration

A student’s registration is activated through the proper submission of a term bill, accompanied by payment, or through an appropriate claim of financial aid. Activation of registration will not take place if there are “holds” placed on a student’s records because of failure to meet outstanding obligations.

Termination of Registration

The university exercises the right to terminate the registration of any student who has an outstanding financial obligation to the university, after sufficient notice has been given to the student. The university reserves the right to “hold” transcripts and diplomas as a result of nonpayment of obligations and to forward delinquent accounts to collection agencies and to levy a collection fee. “Holds” are removed upon satisfaction of the outstanding obligation. The terminated student may petition for reinstatement of enrollment by satisfying the indebtedness to the university and paying a $50 reinstatement fee.

Cancellation of Registration

To cancel registration and obtain a full refund of tuition and fees, students must notify the registrar in writing prior to the first day of classes. A student whose registration is cancelled by the registrar will receive a full refund of tuition and fees, and prorated charges for room and board, if applicable. Notification of cancellation received on or after the first day of classes is treated, for billing purposes, as a withdrawal, and a refund will be made based on the general refund policy.

GENERAL REFUND POLICY

A student who voluntarily withdraws from all courses during the first six weeks of a term will receive a partial reduction of tuition (and charges for room and board, if applicable) according to the week of withdrawal as follows:

- First and second week: 80%
- Third and fourth week: 60%
- Fifth and sixth week: 40%

No reduction is granted after the sixth week.

The effective date of withdrawal is the date on which a written statement of withdrawal is received by the registrar. No part of the student fee is refundable. W grades will be assigned, and no reductions will be granted, after the second week of classes to students who withdraw from one or more courses but who remain registered in others. If withdrawal from one or more courses amounts to complete withdrawal from a program, the provision for full withdrawal applies.

Failure to attend class is not equivalent to a withdrawal, and a student will not receive an adjustment of charges unless a formal withdrawal is filed with and approved by the registrar, regardless of whether the student actually attended classes or took examinations.

Refund Policies for Title IV Funds Recipients

There are two additional refund schedules that differ from the General Refund Policy schedule for Title IV funds recipients. First-time Title IV funds recipients who withdraw completely from Rutgers are provided with a separate schedule under the Pro-rata Refund policy. Title IV funds recipients who are not first-time attendees are provided a schedule of refunds via the Appendix A Refund Policy.

For further information, please contact the financial aid office.
Financial Aid

The majority of full-time graduate students at the university, like most graduate students in America, receive some measure of financial aid. The amount of support each student receives depends in part, of course, upon the availability of funds. The availability of support is often dependent upon the specific graduate program and degree status. Support ranges from loans to grants covering tuition charges to awards sufficient to pay all educational and living expenses. The sources of support include university funds, federal and state government funds, corporate and individual bequests to the university, and grants from educational and scientific foundations.

MERIT-BASED FINANCIAL AID

Fellowships, Assistantships, Scholarships, and Grants

All applicants are automatically considered for university-based fellowships, scholarships, and assistantships. Inquiries should be addressed to the director of the graduate program to which the student has applied.

Students are encouraged to apply for externally funded fellowships as well. See the Nonuniversity Fellowships heading later in this chapter.

Fellowship Awards. Fellowship Awards are made by the Graduate School–New Brunswick and other units to doctoral students of exceptional promise. The awards carry stipends of $10,000 to $18,000 plus tuition for varying periods of time.

Diversity Advancement Program in Teaching and Research. Through referral from graduate program directors and by other means, the Diversity Advancement Program identifies individuals whose ethnicity or background makes them unusual among students in their respective fields. Fellowships from a variety of sources are then allocated to encourage the enrollment of these students and thus the diversity of the graduate community. The fellowships awarded are comparable to those awarded through the schools and colleges.

For more information, contact DAP, Rutgers, The State University of New Jersey, 25 Bishop Place, New Brunswick, NJ 08901-1181, or call 732/932-8122.

Ralph Johnson Bunche Distinguished Graduate Award. Established in 1979, this distinguished graduate award is named after Ralph Johnson Bunche, the African-American statesman, Nobel Peace Laureate, and recipient of an honorary Doctor of Laws from Rutgers in 1949.

Bunche fellowships provide $12,000 plus tuition remission for up to two years to exceptional, new, full-time students with backgrounds of substantial educational or cultural disadvantage.

Bevier and University Fellowships. Graduates of Rutgers, The State University of New Jersey, and postqualifying students already at the university may apply for Louis Bevier Fellowships and University Fellowships. Funds provided by the state and by the Louis Bevier Memorial Fund (established through the generosity of Dr. and Mrs. Ralph G. Wright in honor of the late Dean Louis Bevier), respectively, support a limited number of fellowships that carry stipends of $10,000.

Russell Scholarships. Walter C. Russell Graduate Scholarships provide for the cost of tuition. Applications should be made to the director of the graduate program in which the student is enrolled before March 1 for awards for the ensuing academic year, and before December 1 for awards that might occur in the spring term.

Bunting-Cobb Graduate Residential Fellowship for Women in Mathematics, Science, and Engineering. Bunting-Cobb Graduate Fellowships for Women in Mathematics, Science, and Engineering are offered by Douglass College, the women’s undergraduate unit of Rutgers, for women enrolled as full-time students in mathematics, science, and engineering programs in the Graduate School–New Brunswick. The award provides a two-year fellowship to women graduate students in mathematics, science, or engineering. Bunting-Cobb Graduate Fellows live in residence in the Bunting-Cobb Math and Science Hall at Douglass and serve as mentors to undergraduate women in mathematics, science, and engineering. The award includes a stipend and a single room with board for the academic year. Stipend and responsibilities are based upon the fellow’s year in graduate study. Bunting-Cobb Fellows have the opportunity to be part of a unique program of support for women in math, science, and engineering. For more information, contact the Douglass Project for Rutgers Women in Math, Science, and Engineering, Douglass College, Rutgers, The State University of New Jersey, 50 Bishop Street, New Brunswick, NJ 08901-8558, or call 732/932-9197.

Robert White-Stevens Graduate Fellowship. The Robert White-Stevens Graduate Fellowship, named in memory of Dr. Robert White-Stevens who was an agriculturist and former chairman of the Bureau of Conservation and Environmental Science, biology professor, assistant director of the New Jersey Agricultural Experiment Station, and faculty member of Cook College, Rutgers, The State University of New Jersey, supports an advanced doctoral student committed to enhancing the role of science in alleviating world hunger by increasing the food supply through plant or animal research. Applicants must be nominated by a graduate program director.

Other Fellowships and Scholarships. Students should be aware that each department is continually seeking funds from outside agencies to help defray student expenses. Grants and awards of this nature will vary each year. Inquiries regarding the availability of such monies can be made through graduate program offices and advisers.

Nonuniversity Fellowships. Some graduate students at the university are supported by fellowships funded by sources outside the university. A major source of funding is the National Science Foundation. It offers talented graduate students in the sciences significant funding to pursue their academic programs. Information and applications are available from the Fellowship Office, National Research Council, 2101 Constitution Avenue NW, Washington, DC 20418.

Other sources of prestigious fellowships are the Mellon Fellowships in the Humanities, administered by the
NEED-BASED FINANCIAL AID

Limited funds are available from grants, low-interest loans, and part-time employment to students at the school. Application for such aid is made by completing the Free Application for Federal Student Aid (FAFSA). These forms are available from most college and university financial aid offices, as well as from the Rutgers Office of Financial Aid. All students are encouraged to complete this application.

Following is a brief description of each program. All students are strongly encouraged to file an application for financial aid.

How to Apply

All applicants must complete the Free Application for Federal Student Aid (FAFSA) annually and submit it to the federal processor at the address listed on the envelope provided with the form. Applications should be received by the federal processor by March 15 of the academic year preceding the academic year for which aid is sought. The forms are available at all Rutgers financial aid offices. The FAFSA should be filed at the same time the admission application is submitted, but no later than March 15 to ensure full consideration for all available funds.

Letters announcing financial aid decisions are mailed to all students as soon as possible after admission. Funds are limited and awards are made based on financial need and limited by the March 15 priority filing date. Therefore, there is a definite advantage to submitting an early, accurate, and complete application.

Counseling is available by appointment at the financial aid office to all students regardless of whether or not they qualify for financial aid. When comparing aid offers from Rutgers with other institutions, students should remember that charges often differ significantly from school to school. Therefore, the important thing to consider is not the dollar value of a financial aid offer, but the difference between the total value of the financial aid package awarded by the institution and the cost of attending that institution.

Part-Time Students

Since financial need is determined by comparing a student’s resources with the cost of attending school, most part-time students who are gainfully employed do not demonstrate financial need.

Grants

State Grant. Full-time graduate students, who are classified as New Jersey residents for tuition purposes and who demonstrate financial need, are eligible to receive a New Jersey State Grant. Amounts vary from $200 to $1,000 per year and are dependent upon available funds. Application is made by submitting a FAFSA. EOF grant recipients are not eligible.

Educational Opportunity Fund (EOF). New Jersey residents who are full-time students and who can demonstrate backgrounds of financial and academic hardship are eligible for EOF grants ranging from $200 to $2,650. Students who received EOF grants as undergraduates are presumed eligible if they fall below the maximum income parameters required for all recipients of this state grant. Graduate students who did not receive EOF grants as undergraduates, but feel that they come from backgrounds of financial hardship and wish to be considered, should write to the financial aid office for consideration. The grants are renewable for the duration of the student’s degree work, subject to continued student eligibility and provided satisfactory academic progress is made. Students must complete the FAFSA.

Loans

Federal Perkins Loan

Federal Perkins Loans (formerly National Direct Student Loan) are available to students who are enrolled in a minimum of 6 credits per term, who are citizens or permanent residents of the United States, and who demonstrate need through the FAFSA. The maximum amount a graduate student can borrow under this program at Rutgers is $3,000 per academic year, with maximum aggregate loan amount not to exceed $30,000 (including undergraduate National Direct Student Loan (NDSL) and Perkins loan totals).

Interest at the rate of 5 percent simple begins nine months after the borrower ceases to enroll in a minimum of 6 credits per term and extends over a maximum repayment period of ten years. Monthly payments of at least $40 are required. Deferral of repayment is permitted for certain kinds of federal service and cancellation of loans is permitted for certain public services.

Consistent with federal regulations, all first-time Federal Perkins Loan borrowers at Rutgers are required to attend an entrance interview in order to be informed of their rights and responsibilities regarding the loan. In addition, Federal Perkins Loan recipients must attend an exit interview prior to graduation or withdrawal from school. Further details and procedures regarding the repayment of the Federal Perkins Loan are sent to each student recipient by the Student Loan Office, Administrative Services Building, Rutgers, The State University of New Jersey, Division of Accounting, 65 Davidson Road, Room 310, Piscataway, NJ 08854-8094.
Federal Direct Student Loans (Direct Loans) are available for students directly from the federal government to pay for educational costs. These loans eliminate the need for an outside lender, such as a bank. To be considered for a Direct Loan, students must complete the FAFSA. Subsequently, the award letter issued by Rutgers will list eligibility for the program. Money for which students are eligible will be credited directly to their accounts. Because Rutgers has chosen to participate in Direct Lending, the university cannot accept any Federal Stafford applications from students or their lenders. Since the U.S. Department of Education is the lender for the Federal Direct Loan Program, borrowers will send all loan repayments to the department, rather than to several lenders.

In general, to be eligible for a Direct Loan, a student must have a high school diploma or a General Education Development (GED) certificate or meet other standards approved by the U.S. Department of Education, be a United States citizen or an eligible noncitizen, be enrolled at least half-time per term, be making satisfactory academic progress, have a Social Security number, sign a statement of educational purpose, not be in default on prior loans or owe refunds to a federal grant program, and register with the U.S. Selective Service Administration, if required.

In addition to these requirements, all first time Direct Stafford/Ford and Direct Unsubsidized Stafford/Ford Loan borrowers must attend an entrance interview in order to be informed of their rights and responsibilities regarding the loan.

The aggregate limit for Federal Direct Stafford/Ford Loans, including both subsidized and unsubsidized amounts, is $138,500 for a graduate or professional student (including loans for undergraduate study).

Federal Direct Stafford/Ford Loan. This loan is based on financial need. The government pays the interest on the loan while the student is attending school. The interest rate is variable; that is, it is adjusted each year. The maximum rate for the Federal Direct Stafford/Ford Loan is 8.25 percent. Additionally, borrowers are charged an origination fee of 4 percent. Graduate students may borrow $8,500 per year. The total debt may not exceed $65,500 including loans for undergraduate years.

Federal Direct Unsubsidized Stafford/Ford Loan. This loan is not based on financial need, but all interest charges must be paid by the student. The interest rate is the same as the Federal Direct Stafford/Ford Loan. Students may borrow up to $10,000 per year.

Emergency Loans
Students who are experiencing a financial emergency may apply for a university loan for up to $500. The interest rate is 3 percent simple interest, and the loan must be repaid within the same semester. An emergency need must be demonstrated and funds must be available.

Students must contact their local financial aid office for additional information. If loans in excess of this amount are required, an appointment with a counselor is recommended to discuss long-term assistance. Students do not need to be recipients of financial aid nor to have filed a financial aid application to be considered for emergency loans.

A number of graduate schools offer low interest or interest-free short-term loans to students in their program. Students should request additional information from the various deans or directors of each program.

Employment on Campus
Preceptorships and Residence Counselorships. Appointments as preceptors or counselors in the various undergraduate residence halls are available to a limited number of graduate students. The offices of the deans of students of the undergraduate colleges will, on request, provide information regarding the duties required of preceptors and counselors, the benefits, such as room, board, and tuition grants, and the procedures for application. Applications for September appointments must normally be received before May 1.

Federal Work-Study Program (FWSP). Federal work-study employment may be offered as a self-help portion of the financial aid award. Application for this program is made by filing the FAFSA. On-campus jobs are available in many departments. Selection for a particular job is based on skills, job availability, university needs, and student preference. The assigned employment opportunity is based on an expectation that the student will work between six and twenty hours per week throughout the fall and spring academic terms; in the case of summer assignments, students may work up to thirty-five hours per week.

Any change in work study jobs must be made through the Student Employment/Financial Aid Office. Off-campus employment also is available through the federal work-study program. These jobs are paid community-service positions in nonprofit agencies. Jobs are related to the student’s major whenever possible. No job assignments can be made until all paperwork required to accept the aid is complete.

Other University Employment. Any graduate student enrolled at the university may check directly with the individual academic or administrative offices for available non-FWSP openings. All hiring decisions for non-FWSP jobs are made by the department.

Other Financial Resources
Job Location and Development Program (JLD). The JLD program is open to all graduate students enrolled in the university. Most often, employment opportunities found through the program are located outside the university in local businesses. Students interested in the JLD program should contact the student employment office at 732/932-8817. Information about jobs also is available online at http://studentwork.rutgers.edu.

Veterans Benefits. The United States Veterans Administration operates various education assistance programs for eligible veterans, war orphans, surviving spouse or child of any veteran killed while on duty with the Armed Forces, disabled veterans, dependents of a veteran with service-related total disability, and certain members of the selected reserve. Inquiries concerning eligibility may be directed to the Veterans Administration office in Newark, New Jersey (1-800/827-1000); the New Jersey Department of Military and Veterans Affairs in New Brunswick, NJ (732/937-6347); or to the veterans coordinator on each campus. For New Brunswick, the number is 732/932-7067.

Veterans and others mentioned above who plan to use veterans’ education benefits should initially present the Veterans Administration Certificate of Eligibility Form(s) and/or discharge papers (certified copy of the DD214)
when registering for courses. If applying for other financial aid with the university, veterans must report the fact that they will receive veterans' education benefits to the Office of Financial Aid.

Veterans planning to train under Chapter 32 VEAP, Chapter 30 of the New (Montgomery) GI Bill of 1984, or Chapter 106 for Reservists, are required by the university to pay cash for tuition, fees, books, and supplies, when due. Veterans, in turn, receive an allowance for each month of schooling based upon credit hours and the number of dependents.

No veteran may officially withdraw from a course (or courses) without prior approval from the academic services and/or dean of students offices. All withdrawals must be submitted in writing. The date of official withdrawal will be the determining date for changes in benefits. Failure to comply with the official school withdrawal procedure may affect both past and future benefits. Any change in schedule must also be reported to the campus Office of Veterans Affairs.

RESTRICTIONS ON FINANCIAL AID AND EMPLOYMENT

Graduate students may not ordinarily hold two different fellowships, assistantships, or other substantial forms of employment simultaneously. Students who have been offered two different awards should inquire at the Office of the Graduate School–New Brunswick before acceptance. Students who hold fellowships, assistantships, traineeships, or Russell Scholarships may not accept employment outside of their academic department without the permission of the graduate director and the dean of the Graduate School–New Brunswick.

Graduate students who have received aid administered by the Office of Financial Aid must report to that office any change in income, such as scholarships, loans, gifts, assistantships, or other employment received subsequent to the original aid award.

Student Services

LIBRARIES

With holdings of more than three million volumes, the Rutgers University Libraries rank among the top twenty-five research libraries nationally. Comprising twenty-five libraries, reading rooms, and collections on the university's three campuses, the library system supports a broad range and depth of instruction and faculty and student research in a wide array of disciplines.

The system's largest units are the Archibald Stevens Alexander Library on the College Avenue campus and the Library of Science and Medicine on the Busch campus, both in New Brunswick, with the former housing the principal collections of research materials in the humanities and social sciences and the latter housing the principal research collections in behavioral, biological, earth and pharmaceutical sciences, and engineering.

There is a reading room for graduate students located in the Alexander Library. In addition to study space, the Graduate Reading Room includes the graduate reserve collection, a noncirculating collection of standard works in the social sciences and humanities, locked carrels for students working on their dissertations, and computer facilities.

Other libraries in New Brunswick are the Mabel Smith Douglass and Blanche and Irving Laurie Music libraries on the Douglass College campus; the Kilmer Library on the Livingston College campus; the Mathematical Sciences, Chemistry, and Physics libraries on the Busch campus; the Art Library and the East Asian Library on the College Avenue campus; and the Chang Science Library on the Cook College campus. The specialized collections of the School of Management and Labor Relations Library are located in the Labor Education Center, Ryders Lane, New Brunswick; and those of the Center of Alcohol Studies Library are on the Busch campus. The specialized collections of the Institute of Jazz Studies and the Criminal Justice Library, as well as the Institute Henry Ackerson Library of Law; the Camden campus is served by the Paul Robeson Library and the Camden Law Library. Most libraries maintain one or more reserve reading rooms.

The Rutgers University Libraries function as one system. The holdings of all units in the system are accessible via IRIS, the libraries' online catalog, which contains listings for the majority of the acquisitions since 1972 and is accessible through public terminals in each library, through telephone dial-up from outside the libraries, and through the libraries' website at http://www.libraries.rutgers.edu. Each library in the system, including those located in Camden and Newark, is accessible to all members of the university community through the Rutgers Request Service and telephone reference service. In addition to the libraries' online catalog, the libraries' website contains information about the library's services, including the ability to reserve spaces and request books and media. The libraries also maintain a number of reserve reading rooms on each campus.
Of particular interest to faculty and graduate students is Rutgers’ membership in the Research Libraries Group, a nationwide consortium that allows members of the university community access to the collections of the most distinguished research libraries in the country, including those at Yale, Berkeley, Stanford, and the New York Public Library. Through a shared database, there is access to most of the books and other materials of Research Libraries Group members that are available for interlibrary loan.

Additional services provided by the libraries include computer-assisted searches of online databases in a variety of disciplines. Members of the reference departments provide assistance in both computerized and noncomputerized reference searches. Reference librarians are available to assist with research projects, classroom instruction, or research strategies and with intra- and interlibrary loans.

The libraries make every attempt to ensure accessibility to their facilities and services by individuals with disabilities.

COMPUTER FACILITIES

Rutgers University Computing Services (RUCS) provides extensive centralized and decentralized computing and network services for students, faculty, and staff of all academic and administrative units of the university. In addition to the RUCS facilities, many departments and schools operate computing facilities of various types.

For instructional applications and general student use, a group of SUN computer systems collectively called “eden” is available. Any registered student can create his or her own account on these systems. These systems run the UNIX operating system and provide: electronic mail; access to the Rutgers University data communications network, RUNet; access to the Internet; applications software such as SAS and SPSS; and programming language compilers. Machine readable data files are available for census data, social science data, and other areas.

For research applications, a second group of SUN computer systems with greater capacity is available. Public computing facilities are located on each campus. These facilities include Apple Macintosh and DOS/Windows personal computers and X-terminals. All of the workstations in the hubs are connected to RUNet. Software is available for word-processing, spreadsheets, desktop publishing, graphics, statistical analysis, and other applications.

For further information, call 732/445-HELP or write Rutgers University Computing Services, Information Center, Room 128, Hill Center for the Mathematical Sciences, Busch Campus, Rutgers, The State University of New Jersey, 54 Joyce Kilmer Avenue, Piscataway, NJ 08854-8045.

TEACHING ASSISTANT PROJECT (TAP)

The Teaching Assistant Project (TAP) is a multitiered program designed to promote excellence in undergraduate and graduate education at Rutgers–New Brunswick through the professional development of the teaching assistant staff. The four main components of this project are a preterm orientation, ongoing training during the term, discipline-specific training within each program, and written materials designed for TAs. The two major publications of TAP are the Teaching Assistant Handbook, a comprehensive introduction to the university and teaching, and TapTalk, a newsletter that focuses on topics of interest to TAs. A dedicated telephone line, the TA HelpLine (932-11TA), provides daily assistance to TAs who have questions about teaching. Videotaping equipment is available for TAs who wish to have a class videotaped as a means of improving teaching performance. TAP recognizes the dual role of TAs in the university and seeks to assist them in teaching on the college level while balancing their responsibilities as students engaged in graduate study. Questions about TAP should be directed to the Office of the Dean, Graduate School–New Brunswick.

HOUSING

Attractive and comfortable residence facilities for graduate students are available on all of the New Brunswick campuses. Single graduate students may choose to reside in furnished residence halls located on the Douglass, College Avenue, and Livingston campuses or in furnished apartments available on the Cook and Busch campuses. The residence halls have shared bath and kitchen facilities. The graduate apartments (Starkey Apartments at Cook College and Buell Apartments at Busch Campus) house four students in single bedroom accommodations and offer full kitchens and bathrooms.

Graduate families are housed in one- and two-bedroom unfurnished apartment units located on the Busch campus. These units fill rapidly and a waiting list is maintained. Early application is recommended.

Single graduate students may select housing for a full calendar year or for the academic year. For additional information, call the Graduate Housing Office at 732/445-2215.

OFF-CAMPUS HOUSING SERVICE

As part of Campus Information Services, the Off-Campus Housing Service is the information and referral center for off-campus renting and housing needs at the New Brunswick campus and can be reached by calling 732/932-7766, or via email at ochs@ur.rutgers.edu. The service is located at 542 George Street, at the corner of George Street and Seminary Place on the College Avenue campus, where trained staff can offer help with just about any topic regarding off-campus housing and living. Computers are available at the office to search its rental database and receive a printout of the results. Maps, informational items, staff assistance, and a pay phone also are available. The Off-Campus Housing Service can assist students, faculty, and staff in finding information about available rentals and “for sale” properties in the area. For a modest charge, the office is able to mail or fax listing printouts to any location in the United Sates. The service is available year round with hours of 8:30 A.M. to 4:30 P.M. Monday through Friday and Wednesday from 8:30 A.M. to 7:30 P.M. During off-hours, callers have the option of recording their questions and having them answered when the staff returns.

The Off-Campus Housing Service web site can be accessed via the Internet at http://cis2.rutgers.edu/rent. It contains a large database of available rentals, apartment complex information, landlord-tenant rights information, tips to finding housing and preventing problems, and forms for a variety of renting purposes. The Off-Campus Housing
Service also conducts a free legal clinic that meets weekly throughout the year. Students and staff may make appointments in person or by phone to speak to a volunteer lawyer. These attorneys specialize in landlord-tenant matters and provide free advice on any housing-related problem or question.

DINING SERVICES

The Division of Dining Services operates and maintains six student dining facilities and eleven cash facilities. These include Brower Commons on the College Avenue campus, Busch Dining Hall and Davidson Commons on the Busch campus, Cooper and Neilson Dining Halls on the Cook/Douglass campus, and Tillett Dining Hall on the Livingston campus.

Dining Services offers several different "block plans," which provide convenience and flexibility to fit personal lifestyle and dining habits.

Visit the department's web page at http://www.rci.rutgers.edu/~rudining, or call 732/932-8041 for additional information.

RUTGERS UNIVERSITY HEALTH SERVICES

Rutgers University Health Services provides comprehensive ambulatory medical, outpatient, and health education services for all full-time students. Part-time students may become eligible by paying the student health service and insurance fee to the Office of Student Health Insurance, Hurtado Health Center, Rutgers, The State University of New Jersey, 11 Bishop Place, New Brunswick, NJ 08901-1180.

During the fall and spring terms, three health centers provide services for students in the New Brunswick/Piscataway area. The Busch/Livingston Health Center, located at Hospital Road and Avenue E on the Livingston campus, is open from 8:30 A.M. to 5:00 P.M., Monday through Friday. The Hurtado Health Center, located at 11 Bishop Place on the College Avenue campus, is open seven days a week when classes are in session during the academic year (8:30 A.M. to 8:00 P.M., Monday through Friday; 10:00 A.M. through 4:00 P.M., Saturday and Sunday). The Willets Health Center, located on Suydam Street on the Douglass campus, is open from 8:30 A.M. to 5:00 P.M., Monday through Friday. The Hurtado Health Center is the only one of these clinics that operates year-round. During the summer and breaks, it is open 8:30 A.M. to 4:30 P.M., Monday through Friday.

Health centers are staffed by physicians, nurse practitioners, and registered nurses. A wide range of services is provided, including primary care, gynecology, mental health services, alcohol and substance abuse outpatient treatment programs, health education, immunizations, allergy desensitization injections, laboratory tests, physical examinations, referrals, and X-rays. Surgical and critical medical conditions are referred to the student's personal physician, the proper specialist, or an outside hospital for treatment.

The Department of Health Education, a part of Health Services, works to increase discussions, examine issues, and explore the underlying contexts of selected health behavior. This exploration might focus, for example, on the use of food and chemical substances to manage feelings and situations, relationships, and sexuality.

Pharmacies are located at each health center and are open during the following hours: Busch-Livingston Pharmacy, 9:30 A.M. to 5:00 P.M., Monday through Friday; Rutgers Pharmacy (Hurtado), 9:30 A.M. to 5:30 P.M., Monday through Friday, and 10:00 A.M. to 3:00 P.M., Saturday; and Willets Pharmacy, 9:00 A.M. to 5:00 P.M., Monday through Friday. During Summer Session and breaks, the Rutgers Pharmacy (Hurtado) is open 9:00 A.M. to 4:30 P.M., Monday through Friday.

Rutgers University Health Services is accredited by the Joint Commission on Accreditation of Healthcare Organizations for meeting national standards of ambulatory health care delivery.

SEXUAL ASSAULT SERVICES AND CRIME VICTIM ASSISTANCE

The Office of Sexual Assault Services and Crime Victim Assistance offers support to crime victims, survivors, and other members of the university community through advocacy, crisis intervention, short-term counseling, education, and referrals. Programs and services are available throughout the university for students, faculty, and staff to promote ways of reducing the risk of being a crime victim with a special emphasis on interpersonal violence. Educational programming on issues concerning sexual assault, dating violence, stalking, sexual harassment, and other types of interpersonal violence are an integral part of the programmatic initiatives.

For more information or to schedule an appointment or program, call 732/932-1181. The office is located at 3 Bartlett Street on the College Avenue campus.

STUDENT HEALTH INSURANCE

All full-time students, by paying the student fee, and those part-time students who elect to pay the student health service and insurance fee, are insured for up to $5,000 in medical expenses brought about by illness or injury. This policy provides excess coverage over any other insurance plans. Students have the option to purchase a major medical policy sponsored by the university that provides more extensive coverage. Students may also purchase coverage for their spouse and children at additional cost. Any student not covered by individual or family policies should consider this more extensive coverage. Information and applications are available from the Office of Student Health Insurance, Hurtado Health Center, Rutgers, The State University of New Jersey, 11 Bishop Place, New Brunswick, NJ 08901-1180 (732/932-8265).

Compulsory International Student Insurance Fee

All students in F or J immigration status whose visa documents are issued by Rutgers are required to have both the basic and the major medical insurance coverages. The costs for insurance are charged to such students on their term bills. All accompanying family members (spouse and children) must also be insured. Insurance coverage for spouses and children must be purchased at the Center for International Faculty and Student Services, Rutgers, The State University of New Jersey, 180 College Avenue, New Brunswick, NJ 08901-8537 (732/932-7015).
COUNSELING SERVICES

Counseling Centers

Psychological counseling for graduate students is available through the counseling centers connected with the undergraduate colleges.

Appointments can be made by contacting the appropriate office: Cook College Counseling Center, Cook Campus Center, 732/932-9150; Douglass College Psychological Services, Federation Hall, 732/932-9070; Livingston College Counseling Center, Tillett Hall, 732/445-4140; Rutgers College Counseling Center, 50 College Avenue, 732/932-7884; and University College Office of Counseling, Miller Hall, 732/932-8074. Only the Rutgers College Center is open during Summer Session.

Student can choose the service that is most convenient. Services are free for students, and strict confidentiality is maintained. All centers are primarily staffed by clinical or counseling psychologists.

Each counseling center offers individual and group psychotherapy and sees couples for marital/relationship issues. Therapy groups specifically for graduate students are available at several of the counseling centers. Most counseling is short term. Referral is available to other agencies or private practice when ongoing psychotherapy is needed or desired.

Psychological services also are available through the psychiatrists at the Rutgers Student Health Service (732/932-7827).

Services for Students with Disabilities

Students with disabilities on the New Brunswick campus of Rutgers University are entitled to the same benefits of the university’s educational mission, the same quality of student life, and are subject to the same academic and procedural requirements as other students. Rutgers is committed to providing reasonable accommodations inside and outside the classroom to meet students’ diverse needs. The university’s services include special assistance in academic advising, scheduling or rescheduling classes in barrier-free buildings, on-campus transportation for students with permanent or temporary mobility disabilities, assistive devices and equipment, learning assistance, and communication with faculty regarding students’ general or specific needs. Each school in New Brunswick has a designated coordinator of services to students with disabilities to assist students enrolled in their school. Students with disabilities may also contact the New Brunswick campus coordinator for students with disabilities at 115 College Avenue, Bishop House, Room 105 (732/932-1711) for more information.

The New Brunswick campus coordinator is TDD-accessible through the Student Information and Assistance Center, located at 542 George Street (732/932-9090). Complaints or grievances regarding Rutgers’ compliance with the Americans with Disabilities Act of 1990 may be directed to the Director of Compliance and Student Policy Concerns, 3 Bartlett Street, College Avenue campus (732/932-7312).

Graduate Student Career Services

The university provides a comprehensive career service for students enrolled in graduate and professional studies throughout New Brunswick. Graduate students concerned with career issues, career decisions, preparing résumés/vitae, developing interviewing skills, and conducting a job search are encouraged to take advantage of this service. Seminars, workshops, and special programs designed to meet the needs of students with advanced degrees are offered each term. Individual counseling is available by appointment.

Career libraries at three locations house resource materials to assist in the career development and job search process. These include career planning and development books, sample résumés/vitae, current job listings, employer directories, federal and state job information, company literature, testing information, and internship, fellowship, and grant information. A credentials service is available for students and alumni who wish to compile letters of recommendation for future use in applying for employment or advanced degree programs.

The Career Services Office also sponsors an on-campus recruitment program. Through this program, three hundred to four hundred employers from business, industry, and government agencies are invited each year to come to the campus to interview qualified students.

For further information concerning career services at Rutgers, students should visit one of the career offices located at 61 Nichol Avenue on the Douglass campus (732/932-9742), 46 College Avenue and 56 College Avenue (732/932-7287), both on the College Avenue campus; or the Busch Campus Center (732/445-6127).

CAMPUS INFORMATION SERVICES

Rutgers Information and Referral Center

Rutgers Information and Referral Center is the gateway to Rutgers, The State University of New Jersey, and can be reached by calling 732/932-INFO or by email at colhenry@ur.rutgers.edu. Trained student information assistants offer help and answers about admission or any area of campus or community life. The service is available between 8:30 A.M. to 8:30 P.M., Monday through Friday, and 10:00 A.M. to 4:00 p.m., Saturday and Sunday, during the academic year. The hours during the rest of the year are 8:30 A.M. to 4:30 P.M., Monday through Friday. During off-hours, callers have the option of recording their questions and having them answered promptly when the staff returns. Information about Rutgers can be accessed online twenty-four hours a day at www.rutgers.edu, which is a great resource for detailed university information, including library connections; directories for people, colleges, and departments; campus maps and directions; and special sections devoted to student and faculty/staff matters.

Rutgers INFO

“The right information at the right time.”

Rutgers INFO Radio on the New Brunswick/Piscataway campus is operated by Campus Information Services. The station operates twenty-four hours a day, and is found at dial setting 530 AM. It can be heard within a six-mile radius of the campus. Rutgers INFO Radio broadcasts timely transportation, parking, traffic, special events, and general information, and gives weather emergency updates.
SERVICES FOR INTERNATIONAL FACULTY AND STUDENTS

The Center for International Faculty and Student Services, 180 College Avenue (732/932-7015; email: ru_cifss@email.rutgers.edu; web address http://www.rci.rutgers.edu/~cifss) coordinates services for the university's international students, scholars, and faculty. The center provides direct support in the following areas: U.S. immigration regulations and procedures; liaison to campus offices, community groups, and U.S. and foreign government agencies; advice on nonimmigrant status, employment, medical care, adjustment to American life, cross-cultural differences, family concerns, financial planning, and other personal matters. In addition, the center sponsors programs of interest to the international community, including a comprehensive orientation, a community-based International Friendship Program that gives students the opportunity to get to know American families, informational and cross-cultural seminars, and a variety of support programs for students and their families.

To ensure personal contact, all international students are assigned an international student adviser at the center and are encouraged to establish and maintain a close working relationship with center staff throughout their stay at Rutgers. Nonimmigrant students in F-1 or J-1 status must register with the center upon arrival in New Brunswick and inform the center of any change in their academic program, address, or enrollment status. All questions regarding one's status as a foreign student or exchange visitor in the United States are addressed to this office.

STUDENT ASSISTANCE

Since the personal welfare of students must be the concern of an academic community, redress of grievances for graduate students at the university is provided for through a number of informal arrangements. Depending upon the subject at issue, students matriculated in the Graduate School—New Brunswick may approach their graduate director, the Office of the Dean of the Graduate School, or their departmental representative to the Graduate Student Association. In addition, many graduate programs have departmental student associations. Further information may be obtained from the Graduate Student Association at the student center on College Avenue or from the Office of the Graduate School.

DAY-CARE CENTERS

In New Brunswick, day care is available on the Cook, Douglass, and Livingston campuses. On the Cook campus, the Department of Nutritional Sciences runs a half-day preschool for three- and four-year olds, which is open during the academic year only. The fee is set for the academic year with limited scholarships available based upon financial need. For information, call 732/932-8895.

On the Douglass campus, the Department of Psychology runs the Douglass Psychology Child Study Center. This center offers full-time day care for children who are one through six years of age. Hours are from 7:30 A.M. to 6:00 P.M., Monday through Friday, year round. Kindergarten is offered in two and one-half hour sessions Monday through Friday within the day. A summer camp program for school-aged children also is offered. The fee for care is based on the number of days. Different payment plans are available, i.e., weekly, monthly, and yearly. For information call 732/932-8881.

The Rutgers-Livingston Day-Care Center on the Livingston campus is a private, nonprofit center that offers a full-time developmental program for children two years of age through kindergarten age. Hours are 7:00 A.M. to 5:30 P.M., Monday through Friday, year round. There are two fee rates: 1) set rate tuition and 2) reduced rate tuition based on family size and income. For an application form and information, call 732/445-8881.

All the day-care services are heavily used and there is frequently a waiting list. Students should contact the centers early.

RUTGERS UNIVERSITY POLICE DEPARTMENT

The Rutgers University Police Department (RUPD) is dedicated to the protection of life and property on campus and to the prevention and detection of crime. The department operates from its headquarters at 5 Huntington Street on the College Avenue campus. Police officers patrol the campuses on foot, in vehicles, and on bicycles. They enforce laws and university regulations, respond to emergencies, investigate criminal activities, provide security for campus facilities and events, and provide crime prevention and other services. Security officers also patrol the campuses, serving as "eyes and ears" for the police as well as securing facilities, providing escort services, and operating security shuttle buses.

To contact RUPD to report emergencies (police, fire, or emergency medical), dial 911. From university centrex telephones, dial 6-911. For nonemergency telephone calls to the police, dial 932-7211; from university centrex telephones, dial 2-7211. You can also contact the police by using one of the more than fifty yellow emergency telephone boxes on the campuses or by using the housing telephones located near dormitory entrances.

The Rutgers University Police Department’s efforts help create a safer environment, but the department cannot guarantee the safety and security of individuals and their property. Individuals can reduce their vulnerability to crime by practicing common sense preventive measures such as the following:

1. Avoid isolation.
2. Maintain awareness of the persons and circumstances around you.
3. Keep doors and windows locked and do not allow strangers into your residence building.
4. Do not leave property unattended or unprotected.
5. Avoid the use of alcohol or other drugs and persons who are intoxicated.

All members of the university community are urged to immediately report any suspicious persons or activities to the university police. A cooperative effort between the police and the community can make the campuses safer places to work and learn.
PARKING AND TRANSPORTATION

Resident students’ vehicles are assigned to their specific residence lots only. Commuter students’ vehicles are assigned to a parking zone according to college affiliation, on a particular campus only. Maps indicating resident and commuter student lots are included in the Parking and Transportation Services brochure, available at the Department of Parking and Transportation Services, 26 Mine Street, College Avenue campus. Any vehicles using campus parking facilities must be registered and must display a valid permit at all times. Fees for students holding assistantships and fellowships vary according to their classification.

An intercampus bus transportation service, partially funded by student fees, is available to all Rutgers students, faculty, and staff. This bus service provides transportation within walking distance of all major campus areas and the major public transportation centers in New Brunswick. Schedules for the campus bus service are published each fall and are available at the information booths in the college centers on each campus and at the parking and transportation office, 26 Mine Street, College Avenue campus.

Van transport is available for students with permanent disabilities who are unable to use the campus bus to get to and from class. Requests should be made through the student’s dean’s office.

For additional information, call 732/932-3111 or e-mail parktran@rci.rutgers.edu, or visit the web site: http://parktran.rutgers.edu/.

GRADUATE STUDENT ASSOCIATION

The Graduate Student Association (GSA) is the main clearinghouse for information for graduate student affairs on campus and is entirely student governed. It sponsors a variety of social and cultural activities for graduate students and represents their interests to the university and the agencies of the state through its legislative body. The GSA provides free legal advice, and it sponsors academic events, graduate publications, Internet publishing projects, films, and community action programs.

Every graduate student, full-time or part-time, in any of the six New Brunswick graduate and professional schools, automatically becomes a member of the GSA. A president, vice president, treasurer, and secretary are elected at large. The GSA’s main legislative body is its council, which meets once a month. Every graduate program and department may elect one representative for every forty students enrolled; schools not organized into departments elect their representatives at large, one for every forty students enrolled. (Departments with fewer than forty students are allowed one elected representative.) Students interested in being a department representative, should check with their departmental organization or the GSA office. The GSA offices are located in the Graduate Student Lounge (GSL) in the Rutgers Student Center on College Avenue in New Brunswick and may be contacted at 732/932-7955 (GSA) or 7994 (GSL).

Graduate student lounges, located in the Rutgers Student Center, Busch Campus Center, and Douglass College Center, are primarily for the use of graduate students and for the functions sponsored by and for graduate students. They provide a comfortable atmosphere for socializing, lounging, and studying.

PAUL ROBESON CULTURAL CENTER

The Paul Robeson Cultural Center, established in 1969, serves to document, preserve, and present the contributions of African peoples to world civilizations, with particular reference to the artistic, scientific, social, and political contributions of people of color in the Americas and New Jersey. The center provides leadership, vision, and support for the more than 40,000 people each year, including more than 5,000 black students at Rutgers, through cultural programs and educational opportunities that broaden their understanding and appreciation of the American diaspora. Further, the center works closely with the tiers of communities served by Rutgers in local, state, national, and international spheres.

The center is open Monday through Thursday 8:30 A.M. to midnight; Friday, 8:30 A.M. to 9:00 P.M.; Saturday noon to 8:00 P.M.; and Sunday 1:00 P.M. to 9:00 P.M. The center is located on Bartholomew Road, Busch campus, adjacent to the Busch Campus Center. For more information, call 732/445-3545.

CENTER FOR LATINO ARTS AND CULTURE

Opened in April 1992, the center’s primary mission is to research, promote, document, and interpret Latino culture. The center identifies scholars, artists, and experts who help develop interdisciplinary programs that define and examine Latino culture, history, literature, and the arts. These programs, as well as special projects, are designed to foster academic excellence and advance the appreciation, growth, and well-being of the Latino cultural community.

The center builds a broader understanding of Latinos and their culture through conferences, exhibitions, lectures, theater productions, symposia, workshops, artists’ forums, concerts, academic seminars, publications, and collaborative projects with community organizations outside the university.

Located at 122 College Avenue, the center is open weekdays from 9:00 A.M. to 5:00 P.M. For special events, the center also is open on weeknights and weekends. Please call 732/932-1263, 1494 for further information.

OFFICE OF DIVERSE COMMUNITY AFFAIRS AND LESBIAN-GAY CONCERNS

The Office of Diverse Community Affairs and Lesbian-Gay Concerns, established in the spring of 1992 as a resource for the campus community, provides coordination, assistance, information, educational activities, and public programs to staff, faculty, and students in the areas of lesbian-gay-bisexual-transgender awareness, the concerns of students with disabilities, and bias awareness, prevention, and intervention.

Undergraduate and graduate students interested in becoming involved in lesbian-gay-bisexual-transgender issues and programs, students with disabilities who wish to identify resources, and students who have experienced, witnessed, or are concerned about bias and intolerance on the basis of race, ethnicity, language, color, national origin, religion, sexual orientation, gender, and/or physical ability may contact the director of the office, Cheryl Clarke, at 115 College Avenue, Bishop House, Room 105,
College Avenue campus (732/932-1711) for assistance, advisement, counseling, and referral. Faculty, staff, and student groups who wish to obtain technical assistance, staff development, or in-service training in these areas may also contact the director.

The office is TDD-accessible by calling 732/932-8670.

ACTIVITIES

Athletic Facilities

The athletic facilities at Rutgers include several gymnasiums, swimming pools, tennis courts, and baseball fields, and an eighteen-hole golf course. A fee is charged for the use of the golf course; graduate students are otherwise entitled to make use of these facilities without charge. Several of the athletic clubs in the undergraduate colleges—bowling, judo, lacrosse, rugby, skiing, and others—are also open to graduate students.

Athletic Ticket Policies

Tickets to intercollegiate football and basketball games are available at a special rate. All ticket information is available at the ticket office located in the Louis Brown Athletic Center.

Concerts, Dramatic Productions, and Lectures

Several series of concerts by world-famous musicians, bands, dancers, and musical organizations are presented on campus each year by the Office of University Arts Services, the departments of music and dance of the Mason Gross School of the Arts (MGSA), the New Brunswick Programming Committee, the student center programming boards, and the concert organizations of the different campuses. Many events are free.

The Department of Theater Arts of the Mason Gross School of the Arts presents fifteen to eighteen productions a year at the Rutgers Arts Center on the Douglass campus. The Cabaret Theater Society and the College Avenue Players are student organizations that provide students who are not in the professional MGSA program with the opportunity to express their theatrical talents and to broaden their acting experience.

Numerous lectures are presented regularly by academic departments, lecture series groups, and other organizations. Several concert series, movie series, and numerous lectures are sponsored at the university throughout the year.

ALUMNI

Alumni Relations

The university seeks the support of its alumni and, in return, offers them a number of services and programs. The responsibility for working with the university's entire alumni body, now numbering over 290,000, is vested in the Department of Alumni Relations. The department has two main objectives. First, it maintains contact with Rutgers alumni, informing them of the university's programs with the hope that they will assist Rutgers in fulfilling its educational goals. Second, the department encourages alumni to continue their college friendships after graduation through social, educational, and reunion activities.

All undergraduate colleges and most graduate and professional schools have their own alumni associations that sponsor programs based on the interests of the alumni of that college. Active membership is maintained through payment of regular alumni dues. Each alumni association is represented in the Rutgers University Alumni Federation, which sponsors university-wide programs such as homecoming, distinguished alumni awards, legislative receptions, group travel, and insurance. The Department of Alumni Relations provides guidance and administrative services to each of the college associations, as well as to a network of regional alumni clubs throughout the country.

The university publishes an award-winning magazine for alumni and friends of the university.

The department’s New Brunswick office is located at Winants Hall, Rutgers, The State University of New Jersey, 7 College Avenue, New Brunswick, NJ 08901-1262 (732/932-7061).

Rutgers University Foundation

The Rutgers University Foundation was incorporated in 1973 as a semiautonomous division of the university responsible for soliciting funds from private sources. With a full professional staff and a national network of volunteers who sit on advisory committees and assist in the solicitation of funds, the foundation has steadily—indeed, dramatically—increased the amount of annual private support for Rutgers, providing funding for more than 1,500 university programs that encompass every division of the university and every campus.

In the process of developing new ways to finance programs at Rutgers from nonpublic sources, the foundation has garnered national recognition and awards for its fund-raising and communications. The professional staff includes experts in corporate and foundation relations, an area that accounts for more than half of the private monies received by the university. It also includes specialists in deferred and planned giving, in fund-raising for athletics, in soliciting annual gifts, in obtaining major and special gifts, and in managing campaigns to fund capital needs.

In 1984, the foundation undertook the most ambitious fund-raising endeavor in the university's history, the $125 million Campaign for Rutgers. Using advanced fund-raising methods to identify new philanthropic sources for Rutgers, the foundation structured the campaign to raise funds for areas that have direct bearing on the quality of education and research at the university. Campaign funds were earmarked to support distinguished professorships, to underwrite new program development and departmental research, to allow for renovation of campus facilities, to endow scholarships and fellowships, and to establish a pool of "opportunity resources" for all university divisions. In 1990, the campaign concluded 34 percent over goal and in the process increased annual contributions to the university from $9 million to $27 million.

Since the conclusion of the Campaign for Rutgers, annual contributions have continued to rise, and the foundation has undertaken several successful multimillion-dollar "special purpose" campaigns: the 75th Anniversary Fund for Douglass College, the 25th Anniversary Campaign for the Jane Voorhees Zimmerli Art Museum, the Campaign for Undergraduate Biological Sciences, The Campaign for Rutgers Stadium and Women's Athletic Scholarships, the Alexander Library Campaign, and the university-wide Campaign for Community, Diversity, and Educational Excellence.

Further information about the foundation may be obtained from the Rutgers University Foundation, Winants Hall, Rutgers, The State University of New Jersey, 7 College Avenue, New Brunswick, NJ 08901-1261 (732/932-7777).
Academic Policies and Procedures

STUDENT RESPONSIBILITY TO KEEP INFORMED

This catalog provides a compendium of the rules governing graduate work at the university, and students are therefore advised to keep their copy as a reference handbook. The principal rules are contained in this chapter and the chapter on Degree Requirements, and students are expected to familiarize themselves with them. The academic and other regulations established by the faculty and administration of the Graduate School–New Brunswick and the Board of Governors of the university are subject to amendment at any time; any significant changes made after the publication of the catalog will be circulated to registered students by the Graduate School–New Brunswick. Exceptions to the rules can be made only through the dean’s office.

In general, students should address their questions to their graduate program director. Questions related to general graduate student rules under the jurisdiction of the Graduate School–New Brunswick may also be directed to the Office of the Dean, Rutgers, The State University of New Jersey, 25 Bishop Place, New Brunswick, NJ 08901-1181 (732/932-7034).

Graduate Student Mailing Address

Official communications among faculty, students, and staff in the Graduate School–New Brunswick are delivered via campus mail to the mailboxes available to each faculty member and student. In certain circumstances, however, official communications are mailed to the student’s home address via U.S. mail. It is the student’s responsibility to keep the registrar informed of a current mailing address. New students should consult with their graduate director about the most appropriate location for their first mailbox assignment. When other addresses are not significantly more convenient, students ordinarily assign themselves mailboxes at the offices of their graduate directors.

The Graduate School–New Brunswick also communicates with students via its electronic listserve. In order to receive these messages, students should open a university computer account through RUCS as soon as they register.

REGISTRATION AND COURSE INFORMATION

A prepared registration form for each newly admitted student is sent or made available to the student before the start of the fall and spring terms. Advising arrangements vary according to the needs of particular graduate offices, but the official registration and billing forms should be received by the student well before the first day of class. It is the responsibility of the student to remain in communication with the Office of the Graduate Director. The forms must be submitted by the student to the Office of the Graduate Registrar and must be received at that location by the announced deadlines. Overdue forms may require subsequent correspondence, entail additional fees, and necessitate reregistration. Forms may be returned by mail, but allowances of up to ten days have to be made for campus mail delivery, and it is more prudent to deliver them by hand. Additions or changes of courses are routinely permitted during the first week of classes.

Registration in subsequent terms is made through the touchtone telephone registration system.

Once enrolled, students register early for subsequent terms. Registration instructions are distributed at that time. Changes of registration may be made at indicated times after early registration. In all other respects, the provisions of the above paragraph hold.

A student admitted into a degree program of the Graduate School–New Brunswick is expected to remain registered in every fall and spring term thereafter until completing the program and earning the degree. Normally a student registers for courses or research, and, if necessary, may register for matriculation continued (leave of absence), but a student who fails to maintain continuous registration may not resume formal graduate study or register again in the Graduate School–New Brunswick without first applying through the Office of the Graduate School for readmission. Master’s degree students and doctoral students not yet admitted to candidacy may apply for readmission after one or two terms during which they were not registered. After two terms, they must file a new application with the Office of Graduate and Professional Admissions.

Students who have been admitted to candidacy for the Ph.D. degree must apply for restoration of active status and pay a restoral fee. There is no time limit for readmission of such students.

Matriculation Continued

Students who are obliged to interrupt their studies, or for whom no other registration is appropriate for a given term, may, with the approval of their graduate director, register for matriculation continued for a maximum of two consecutive terms. For example, students in many humanities and social sciences fields who have completed their formal course work and are preparing for examinations but are appropriately not registered for research would register for matriculation continued. There is no tuition fee for this registration, although a student fee is charged. This category of registration is not available to postqualifying doctoral students, who are expected to register for research in their fields until they have completed their degrees. Those students who are away from campus but working on their theses or dissertations and in contact with their committees are required to register for a minimum of 1 credit of research per term. Doctoral degree students who are on campus and engaged in research must register for a minimum of 3 credits per term. Master’s degree students who are on campus and engaged in research must register for a minimum of 1 credit per term.

Summer Registration

The requirement of the Graduate School–New Brunswick that its students remain in continuous registration from the time they are admitted until their degrees are earned applies only to the regular academic year (spring and fall terms), not the Summer Session.
Summer Session registration forms and instructions are sent to each student with the fall term registration instructions. Summer Session catalogs are available at the Summer Session office, 191 College Avenue, or at the Registrar's Office.

Change of Registration and Withdrawal

After the second week of classes, the only routinely permissible changes of registration are withdrawals from individual courses or withdrawal from all courses, both of which are allowed without academic penalty until the end of the seventh week, and either of which may be accomplished by means of a form that is available from the Office of the Graduate Registrar and the Office of the Graduate School. The date on which the graduate registrar receives notice of withdrawal from the student governs the academic and financial consequences of the withdrawal. Students withdrawing from a course after the seventh week need the approval of the dean’s office, are required to provide a letter indicating academic status in the course from the course instructor, and are subject to receiving failing grades at the discretion of the instructor. A student who stops attending a course without notifying the registrar will receive a grade of F in that course. No refunds of tuition are given in the case of individual course withdrawals after the second week of classes, although a student who withdraws from all courses may receive a partial refund according to the rules described in the section on refunds in the Tuition and Fees chapter. Withdrawal of any sort is not permitted during the last two weeks of classes.

Transfer of Credit

Credit for graduate courses taken at other institutions may not be transferred until 12 credits of graduate courses with grades of B or better have been completed in the Graduate School–New Brunswick as a matriculated student. Transfer of credit is allowed only for formal graduate-level course work specifically related to the student’s program of study and in which grades of B or better were received. No credit may be transferred for thesis research work, course work done as independent study, or work in courses that were not graded. P or S grades are eligible for transfer if equivalent to a grade of B or better and accompanied by a letter of equivalency from the instructor of the course.

Special permission is required to transfer credit for courses taken more than six years prior to the application for transfer of credit.

No more than the equivalent of one year of course work may normally be transferred toward the Ph.D. degree (i.e., 24 credits). No more than 40 percent of the credits required for a master’s degree may be transferred from another institution.

Quarter credits will be converted to term credits by reducing the total by one-third.

For transfer of graduate courses taken as an undergraduate student, a letter is required from the registrar of the institution involved stating that the course or courses were not used toward an undergraduate degree. Applications for transfer of credit are available at the Office of the Graduate School.

Intercollege Registration

A student in the Graduate School–New Brunswick may apply to take a course offered by another division of the university by enrolling via the Touchtone Registration System or in person at the registrar’s office. Other approvals may be required. Consult the Schedule of Classes. Students registering for courses in the University of Medicine and Dentistry of New Jersey–Robert Wood Johnson Medical School, in the New Brunswick Theological Seminary, or at Princeton University also will need to complete appropriate forms for that purpose available from the Office of the Graduate Registrar.

Multiple School Registration

A student may not be registered simultaneously in two or more units of the university. Students wishing to take courses in more than one unit in the same term (or wishing to take courses in units in which they are not enrolled) may accomplish this through intercollege registration.

When, through multiple applications, a student is offered admission to more than one unit of the university, the student may register in only one. When a student has been admitted to a graduate and undergraduate unit, the registration will be in the graduate unit.

This policy is in no way intended to abridge a student’s freedom to pursue two degrees in two units simultaneously. Such students must make special arrangements to keep both units informed of their academic progress, since they will be registered in only one unit.

Rutgers–Princeton Cooperative Exchange Program

Rutgers and Princeton universities have been engaged in an exchange program since 1964. The program is informal in that admission to and registration at the host institution are not required. No funds are exchanged between the two institutions; the student pays tuition only at the home institution. The policies and procedures related to this program are that (1) participants must be matriculating, (2) exchange is limited to one or two graduate courses per term per student, and (3) the course must be part of the student’s degree program and unavailable at the home institution.

To participate, a Rutgers student must register for 16:001:816 Princeton Exchange (BA) (normally 3 credits) and have the forms (obtained from the Rutgers graduate registrar) signed by his or her adviser, dean, and Princeton course instructor. The form is then submitted to the dean of the Graduate School, Princeton University. Princeton grades are assigned and are recorded on the student’s record via the above form.

New Brunswick Theological Seminary and UMDNJ–RWJMS Exchanges

Cross-registrations are available in the New Brunswick Theological Seminary and the University of Medicine and Dentistry of New Jersey–Robert Wood Johnson Medical School. Forms are available at the Office of the Graduate Registrar.

Courses Taken “Not-for-Credit”

Students who wish to enroll in a graduate or a 100- through 400-level undergraduate course and perform all the assigned work without receiving credit may do so if they secure the advance approval of their advisers. When they register, they must indicate “not-for-credit” status by entering the symbol N. They must pay the normal graduate tuition fee for the course and fulfill the same requirements during the term, including the execution of any written assignments, as all other students. At the end of the term, however, they
do not take the final examination, and they are assigned a grade of S (satisfactory) or U (unsatisfactory). The course and the letter grade are included on the student’s record, but no credit toward a degree is given. See Grades and Records in this chapter for information regarding credit prefixes.

Auditing Courses without Registration

Upon obtaining the permission of the instructor of the course and subject to the availability of space, full-time students of the school may audit courses without registration. It is understood that no academic credit is earned in this manner. No official record is kept of audited courses.

Graduate Enrollment in Undergraduate Courses

Any course numbered 500 or above is designed for graduate students and normally carries credit toward one of the graduate degrees. Certain advanced undergraduate courses numbered in the 300s and 400s may also be approved for a given graduate student, either as a regular part of his or her graduate program or as a means of remedying a deficiency in preparation. When a graduate student is permitted to enroll in a course numbered below 500, the credit prefix G, N, or E may appear on the registration and record forms. See Grades and Records later in this chapter for rules related to credit prefixes. No more than 12 credits of courses numbered between 300 and 499 may be offered in fulfilling the requirements for advanced degrees. (There are exceptions to this policy in the M.A.T. or M.S.T. programs.) Students registering in undergraduate courses are subject to the policies of the undergraduate division offering the course.

Undergraduate Enrollment in Graduate Courses

Qualified undergraduate students in the university who wish to study in courses offered by the graduate faculty should understand that they are welcome to do so if they receive the written approval of the instructor offering the course and of the Graduate School–New Brunswick. Students should have senior standing and a cumulative grade-point average of at least 3.0. Forms are available in deans’ offices for this purpose.

Minimum and Maximum Programs

The unit of credit used in Rutgers registration is based in part upon a measure of time, with 1 credit equal to one class hour a week through a fifteen-week term; for a 3-credit course, a qualified and competent student should require, on average, nine hours a week (in and out of classroom or lab) to carry out the work expected. One credit of laboratory requires three class hours of work per week. A full-time program consists of 12 credits a term. The maximum program is normally 15 credits, although under some circumstances registration for a maximum of 18 credits (time-and-a-half) is permitted with approval of the dean. All graduate fellows must register for at least 12 credits (a full-time program). All graduate and teaching assistants holding the normal half-time (one-third line) academic appointments are obliged to pursue at least 6 credits (half time) of academic courses or research during the fall and spring terms of their assistantship appointments. Fellows and assistants also must register their appointments according to directions provided by the registrar at the time of registration and submit form RT100 to the Office of Student Accounts.

Students engaged in part-time employment outside the university averaging sixteen or more hours per week may not register for more than 9 credits per term, and students employed thirty or more hours per week may not register for more than 6 credits per term.

In interpreting conflicts about program limits, the general rule followed by the dean’s office is to regard thirty-five to forty hours a week as a full-time commitment, whether in a nonuniversity job or a full-time student’s program of study, with the understanding that the enthusiastic participant is apt to devote well above this amount of time, and that formal commitments of time become more difficult to credit as they approach the upward limit of time-and-a-half.

Full- and Part-Time Students

For most purposes, a full-time student is defined as one who is registered for 12 or more credits; one who registers for 11 or fewer credits is a part-time student. Graduate and teaching assistants who hold half-time (one-third line) academic appointments register their assistantships for 6 credits (for which no tuition fee is to be paid). These 6 credits, together with the required minimum program of 6 credits of courses or research, qualify them as full-time students in the Graduate School–New Brunswick. All courses, including both courses of research and regular courses undertaken “not for credit” (E and N prefixes), are counted in measuring the student’s recordable program of work. These regulations govern tuition charges, student fees, statistical records, residence requirements, and other issues affected by definitions of full-time and part-time status.

Change of Program

A change of field within the Graduate School–New Brunswick requires the approval of the new graduate director and the Graduate School–New Brunswick, and is not complete until notice of the approval change has been received from the Office of the Graduate School.

Change of Status

Students desiring a change of status within a graduate program, e.g., from nonmatriculated to matriculated or from master’s to doctorate, should file the appropriate form with the Office of the Graduate School.

Any student who has earned a terminal degree in the Graduate School–New Brunswick and who desires to continue as a nonmatriculated student should apply for a “change of status.” In this case, application must be made without any lapse in registration to avoid the need to also apply for readmission. After an interrupted registration of two terms, the prospective student must submit a new application for admission to the Office of Graduate and Professional Admissions. Foreign students must notify the Center for International Faculty and Student Services of a change in status.

Readmission or Restoration of Active Status

Students who have interrupted their graduate registration without receiving a degree in the program for which they were enrolled must apply for readmission. Appropriate forms are available from the Office of the Graduate School. Doctoral students who have passed their qualifying examination are subject to a restoral fee of one credit of tuition
at the current resident rate for each term missed (up to five terms). Students who have completed a Master of Philosophy degree at the university and have let their registration lapse are not subject to restoral fee payments for a period up to four years.

All students, except candidates for the doctoral degree, who have interrupted their graduate registration must request readmission within two terms following their last registration. After this, the prospective student must submit a new application for admission to the Office of Graduate and Professional Admissions. (Applicants may request that previously submitted records be used.) The letters of recommendation should originate from faculty members at Rutgers with whom the student previously studied. In all other respects, including payment of the application fee and submission of official transcripts of all previous academic work, the application procedure is identical with that of the first application for admission.

CLASS SCHEDULES AND HOURS

Starting and closing dates for each term, scheduled holidays, and other important scheduling information can be found in the academic calendar. All class periods are 160 minutes in length, meeting once a week, unless otherwise specified. There will be fifteen weeks of instructional activity for each course.

Attendance

Each instructor is required to maintain an accurate record of attendance of each class or section of which he or she is in charge. Students are expected to be present at each meeting of their classes. Exceptions to this rule may be made in the case of illness and in such other circumstances as may seem justified to the instructor.

University examinations shall not be scheduled on Saturdays except in those courses that regularly meet on Saturday.

Absence Due to Religious Observance

It is the policy of the university to excuse without penalty students who are absent because of religious observances and to allow the make up of work missed because of such absence. Examinations and special, required, out-of-class activities ordinarily will not be scheduled on those days when such students refrain from participating in secular activities. Absences for reasons of religious obligation will not be counted for purposes of reporting. A student absent from an examination because of required religious observance will be given an opportunity to make up the examination without penalty.

Cancellation of Classes

It is the general policy of the university not to cancel classes because of inclement weather. However, because of the occasional hazards of night driving in winter, exceptions may be made for evening classes and, under exceptionally hazardous conditions, exceptions may be made for daytime classes.

During severe weather conditions, announcements concerning the cancellation of classes are made over the following radio stations: WCTC, WMGQ, WRSU, WCBS, WIN, WHWH, WPST, WJL, WRNJ, WBUD, WXKW, INFO, and WADB.

Arrangements for makeup work are announced by individual instructors.

In addition, class cancellation and office closing information is available on the recorded message system at 732/932-7799 for the New Brunswick campuses and at 973/353-1766 for the Newark campus.

GRADES AND RECORDS

In the Graduate School–New Brunswick, outstanding work is graded A and good work is graded B. Some programs require students to achieve grades of A in at least half their courses if they are to be accepted as serious candidates for the doctorate. The grade of C is for satisfactory work. The B+ and C+ grades are intermediate grades. The graduate faculty accepts for graduate credit only a limited number of courses in which a student earns a grade of C+ or C; see the paragraphs on academic standing in the Degree Requirements chapter. A grade of F is assigned both to students who fail to earn credit in a course they complete and to students who do not complete a course from which they have not officially withdrawn. The Graduate School–New Brunswick does not assign the grades of D or D+ in its courses.

In addition, the Graduate School–New Brunswick uses the following grade symbols:

S/U—Satisfactory/Unsatisfactory. For 700-level courses of research carrying credit or in regular courses taken “not-for-credit” (N prefix). Also for certain designated laboratory rotation and studio courses taken for credit.

Pass/No Credit. For certain specifically designated courses; applies to all students enrolled in those courses.

W—(Withdrawal). Officially withdrew.

IN—(Incomplete). May be assigned at the discretion of an instructor who believes that an extension of time is warranted for a student whose work is incomplete at the end of the term. Incomplete work may be made up, and a change of grade may be authorized by the instructor, within any period agreed to by the instructor and the student, up to two additional terms beyond the original course registration (excluding Summer Session). Incompletes generated in a Summer Session must be completed by the end of the following Summer Session. Programs may establish shorter time limits. Students with two or more incompletes are not permitted to register for additional courses after one term until incompletes are completed.

Credit Prefixes

The number of credits appearing on course records and registration cards may be preceded by a letter prefix as follows:

E. Course excluded from credit toward a degree; all course requirements must be completed and a regular grade is assigned.

G. A 300- or 400-level undergraduate course for which credit toward the graduate degree sought has been approved.

N. Course taken “not-for-credit,” the final examination is not required, final grade of S (satisfactory) or U (unsatisfactory) is assigned.

Graduate students registering for undergraduate courses are subject to the credit prefix rules of the undergraduate division offering the course.
Transcripts
Requests for official transcripts should be addressed to Records and Transcripts, Administrative Services Building, Room 200L, Rutgers, The State University of New Jersey, Office of the Registrar, 65 Davidson Road, Piscataway, NJ 08854-8096. The request should indicate that the student was enrolled in the Graduate School–New Brunswick, identify the dates of attendance, and give any other relevant information. It must be received at least ten working days prior to the date the transcript is desired. Forms for making the request may be obtained from the recorder. A fee of $3 for each copy desired, payable to Rutgers, The State University of New Jersey, must accompany the request.

Student Identification Cards
Student identification cards are sent by campus mail to the student’s graduate program office on or about November 1 for fall admissions and March 1 for spring admissions. Thereafter, continuing students are sent a revalidating sticker for these cards on or about October 15 during each fall term. Students should contact the registrar, Room 200L, Administrative Services Building, Busch Campus, to replace missing or lost I.D. cards. The replacement fee is $5.

ACADEMIC STANDING

Student Review
Each program is expected to have established procedures for monitoring on an annual basis the progress of all students registered in the program. Each doctoral program has a formal programwide procedure whereby students who have completed the equivalent of approximately one year of full-time study are reviewed for the purpose of deciding whether or not they may be permitted to continue toward the doctorate. This procedure may be linked to the master’s degree or to the qualifying examination or may be independent of either, but it may in no case be postponed beyond the equivalent of one and one-half years of full-time study toward the degree. In connection with this procedure, faculty in a position to comment on the student’s performance and progress are asked to do so by the graduate director or a designate. Review shall not be limited by the student’s choice of faculty from whom to solicit recommendations.

Termination of Studies
Students may be required to terminate their graduate studies and withdraw from the Graduate School–New Brunswick if they fail to maintain satisfactory academic or professional standards in any phase of their graduate program. Conditions imposed at the time of admission must be satisfied by each student. Nonadherence to the schedule of Time Limits for Degrees may constitute a basis for termination. See the Degree Requirements chapter.

When such problems occur, the program notifies the student in writing of the program’s concern about the student’s performance. Such a warning specifies the source of the concern, the applicable program or graduate school rules, and the proposed action. Warnings specify when and on what basis a recommendation for academic dismissal will be considered by the faculty. A probationary period of one term is normal. Following the probationary period, a student who fails to meet the provisions of the warning is considered for dismissal by the faculty. A faculty vote is recorded on any motion to recommend dismissal, and a letter is written to the student stating the faculty action and its rationale.

When termination is recommended, the graduate program director communicates to the dean of the Graduate School–New Brunswick in writing the specific reasons involved, all warnings communicated to the student, the faculty procedures and actions leading to the recommendation, the recorded faculty vote for dismissal, and the mailing address of the student. The dean of the Graduate School–New Brunswick will write the actual letter of termination to the student. The student’s transcript will subsequently bear the notation, “Academic Dismissal.”

Due Process
Students are entitled to fairness in the procedures by which their academic performance is assessed. Each program has a statement of the procedures by which student academic progress is monitored and by which comprehensive, qualifying, and final examinations are conducted and graded. Each also has a procedure for academic appeals. The Graduate School–New Brunswick provides a further opportunity for appeal for students who wish to proceed beyond the program level (see below).

All students in the Graduate School–New Brunswick are entitled to expect that regularly scheduled examinations will be graded and grades announced within two weeks of completion of said examinations by the student. In the event that a student fails a comprehensive, qualifying, or final (defense) examination, he or she is entitled to an explanation of the reasons for the negative decision.

Student Academic Appeals
Student academic appeals are, where possible, handled within the structure of the graduate degree program. The student should take the issue to the director of the graduate program or a designate for review and mediation. The director, or a designate, consults with all parties and proposes a resolution. If this is unsuccessful, the matter is referred to a faculty committee, as designated in the bylaws of the program. The committee may consult with whomsoever it chooses in arriving at a recommendation in the matter and may, in extraordinary cases, ask third parties from among the faculty to review previous decisions by the faculty involved. While action within the faculty normally is final, a student may appeal to the Graduate School–New Brunswick in cases where he or she feels that the process by which the program reached its decision was unfair. The case shall be reviewed by a representative of the dean of the Graduate School–New Brunswick, who attempts to informally resolve the dispute. Should the issue remain unresolved, the student is notified in writing that he or she may request that the dispute be brought to the Appeals Committee. Such a request must be made within thirty days of notification. The Appeals Committee is composed of four members of the elected Committee on Rules of Procedure named by the dean at the beginning of each academic year to serve in this capacity.

The function of this committee is to hear appeals that have not been resolved by the Office of the Graduate School. The student must make his or her case in writing. A written response to the student’s statement will be solicited from the director of the degree program whose action is being
The principles of academic integrity entail simple standards of honesty and truth. Each member of the university has a responsibility to uphold the standards of the community and to take action when others violate them. Faculty members have an obligation to educate students to the standards of academic integrity and to report violations of these standards to the appropriate deans.

Students are responsible for knowing what the standards are and for adhering to them. Students also should bring any violations of which they are aware to the attention of their instructors.

Violations of Academic Integrity

Any involvement with cheating, the fabrication or invention of information used in an academic exercise, plagiarisms, facilitating academic dishonesty, or denying others access to information or material may result in disciplinary action being taken at either the college or university level. Breaches of academic integrity can result in serious consequences ranging from reprimand to expulsion.

Violations of academic integrity are classified into four categories based on the level of seriousness of the behaviors. Brief descriptions are provided below. This is a general description and is not to be considered as all-inclusive.

Level One Violations

These violations may occur because of ignorance or inexperience on the part of the person(s) committing the violation and ordinarily involve a very minor portion of the course work.

Examples: Improper footnoting or unauthorized assistance on academic work.

Recommended Sanctions: Makeup assignment at more difficult level, or assignment of no credit for work in question, or required attendance at a workshop on ethics.

Level Two Violations

Level two violations involve incidents of a more serious nature and affect a more significant aspect or portion of the course.

Examples: Quoting directly or paraphrasing without proper acknowledgment on a moderate portion of the assignment, failure to acknowledge all sources of information and contributors who helped with an assignment, submission of the same work for more than one course without permission from the instructor.

Recommended Sanctions: Probation, a failing grade on the assignment, or a failing grade in the course.

Level Three Violations

Level three offenses involve dishonesty on a significant portion of course work, such as a major paper, hourly, or final examination. Violations that are premeditated or involve repeat offenses of level one or level two are considered level three violations.

Examples: Copying from or giving others assistance on an hourly or final examination, plagiarizing major portions of an assignment, using forbidden material on an hourly or final, using a purchased term paper, presenting the work of another as one’s own, altering a graded examination for the purposes of regrading.

Recommended Sanctions: Suspension from the university for one or more terms with a notation of “academic disciplinary suspension” placed on a student’s transcript for the period of suspension.
Level Four Violations
Level four violations are the most serious breaches of academic integrity. They include repeat offenses of level three violations.

Examples: Forgery of grade change forms, theft of examinations, having a substitute take an examination, dishonesty relating to senior thesis, master’s thesis, or doctoral dissertation, sabotaging another’s work, the violation of the ethical code of a profession, or all infractions committed after return from suspension for a previous violation.

Recommended Sanctions: Expulsion from the university and a permanent notation on the student’s transcript.

Faculty who believe that violations have occurred should immediately contact the dean’s office of their college/school. Students who suspect that other students are involved in actions of academic dishonesty should speak to the instructor of the course.

The New Brunswick Committee on Academic Integrity monitors this policy. Questions concerning the policy can be addressed to faculty members or to the offices of the college or school deans. Copies of the complete policy are available at deans’ offices. The procedures followed and the due process rights afforded to students facing disciplinary charges are described in the University Code of Student Conduct.

UNIVERSITY CODE OF STUDENT CONDUCT SUMMARY

A university in a free society must be devoted to the pursuit of truth and knowledge through reason and open communication among its members. Its rules should be conceived for the purpose of furthering and protecting the rights of all members of the university community in achieving these ends.

All members of the Rutgers University community are expected to behave in an ethical and moral fashion, respecting the human dignity of all members of the community and resisting behavior that may cause danger or harm to others through violence, theft, or bigotry. All members of the Rutgers University community are expected to adhere to the civil and criminal laws of the local community, state, and nation, and to regulations promulgated by the university. All members of the Rutgers University community are expected to observe established standards of scholarship and academic freedom by respecting the intellectual property of others and by honoring the right of all students to pursue their education in an environment free from harassment and intimidation.

Preamble
University Code of Student Conduct

Overview
Communities establish standards in order to ensure that they are able to fulfill their mission and keep their members from harm. The University Code of Student Conduct (referred to as “the code” in the remainder of this summary) defines those kinds of behavior that violate the standards of the Rutgers University community and also provides the mechanism for addressing alleged violations. In doing so, the code protects the rights of those accused of offenses (referred to as “respondents” in the remainder of this summary) by providing due process while also protecting victims of those offenses and the university community as a whole.

Process
The following summary presents key aspects of the code. Students should consult the code itself for complete information on each point.

Filing a Complaint
Any individual may file a complaint against a student suspected of violating the code by notifying the dean of students (or equivalent) of the respondent’s college or school, or the director of judicial affairs in the Division of Student Affairs.

Preliminary Review
Upon receipt of a complaint, a preliminary review is conducted by the dean of students (or equivalent) or his or her designee to assess the evidence and determine if it is sufficient to proceed to a hearing. The dean conducting this review also assesses the seriousness of the charges. The most serious charges can, upon a finding of responsibility, result in separation from the university (suspension or expulsion) and are heard at university hearings. Less serious offenses (nonseparable offenses) are heard according to the procedures in place at the student’s college or school of affiliation.

Separable Offenses
The following offenses are deemed serious enough to potentially result in separation from the university should a student be found responsible at a hearing:

1. violations of academic integrity
2. forgery, unauthorized alteration or unauthorized use of any university documents or records or any instrument or form of identification
3. intentionally furnishing false information to the university or intentionally initiating or causing to be initiated any false report, warning, or threat of fire, explosion, or other emergency
4. use of force against any person or property or the threat of such force
5. sexual assault or nonconsensual sexual contact
6. hazing
7. violation of the university’s Student Life Policy against Verbal Assault, Defamation, and Harassment (Copies are available from the judicial affairs office or dean of students’ office.)
8. unauthorized entry into, unauthorized use of, or misuse of university property, including computers and data and voice communication networks
9. intentionally or recklessly endangering the welfare of any individual or intentionally or recklessly interfering with any university activity or university sponsored activity
10. use, possession, or storage of any weapon, dangerous chemical, fireworks, or explosive, whether or not a federal or state license to possess the same has been issued to the possessor
11. the distribution of alcohol, narcotics, or dangerous drugs on university property or among members of the university community, if such distribution is illegal, or the possession of a sufficiently large quantity as to indicate an intention to distribute illegally
12. theft of university services or theft of, or intentional or reckless damage to, university property or property in the possession of, or owned by, a member of the university community, including the knowing possession of stolen property (Intentional or reckless
misuse of fire safety equipment is regarded as damage under this section of the code.)

13. the violation of the ethical code of one’s intended profession either by graduate students enrolled in any of the university’s professional or graduate schools or by undergraduate students in clinical courses or settings related to their intended profession

14. violations of federal, state, or local law where such violations have an adverse effect on the educational mission of the university

15. failure to comply with the lawful directions of university officials, including campus police officers acting in performance of their duties

16. knowingly providing false testimony or evidence; disruption or interference with the orderly conduct of a disciplinary conference or hearing; violating the terms of any disciplinary sanction imposed in accordance with this code, or any other abuse of the university’s disciplinary procedures.

Campus Advisers
Both complainants and respondents may select a campus adviser to assist them during the disciplinary process. Campus advisers may fully represent students, including speaking on their behalf. The Office of the Vice President for Student Affairs maintains a list of trained campus advisers for this purpose. Students are free to select any member of the university community to serve as their advisers, whether they are on the list or not.

Attorneys
Complainants and respondents may also, at their own expense, seek the advice of an attorney in addition to that of a campus adviser. Attorneys are free to advise students, to assist in the preparation of their cases, and to attend hearings, but may not speak on behalf of their clients or question witnesses at a hearing.

University Hearings
University hearings are presided over by a hearing officer and heard by a hearing board usually composed of three students and two faculty members. It is the hearing board’s responsibility to determine whether the accused student is responsible or not responsible for violating the code. If the hearing board determines a student to be responsible by the standard of clear and convincing evidence, it also recommends a sanction for the offense to the vice president for student affairs. The vice president for student affairs considers the hearing board recommendation and determines the sanction.

Appeals
A student found responsible for violating the code may appeal the finding, the sanction, or both. Appeals are filed through the Office of the Vice President for Student Affairs, which forwards them to the Appeals Committee of the appropriate campus (Camden, Newark, New Brunswick).

Authority for Student Discipline
Ultimate authority for student discipline is vested with the Board of Governors of Rutgers, The State University of New Jersey. This authority has been delegated to university administrators, faculty, students, committees, and organizations as set forth in the University Code of Student Conduct. The above summary is intended to present some key facts of the code. Copies of the code are available from all dean of students’ offices and have been placed at the reference desks of all university libraries. In addition, the director of judicial affairs in the Division of Student Affairs will provide copies of the code upon request and is available to answer any questions about the code or related judicial matters.

UNIVERSITY SAFETY AND SECURITY

The safety and security of all members of the university community is of paramount concern to the university’s public safety staff.

Comprising commissioned police officers with full investigative and arrest authority, security officers, and dispatchers, members of the public safety staff patrol each campus and respond to requests for assistance on a full-time basis, 365 days a year and twenty-four hours a day. However, it is the duty of all students, faculty, and staff to actively maintain a safe environment, to use due care in their own safety and the safety of others, and to comply with all local, state, and university regulations regarding their own protection and the protection of others.

Primary responsibility for safety and security on the New Brunswick/Piscataway campus is vested in the associate vice president for administration and public safety. On the Newark and Camden campuses, these responsibilities reside in the Office of the Provost.

Public Safety Information

Information regarding public safety at Rutgers is available from the campus police departments. The publication Safety Matters, a brochure outlining public safety statistics, services, and programs on each of Rutgers’ regional campuses, is published annually and distributed free of charge. To receive a copy of Safety Matters, please call the appropriate Rutgers Police Department office at one of the following numbers:

Camden: 856/225-6009
Newark: 973/353-5478
New Brunswick: 732/932-8407

ADMINISTRATIVE PROCEDURES FOR RESPONDING TO DISRUPTIONS

An academic community, where people assemble to inquire, to learn, to teach, and to reason together, must be protected for those purposes. While all members of the community are encouraged to register their dissent from any decision on any issue and to demonstrate that dissent by orderly means, and while the university commits itself to a continual examination of its policies and practices to ensure that causes of disruption are eliminated, the university cannot tolerate demonstrations that unduly interfere with the freedom of other members of the academic community.

With this in mind, the following administrative procedures have been formulated to guide the implementation of university policy:

1. The president of the university and the vice president for academic affairs will have the authority throughout the university to declare a particular activity to be disruptive. When neither the president nor the vice president
for academic affairs is available to make such a decision, the senior vice president and treasurer or the provosts of Newark and Camden have the same authority.

2. Broadly defined, a disruption is any action that significantly or substantially interferes with the rights of members of the academic community to go about their normal business or that otherwise unreasonably interrupts the activities of the university.

3. A statement will be read by the appropriate officers as specified in (1) or by such officers as they may designate for the purpose of such reading and will constitute the official warning that the activity is in violation of university policy, that it must cease within a specified time limit, and where appropriate, that no commitments made by university officials will be honored if those commitments are made under duress.

4. If the activity continues beyond the specified time limit as determined by the official in authority, the authorized officers as specified in (1) will have the discretion to call upon the university police to contain the disruption. Ordinarily, the president of the university alone, or in his or her absence the vice president for academic affairs, will have the authority to decide that civil authorities beyond the campus are to be called upon to contain those disruptions that the university police are unable to handle. In extraordinary circumstances, where neither the president nor the vice president for academic affairs is available to make such a decision, the senior vice president and treasurer or the provosts of Newark and Camden have the same authority.

5. The deans of students are the chief representatives of the deans of the colleges in all matters of student life. Members of the university community who are aware of potentially disruptive situations are to report this to the deans of students on their respective campuses. In a disruption, the deans of students and their staff members have a twofold responsibility: to protect against personal injury and to aid in providing for the order of the university. In the latter case, the deans of students, as well as other university personnel, may be called upon to coordinate or assist members of the academic community in ending the disruption, directing it to legitimate channels for solution, or identifying those who have violated the rights of others.

POLICY PROHIBITING HARASSMENT

The university prohibits harassment based on race, religion, color, national origin, ancestry, age, sex, sexual orientation, disability, marital status, or veteran status. Harassment is a kind of discrimination that violates state and federal civil rights laws, and is defined for purposes of those laws and the university’s policy as any behavior:

1. that is unwelcome,
2. that targets a person because he or she has one or more of the protected characteristics,
3. that is engaged in by a person employed by or doing business with the university, and
4. that is sufficiently severe or pervasive to negatively alter that person or a group member’s living, educational, or working environment.

Sexual harassment can take the form of unwelcome sexual advances; requests for sexual favors; or other unwelcome written, verbal, electronic, telephonic, or physical conduct of a sexual nature. Hostile environment harassment on the basis of sex, race, religion, color, national origin, ancestry, age, sexual orientation, disability, or marital or veteran status is persistent behavior that has the purpose or effect of unreasonably interfering with a person’s work or academic performance or creating a hostile environment.

If you think you have been harassed on the basis of any of the protected categories listed above, have observed harassing behavior, or if you need more information, you are encouraged to contact the Director of University Harassment Compliance, Rutgers, The State University of New Jersey, 3 Bartlett Street, New Brunswick, NJ 08901-1190 (732/932-3122), or by email at msgriff@rci.rutgers.edu. You may obtain copies of the policy prohibiting harassment and the process for making or responding to a complaint on our webpage (http://www.rci.rutgers.edu/~msgriff/).

POLICY AGAINST VERBAL ASSAULT, DEFAMATION, AND HARASSMENT

Statement of Principles

Intolerance and bigotry are antithetical to the values of the university and unacceptable within the Rutgers community. One of the ways the university seeks to effect this value is through a policy of nondiscrimination, which prohibits discrimination on the basis of race, religion, color, sex, age, sexual orientation, national origin, ancestry, disability, marital status, or veteran status in university programs. In order to reinforce institutional goals of nondiscrimination, tolerance, and civility, the following policy against verbal assault, defamation, and harassment makes clear to students that such behavior toward others violates acceptable standards of conduct within the university. (This policy is not intended to supersede the university’s policy against harassment.)

Verbal assault, defamation, or harassment interferes with the mission of the university. Each member of this community is expected to be sufficiently tolerant of others so that all students are free to pursue their goals in an open environment, able to participate in the free exchange of ideas, and able to share equally in the benefits of our educational opportunities. Beyond that, each member of the
community is encouraged to do all that she or he can to ensure that the university is fair, humane, and responsible to all students.

A community establishes standards in order to be able to fulfill its mission. The policy against verbal assault, defamation, and harassment seeks to guarantee certain minimum standards. Free speech and the open discussion of ideas are an integral part of the university community and are fully encouraged, but acts that restrict the rights and opportunities of others through violence, intimidation, the destruction of property, or verbal assault, even if communicative in nature, are not protected speech and are to be condemned.

Prohibited Conduct

Any of the following acts, even if communicative in nature, are prohibited “separation offenses” (charges that could lead to suspension or expulsion from the university) under the provisions of the University Code of Student Conduct:

1. Use of force against the person or property of any member of the university community or against the person or property of anyone on university premises, or the threat of such physical abuse. (Verbal assault may be prosecuted as a “threat of…physical abuse.”)

2. Theft of, or intentional damage to, university property, or property in the possession of, or owned by, a member of the university. (Acts of graffiti or other vandalism may be prosecuted as “intentional damage to…property.”)

3. Harassment, which is statutorily defined by New Jersey law to mean, and here means, purposefully making or causing to be made a communication or communications anonymously or at extremely inconvenient hours, or in offensively coarse language, or in any other manner likely to cause annoyance or alarm, or subjecting or threatening to subject another to striking, kicking, shoving or other offensive touching, or engaging in any other course of conduct or of repeatedly committed acts with purpose to alarm or seriously annoy any other person. Harassment is considered a separation offense under the University Code of Student Conduct.

4. Defamation, which is judicially defined to mean, and here means, the unprivileged oral or written publication of a false statement of fact that exposes the person about whom it is made to hatred, contempt, or ridicule, or subjects that person to loss of the goodwill and confidence of others, or so harms that person’s reputation as to deter others from associating with her or him. Defamation is considered a separation offense under the University Code of Student Conduct.

While any of the four categories of acts listed above is a separation offense, that, if proven, could lead to a sanction of expulsion or suspension from the university under the provisions of the University Code of Student Conduct, clearly minor instances of such prohibited behavior should be resolved at the college level and not be treated as separable offenses requiring a university-level hearing. The initial judgments of whether a particular act is of a separable or nonseparable level are made by the appropriate college official and are subject to review by the Office of the Vice President for Student Affairs.

Students who believe themselves to be victims of verbal assault, harassment, or defamation should report such incidents to the dean or the dean of students of their college or school. In addition, the following individuals have been identified to handle complaints:

Brian Rose, director of compliance and student policy concerns, 3 Bartlett Street, College Avenue campus, 732/932-7312;
Cheryl Clarke, director of diverse community affairs and lesbian/gay concerns, Bishop House, Room 105, College Avenue campus, 732/932-1711;
Rory P. Maradonna, associate provost for student life, Armitage Hall, Room 248, Camden campus, 856/225-6050;
Raymond T. Smith, associate provost for student affairs, S.I. Newhouse Center, Newark campus, 973/353-5541.

Some complaints can and should be resolved by informal methods, while others will require the implementation of formal procedures. All complaints are treated confidentially; complainants are encouraged to report incidents even if they do not wish to pursue the matter beyond the reporting stage.

STUDENT RECORDS AND PRIVACY RIGHTS

Rutgers, The State University of New Jersey, complies with the Family Educational Rights and Privacy Act of 1974 (FERPA) and makes public announcement of the law. FERPA was designed to protect the confidentiality of student records, guarantee student access to certain records, regulate disclosure of information from student files, provide opportunities for students to correct or amend records and add explanatory statements, and provide opportunities for students to file complaints with the U.S. Department of Education alleging infractions of the law.

The confidentiality of student educational records is protected by FERPA. However, the university is permitted to provide directory information without the student’s consent unless he or she requests in writing that such information be kept confidential. Rutgers defines directory information as name, campus mailing address and telephone number, campus email address, permanent address and telephone number, school of attendance, major field of study, class year, dates of attendance, current credit load, credit hours earned, degree(s) received, and date(s) of degree(s).

The most common ways by which the university releases student directory information are:

• through the verifications division of the Office of the Registrar or similar offices that have access to student records. (The office is called upon to verify that a student is enrolled at the university by potential employers and credit agencies, among others.)

• through the campus-wide information system known as INFO on the Rutgers University Computer Network (RUNet), which is accessible via the Internet.

Students may request that directory information be kept confidential by obtaining a form for this purpose from their dean’s office or from the registrar’s office. Students should be aware that requesting confidentiality of directory information makes this information unavailable to all, including prospective employers, credit agencies, and others to whom you may want this information known or verified. Thus, it is recommended that students carefully consider whether personal privacy concerns outweigh the possible inconvenience and detriments of having directory information withheld. Subsequent to filing the request, directory information remains confidential while a student is enrolled or until a written request that this restriction be lifted is
STUDENT RESIDENCY FOR TUITION PURPOSES

A determination of residency status for the purpose of tuition assessment is made by the university based on information provided by the applicant in accordance with the procedure outlined in the policy. A copy of the policy may be secured from the registrar’s office or the admissions office.

Procedure

The Initial Determination

At the time an individual initially applies for admission into any graduate or undergraduate college or division of the university, the respective admissions office determines an admitted applicant’s resident status for tuition assessment.

The determination made at this time shall prevail for each term unless a change is authorized as provided hereinafter.

After the Initial Determination

The status of residency for tuition purposes of students continuing in a college or division of the university is determined by the registrar of the respective college or division. The determination made by the registrar either conforms to the initial determination of the admissions office or reflects a change as provided hereinafter.

Request for a Change of Status

Requests for a change in residency status are accepted no later than the last week of the term for which changed status is sought. All supporting affidavits, deemed appropriate by the adjudicating official pursuant to New Jersey Administrative Code, Volume 9, Section 5 et seq., must be filed by the petitioner in accordance with the time limit specified in the preceding sentence, but in no case later than four weeks from the conclusion of the term for which the residency assessment is requested. Failure to comply with this provision, unless judged otherwise by the adjudicating official, voids the petition for the term in question. If, based on the information submitted in the request, the student qualifies for resident tuition assessment, such change relates only to the current and subsequent terms. No adjustments in tuition assessments are made and no refund vouchers are processed for any prior term.

Appeals

Appeals from the initial determination and any determination made after a request by a student for a change in residency status are accepted no later than three months after the date of notification of any such determination. Unresolved appeals are forwarded to either the university director of graduate admissions or to the university registrar. These officers respond to the student within thirty working days of the receipt of the appeal in the appropriate office. Appeals from this determination should be submitted to the vice president for university budgeting by the student within two weeks after the director of admissions or the university registrar has issued a determination. The decision of the vice president for university budgeting will be final.

Students’ Responsibilities

Students are responsible for providing relevant information upon which a residency determination can be made. The burden of proving his or her residency status lies solely upon the student. Moreover, it is considered the obligation of the student to seek advice when in doubt regarding eligibility for in-state tuition assessment. If the student delays or neglects to question his or her eligibility status beyond the period specified above, the student forfeits his or her right to a residency assessment to which he or she might have been deemed to be eligible had he or she filed an appeal at the appropriate time.

Penalties

If a student has obtained or seeks to obtain resident classification by deliberate concealment of facts or misrepresentation of facts or if he or she fails to come forward with notification upon becoming a nonresident, he or she is subject to disciplinary action.

RESEARCH POLICY AND RESEARCH CENTERS

Research at the university, apart from that conducted by students in connection with their academic course work, is in general intended to lead to publication in some form so that its results are available to interested persons everywhere. The university does not accept grants from or enter into contracts with governmental agencies or any other sponsors for research projects of which the results may not be made publicly accessible; all university-conducted research must be available for public scrutiny and use.

Most research projects at the university are carried on by faculty members and students within the facilities offered by their own departments, but for on-campus research that cannot be conducted in department facilities, laboratories, or the library, the university has provided a number of cooperative research centers and bureaus. A list of the university’s research centers may be found in the Divisions of the University chapter.
PATENT POLICY

All students are governed by the university’s patent policy, which is described in a statement available in the Office of Research and Sponsored Programs and the offices of all deans and department chairpersons.

EQUITY IN ATHLETICS DISCLOSURE ACT REPORTS

In compliance with the Equity in Athletics Disclosure Act, Rutgers provides information on men’s and women’s athletic programs, and the participation rates for male and female athletes. The first report was issued in October 1996 with annual updates thereafter. The reports are available at the reference desks of the main branches of the university library system (Alexander Library, Library of Science and Medicine, Robeson Library, and Dana Library), and at the intercollegiate athletics offices.

Degree Requirements

This chapter outlines the minimum requirements of the Graduate School–New Brunswick for each of the advanced degrees under its jurisdiction. The faculty in charge of each program may impose additional requirements of its own; the most significant of these additional requirements are announced in the program descriptions to be found, arranged alphabetically by subject, in the Programs, Faculty, and Courses chapter.

DOCTOR OF PHILOSOPHY

The degree of Doctor of Philosophy (Ph.D.), introduced to this country by Yale in 1861, is the highest degree in courses offered in American education. It is conferred in recognition of, first, marked ability and scholarship in a broad field of learning (such as chemistry or classics) and, second, distinguished critical or creative achievement within a special area of the general field (the special area being the subject of the doctoral dissertation). A student must devote a minimum of three years of full-time study beyond the bachelor’s degree for the Ph.D., of which at least one year must be devoted to dissertation-related research. Full-time study for one year is represented by 24 credits of course work or research. The minimum requirement for the Ph.D. degree is, therefore, 72 credits, of which at least 24 credits must be devoted to research. If any of the work is conducted on a part-time basis, the minimum time required will, of course, be longer.

Doctoral programs normally are arranged in two phases. The preliminary general phase, during which the student usually pursues courses of study, is completed when the qualifying examination is successfully passed; and the later special phase, during which the student usually pursues courses of research, is concluded when the dissertation has been accepted and the defense of it approved. Between admission to the Graduate School–New Brunswick and the conferral of the Ph.D. degree, the student must: (1) satisfy the course and other preliminary requirements of the particular graduate program in which the student is enrolled, (2) pass the comprehensive qualifying examination, (3) present the results of the special research in an acceptable dissertation, and (4) pass a final examination related to the subject of the dissertation. The student becomes a formal candidate for the doctorate only after completing the qualifying examination.

Residence Requirements

Residence requirements for advanced degrees are separately determined by the faculty of each program. Students should consult their graduate directors for information concerning minimum expectations of concentration for their programs of study.
Transfer of Credit

Graduate courses completed at other institutions, if they would normally form a part of the student’s field of concentration, may be accepted for credit toward the doctorate at the university. The student must have been registered in these courses during the preceding six-year period (although an exception to this rule may be granted by the dean, where it can be shown that the student has kept abreast of the subject matter in question) and must have earned a grade of B or better in them. Graduate credit may not be transferred until 12 credits of graduate courses with grades of B or better have been completed in the Graduate School–New Brunswick as a matriculated student. The limit to the number of courses for which transfer of credit may be granted is normally one-half of the courses required in the student’s program toward the doctorate. In no case may the amount exceed 24 credits. The faculty of a graduate program may recommend transfer of credits earned in a graduate professional school toward a student’s Ph.D. in the Graduate School–New Brunswick. The maximum number of such credits acceptable is normally 50 percent of the total number of course credits, exclusive of research, required by the program, but approval may be sought for as many as 24 credits. No credit may be transferred for thesis-related research work, course work done as independent study, or course work that was not graded with an A or B grade. Other letter or numerical grades are eligible for transfer if equivalent to the grade of B or better and accompanied by a letter from the instructor of the course testifying to that equivalence. See the Academic Policies and Procedures chapter for additional information.

Language Requirements

Language requirements for advanced degrees in the Graduate School–New Brunswick are separately determined by each program. Information about requirements may be found in the Programs, Faculty, and Courses chapter under each program.

When programs require that proficiency in one or more foreign languages be demonstrated by a written examination, they may supervise their own examinations or ask their students to pass the examinations offered on several dates throughout the year by the Graduate School–New Brunswick. Examinations (available in Greek, Latin, French, German, Russian, Chinese, Spanish, Italian, and Portuguese) consist of passages for translation with the aid of a dictionary, and they are graded either pass or fail. A student must apply in advance to take the examination. Registration information and instructions are available at the FAS–NB Language Laboratory, Seminary Place, College Avenue campus. A fee of $15 is charged. The results of the examinations are reported to graduate offices as soon after the examinations dates as they become available—usually about two weeks. The student’s program director will certify the results of the examination (or examinations) on the student’s Ph.D. candidacy form.

Courses of study to gain a reading knowledge for several languages are offered by the university at the undergraduate level. Students interested in those courses should consult the current New Brunswick Undergraduate Catalog.

Program of Study

A student who wishes to qualify for the doctorate should formulate a program of study in consultation with his or her graduate adviser or committee. The course and research requirements for the doctoral degree in each subject are determined by the faculties concerned, although all programs are subject to review by the dean of the Graduate School–New Brunswick. The minimum total requirement in nonresearch courses varies by program, although it rarely exceeds 48 credits. The student must offer a minimum of 24 credits in research toward the degree. The minimum combined total credit requirement is 72 credits. No more than 12 credits of advanced undergraduate courses (300- or 400-series with added G-prefixes) may be offered toward the degree. No more than 50 percent of a student’s formal course work may be taken in professional school courses. In most programs, a student is able to complete course work in two years of full-time study. Courses taken to satisfy the requirements for a master’s degree may, with program approval, be counted toward the doctorate. The time of transition from course work to guided or independent research is determined by the faculty of the student’s program. The entire doctoral program should be completed no later than seven years after the student first registers in the Graduate School–New Brunswick.

Academic Standing

Prospective candidates for the doctorate should understand that they will not ordinarily be permitted to proceed to the qualifying examination unless their record in course work shows evidence of distinction. The standard of work required is left largely in the hands of the students’ program committee, but it is expected that no more than 9 credits offered in partial fulfillment of the requirement for the doctorate, and for which letter grades have been given, shall bear grades of C or C+. Most programs expect graduate students to achieve grades of B or better in all their courses, and the regulations in some programs assume that a student should probably not continue to the doctorate unless he or she demonstrates a capacity to perform with distinction (grade A) in at least half the formal studies in course.

Admission to Candidacy:

The Qualifying Examination

The purpose of the qualifying examination is to determine whether a student has acquired sufficient mastery of the field of concentration to warrant admission to candidacy for the Ph.D. degree. It should be taken as soon as a student has completed the major portion of the course requirements; it should be taken not later than four years after the student first registered in the Graduate School–New Brunswick and not later than two terms before taking the final dissertation examination.

The examination, conducted by a committee of at least four members (the chairperson must be a member) or associate members of the program’s graduate faculty, is comprehensive in character and may be written or oral or both. Once a student has fulfilled the language requirements, if applicable, and other relevant program requirements, and has passed the qualifying examination, he or she is admitted to candidacy for the doctoral degree. The application for admission to candidacy for the degree of Doctor of Philosophy, on which the results of the language examination
will be certified by the program, is to be obtained by the student from the Office of the Graduate School and submitted to the chairperson of the committee at the time of the examination; it should be properly signed by the four members of the candidate’s committee and the graduate director and then returned to the Office of the Graduate School. Once the examination has been passed, the student must continue in registration, whether for courses or research, or lose his or her status as a candidate. An exception to this rule may be granted to recipients of the Master of Philosophy degree (see the section concerning that degree later in this chapter).

Dissertation and Dissertation Committee
Each candidate for the doctorate pursues, under faculty direction, an original investigation of a problem or problems in a field of concentration and presents the results of the investigation in a dissertation. The dissertation must be approved by a minimum of three members of a faculty committee of four members, chaired by a member of the graduate faculty of the student’s program who supervises the investigation, and including three other members (two who are members or associate members of the program faculty and one who is approved as an “outside” member), appointed by the program director in consultation with the student’s advisor. Whenever possible, “outside” shall be interpreted to mean “outside the university,” but in all cases “outside” shall be interpreted to mean outside the program. The outside member is expected to be a recognized authority on the subject of the dissertation. For appointments of committee members who do not hold any membership in the graduate faculty, the program director will forward to the Office of the Graduate School a letter appointing the individual to the committee. This letter should explain the basis for the appointment and must include the address of the appointee.

For committees having more than four members, only one nonapproval is permitted. Substitutions in committee membership, once it has been determined, are the responsibility of the program director and will occur only if a member is unable to serve or if a student’s dissertation topic changes, requiring a new dissertation director and/or modification in the committee. In cases other than these, approval for changes in committee membership rests with the dean of the Graduate School–New Brunswick.

Once the student has developed, with the advice of the dissertation supervisor, preliminary guidelines for a dissertation, a meeting of the committee, including the outside member whenever possible, and the candidate, will be held to discuss the candidate’s dissertation proposal. Subsequently, the committee must be kept informed of the student’s progress and must agree to follow the candidate’s work and assist in its development. The committee also shall agree to give ample and early warning of any reservations concerning the student’s progress and must specify in writing the changes required for dissertation acceptance.

The final copy of the dissertation should be prepared in strict accordance with the instructions given in the pamphlet Style Guide for Thesis and Dissertation Preparation, available at the Office of the Graduate School. After the dissertation has been accepted by the committee, the required copies are to be filed with the Office of the Graduate School no later than the announced deadlines for completion of degree requirements. One copy will be bound and made available in a university library.

With the dissertation, the candidate is required to submit an abstract not exceeding 550 words, embodying the principal findings of his or her research. As in the case of the dissertation, the abstract must be approved by the professor in charge of the work for the dissertation and accepted by the other members of the student’s committee.

Final Examination
A final public examination is held under the auspices of the committee in charge of the candidate’s course of study. A candidate must defend the dissertation and otherwise satisfy the committee and other faculty in attendance that he or she is qualified to receive the degree of Doctor of Philosophy.

At the time of the final examination, it is the responsibility of the candidate to obtain from the Office of the Graduate School the candidacy application (on which the result of the qualifying examination is recorded) for completion by the committee at the final examination. The same committee members must also sign the title page of the dissertation, signifying their acceptance of it. Once the program director certifies that all program requirements have been completed for the degree of Doctor of Philosophy, the candidate must return the candidacy application to the Office of the Graduate School. The two required copies of the thesis or dissertation submitted must be of excellent quality, correct in margin and format, and on 100 percent rag or cotton content bond paper. All of the above materials must be submitted to the Office of the Graduate School no later than the announced deadlines for completion of degree requirements. The names of those failing to meet these deadlines will be automatically removed from the commencement list for that degree date.

Application for the Conferral of the Degree
The candidate must file a diploma application according to announced deadlines in order to receive a diploma at commencement. For further information regarding the application procedure, see Graduation at the end of this chapter. A certificate of completion is issued, upon request, in advance of the awarding of the diploma in May.

Publication of Dissertation and Academic Data
After the granting of the doctorate, the Graduate School–New Brunswick will have the dissertation microfilmed. The dissertation must, therefore, be prepared with the same care as if it were to appear in printed form. The abstract that must accompany the dissertation will be published in Dissertation Abstracts and, therefore, must also be ready for publication when it is submitted to the dean.

University Microfilms of Ann Arbor, Michigan, will microfilm the dissertation and publish the abstract. Information concerning the preparation of the dissertation and abstract and the agreement with University Microfilms that the candidate is to sign are available in the Office of the Graduate School. The fee for microfilming the dissertation and publishing the abstract is $50. Registration of copyright also is available for a fee of $35.

Calendar for the Doctoral Degree Program
The following deadlines should be observed by a candidate for the doctorate. Admission conditions must be satisfied early in the academic program. The candidate must complete any language requirements before taking the qualifying examination. The candidate must take the qualifying
examination at least two terms before the final examination. The required copies of the dissertation must be filed and the final examination must be completed and the candidacy form recording its result returned by the announced deadlines for completion of degree requirements. Finally, the diploma application must be filed by the appropriate deadline. At no point during this sequence may students allow their registration in the Graduate School–New Brunswick to lapse (with the exception of a recipient of the Master of Philosophy degree). The entire program must be completed within the period specified under Time Limits for Degrees later in this chapter.

MASTER OF PHILOSOPHY

The Master of Philosophy (M.Phil.) degree is offered by the faculties of certain Ph.D. programs to students who achieve records of distinction during the predissertation phase of those programs. Doctoral programs in which the Master of Philosophy degree may be conferred are indicated in the Programs, Faculty, and Courses chapter. It should be noted that the Master of Philosophy is not designed as a terminal degree and that its requirements are integrated with the requirements for the Doctor of Philosophy degree. The Graduate School–New Brunswick does not admit potential candidates for the Master of Philosophy degree to graduate study unless they are clearly qualified to pursue the doctorate, and prospective students interested in the degree are advised to apply for admission to doctoral programs.

This degree, introduced by the University of Toronto in 1962 and established by Yale University in 1966, requires a minimum of two years of advanced study beyond the baccalaureate degree. It is thus intermediate between the Master of Arts or Master of Science degree and the Doctor of Philosophy, and it is designed to mark that point in a program of graduate study at which the student has successfully completed all requirements for the doctorate except the final phase of research culminating in a dissertation. The regulations governing the Master of Philosophy degree at the university are designed to encourage students in their progress toward the doctorate. The degree is intended to provide recognition that a prospective doctoral candidate has successfully and expeditiously completed a major phase of graduate study and has achieved a comprehensive mastery of the general field of concentration. Recipients of the degree automatically proceed toward the Ph.D. degree.

Programs leading to the Master of Philosophy degree are substantially similar to the predissertation phase of doctoral programs, differing primarily in the stipulations regarding minimum grade requirements, completion of all work within the specified time limit, and the requirement that either a thesis or essay must in all cases be completed. Eligible students who intend to proceed toward the doctorate and who wish to acquire a master’s degree in the course of their doctoral studies are advised to seek the Master of Philosophy degree instead of (or in addition to) the degree of Master of Arts or Master of Science.

Transfer of Credit

Credit for graduate-level courses taken elsewhere may be accepted toward the Master of Philosophy degree under the same conditions outlined under transfer of credit in the description of Ph.D. requirements. It is a special requirement for the Master of Philosophy degree, however, that in at least one-quarter of the courses for which transfer of credit is desired the student must have earned a grade of A or its equivalent. Further restrictions concerning the transfer of credit may be found in the Academic Policies and Procedures chapter.

Program of Study

The requirements for the Master of Philosophy degree include a minimum of 48 credits of work, of which at least 42 credits must consist of course work and the remainder, with the approval of the student’s program, may consist of research associated with an M.A. or M.S. thesis. At least 33 credits of the course requirements must be fulfilled in graduate-level courses numbered in the 500s and 600s, and of these at least 24 credits must be earned in courses taken at the university.

Academic Standing

In order to qualify for the Master of Philosophy degree, the student must earn a grade of A in at least 12 credits of the graduate-level courses that are taken at the university. No more than 3 credits bearing the grade of C or C+ may be counted toward the degree, and students earning 9 credits or more bearing grades of C or C+ or below are ineligible for the degree.

Writing Requirement

Students who earn an M.A. or M.S. degree at the university are required either to submit a master’s thesis or a critical or expository essay in partial fulfillment of the requirements for the degree. Students who wish to earn the Master of Philosophy degree, having submitted a formal thesis for the lower-level master’s degree, will be considered as having already fulfilled the writing requirement for the Master of Philosophy degree. Students whose programs at the university have not included a formal master’s thesis may fulfill the Master of Philosophy writing requirement with the critical or expository essay already accepted by their program faculty for the lower master’s degree or with another such essay prepared in the course of their graduate work at the university. The thesis or essay must have been written under the direction of a member of the graduate faculty and approved by two other members of the graduate faculty.

Time Limits

All requirements for the Master of Philosophy degree must be completed within four consecutive academic years of first registration at the university, and students for whom transfer of credit is granted for graduate work done elsewhere must complete their program within commensurately shorter limits. Extensions of time normally will not be granted in connection with this degree.

Other Requirements

All other requirements for the Ph.D. degree established by the Graduate School–New Brunswick and by the faculty in charge of the student’s program, other than the doctoral dissertation and the dissertation examination, must be fulfilled by applicants for the Master of Philosophy degree. These include the completion of all doctoral program requirements and the passing of the qualifying examination.
Continuing for the Ph.D. Degree

Students who have been awarded the Master of Philosophy degree may, if they wish, proceed directly to the final stage of their doctoral program, in which case they must continue their registration, or they may allow their registration in the Graduate School–New Brunswick to lapse without a restoral fee and resume their doctoral studies at any time within four years by submitting an application for readmission to the Graduate School–New Brunswick. See Readmission in the Academic Policies and Procedures chapter. Readmission with the graduate program director’s endorsement will be granted automatically within this period; after a period greater than four years, holders of the Master of Philosophy degree may also apply for readmission, but their readmission may be made conditional upon special additional requirements, e.g., “refresher” courses, at the discretion of their graduate director.

MASTER OF ARTS/MASTER OF SCIENCE

Candidates for the Master of Arts (M.A.) or Master of Science (M.S.) degrees must satisfy the requirements of the Graduate School–New Brunswick and of the program in which they are enrolled. The requirements of the Graduate School–New Brunswick are given below, and additional requirements established by various program faculties may be found in the Programs, Faculty, and Courses chapter. Certain programs have a foreign language requirement. The minimum requirement to earn the master’s degree is 30 credits of successful graduate study in course work. The candidate also must pass a final comprehensive examination in the student’s field of concentration, and, in some but not all programs, the candidate may (and sometimes must) do a research project culminating in a thesis, with this thesis project usually replacing 6 credits of the regular graduate courses ordinarily undertaken in a nonthesis program. The 30 credits, representing at least one academic year of advanced study, must be completed no later than three years after first registration unless an extension of time is granted by the Graduate School–New Brunswick. For further information, see Time Limits for Degrees later in this chapter.

The student’s registration in the Graduate School–New Brunswick must be continuous from the time of admission to graduate study until the time the degree is conferred. In fulfilling course requirements, courses may be selected from a single program or from several related programs. All programs of study are subject to review by the dean of the Graduate School–New Brunswick.

Transfer of Credit

On the recommendation of the program and with the approval of the Graduate School–New Brunswick, a student may transfer up to 12 graduate credits as partial fulfillment of the 30-credit degree requirements. For further information, see Transfer of Credits in the Academic Policies and Procedures chapter.

Program of Study

In programs that include the pursuit of a research problem developed in a master’s thesis, 6 credits (of the total 30 credits) normally are devoted to the research for and writing of the thesis. In exceptional cases, when it is desirable to give greater emphasis to the research project, the dean of the Graduate School–New Brunswick may, upon recommendation of the candidate’s program, approve a maximum of 12 credits for research on an unusual problem and its treatment in the thesis. In master’s programs pursued wholly through work in regular courses of study, i.e., those that exclude a research thesis, the candidate must demonstrate to the satisfaction of the faculty that he or she has the ability to write a creditable expository or critical essay, either as part of a regular course or seminar or in a special course designed for such a purpose. In programs consisting entirely of course work, at least 18 of the 30 credits of study must be undertaken in graduate-level courses (those numbered in the 500s and 600s); in programs in which a master’s thesis accounts for a normal portion of the credit recorded, at least 12 credits of study must be undertaken in graduate-level courses. With the approval of the candidate’s program faculty, the balance of his or her study in courses may be undertaken either in advanced undergraduate courses (numbered in the 300s and 400s) or in additional courses designed primarily for graduate students. In no case may the candidate for the Master of Arts or Master of Science degrees offer more than 12 units of credit of advanced undergraduate course work.

Academic Standing

Candidates for the master’s degree normally are expected to earn grades of B or better in their course work. No more than 9 credits bearing grades of C or C+ (fewer in some programs) may be used in meeting the requirements for a master’s degree.

Committees and Advisers

When a student’s program includes a thesis, the supervision of the course of study, the research for the thesis, and the conduct of the final examination is entrusted to an appointed committee whose members are selected in consultation with the director of the graduate program. Each committee consists of at least three members or associate members of the graduate faculty in the student’s graduate program. One nonprogram member is permitted but must be approved by the director of the graduate program. If the student’s program does not include a thesis, the committee is appointed shortly before the final examination. A nonthesis committee consists of at least three members or associate members of the graduate faculty in the student’s graduate program. No substitutes are permitted. In either case, the student is encouraged to seek advice during the course of study from the graduate director, committee chairperson, and professor supervising his or her courses. No graduate student should regard a program of study as the mere accumulation of numerical credits and meeting of formal requirements; progress toward mastery of a discipline depends to a large extent upon the interested guidance of the professors in charge and the student’s own initiative.

Submission of the Thesis

For a student whose program includes a thesis, the thesis must be approved by the professor in charge and accepted by the other members of the student’s committee. The final draft of the thesis should be prepared in strict accordance with the instructions given in the pamphlet Style Guide for Thesis and Dissertation Preparation, available at the Office of the Graduate School. After the thesis has been accepted
by the committee, the required copies are to be filed with
the Graduate School–New Brunswick by the announced
deadlines for completion of degree requirements.

MASTER OF ARTS FOR TEACHERS/
MASTER OF SCIENCE FOR TEACHERS

Programs leading to the degree of Master of Arts for Teachers
(M.A.T.) or Master of Science for Teachers (M.S.T.) are
offered in the Graduate School–New Brunswick to teachers
in service at secondary schools who wish to further their
education in academic subjects. Prospective students should
be advised that these programs do not in themselves lead
to certification in teaching nor are they degrees in education,
which are offered by the Graduate School of Education.
The programs of study for the M.A.T. and M.S.T. degrees
are designed on an individual basis. All M.A.T. and M.S.T.
programs at the university are composed primarily of work
in regular courses of study; none provides for the submission
of a thesis. The other requirements governing the degree
may be found in the preceding account of requirements for
the degrees of Master of Arts and Master of Science.

TIME LIMITS FOR DEGREES

Degree programs should be completed within the following
periods of time after first registration in the Graduate
School–New Brunswick:

<table>
<thead>
<tr>
<th>Degree</th>
<th>Normal Minimum</th>
<th>Normal Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master of Arts</td>
<td>1 year</td>
<td>3 years</td>
</tr>
<tr>
<td>Master of Science</td>
<td>1 year</td>
<td>3 years</td>
</tr>
<tr>
<td>Master of Arts for Teachers</td>
<td>1 year</td>
<td>3 years</td>
</tr>
<tr>
<td>Master of Science for Teachers</td>
<td>1 year</td>
<td>3 years</td>
</tr>
<tr>
<td>Master of Philosophy</td>
<td>2 years</td>
<td>4 years</td>
</tr>
<tr>
<td>Doctor of Philosophy</td>
<td>3 years</td>
<td>7 years</td>
</tr>
</tbody>
</table>

All students are urged to consider carefully the educa-
tional and economic benefits of completing their programs
as expeditiously as possible. Soon after being admitted to
graduate study each student should consult with a faculty
adviser and work out a reasonable timetable for meeting the
requirements. Extensions beyond the normal limits shown
above (for all degrees except the Master of Philosophy) may
be granted to students in good standing. A student requiring
an extension should petition the dean of the Graduate
School–New Brunswick on a form available from the
Office of the Graduate School. If the petition is supported
by reasons of weight, and if the faculty in charge of the
student’s program certify that satisfactory progress is being
made, the extension normally is granted. Part-time students
should consult their program concerning their expected
times of completion.

THESIS AND DISSERTATION
PREPARATION

A pamphlet entitled Style Guide for Thesis and Dissertation
Preparation is available at the Office of the Graduate School.
All theses, dissertations, or essays submitted to the Graduate
School–New Brunswick in partial fulfillment of the require-
ments for master’s and doctor’s degrees must conform to
the instructions in this pamphlet, and candidates should familiarize themselves with these instructions before they proceed to their final drafts. A thesis may be rejected by the graduate school office if it does not adhere to the stylistic and technical requirements specified in the Style Guide for Thesis and Dissertation Preparation.

The Office of Academic Services provides a series of dissertation and thesis workshops to help students prepare their manuscripts for submission in accordance with the requirements of the Graduate School–New Brunswick. In addition to examining the various guidelines for dissertation and thesis preparation, the workshops give students the opportunity to ask specific questions about the format of their project.

GRADUATION

When entering their final term, candidates who anticipate faculty recommendation for conferral of the degree are required to follow the procedures listed below:

1. Ensure that all academic requirements are being completed. If a student is unable to do so by the deadline date, both forms listed below must be filed for a later-dated diploma.
2. Ensure that related fees and any outstanding debts to the university are paid.
3. Submit the completed candidacy application form by the announced deadline, normally in early January, May, or October.
4. Submit a diploma application form by the announced deadline, normally January 2, April 1, or October 1.

The degree cannot be conferred as scheduled, and graduation will be delayed, if this form is filed after the deadline. Students must file this form if the deadline has passed. All forms are available from the Office of the Graduate School. Students are urged to submit the appropriate forms in advance of the deadlines, if possible. It is the responsibility of the student to complete all requirements for graduation by the scheduled dates. Each student should consult with the graduate director of his or her program and with the Office of the Dean of the Graduate School with respect to the completion of the requirements for graduation.

Conferral of degrees and diplomas occurs once a year at the annual spring commencement. However, students who file the applications and complete all other requirements for the degree by the announced October or January dates will get a diploma dated for the respective month, although they may not receive it until the following spring. Students may, therefore, request a temporary certificate of completion by submitting a written request to the university registrar. This request form may be obtained at the dean’s office. At the time of commencement, degrees may be conferred in absentia only if the prospective candidate has notified the university registrar that he or she cannot attend the commencement exercises.

The diploma will be withheld from any student who is under financial obligation to the university.

Programs, Faculty, and Courses

In this chapter, detailed descriptions of the programs offered by the Graduate School–New Brunswick appear in alphabetical order by subject name. Under each program, information is provided about the degree or degrees offered, the name and campus address of the program director, the list of the members of the graduate faculty in charge of the program and their research interests, a description of the program’s special purposes and requirements, and a list of courses. Note: For a comprehensive list of the degree programs offered by the Graduate School–New Brunswick, see the Degree Programs Available chapter.

COURSE INFORMATION

Courses numbered in the 500s and 600s are offerings of the graduate faculty for graduate students in advanced-degree programs. Undergraduate or nonmatriculated graduate students and students from the university’s graduate professional schools are admitted to these courses according to rules printed elsewhere; information about special prerequisites for some courses may be obtained from graduate program offices and from instructors at initial class meetings. Courses numbered in the 700s are intended for students preparing individual research theses or dissertations for advanced degrees.

Advanced undergraduate courses (numbered in the 300s and 400s) do not appear in this catalog, but among them are many that may serve as useful prerequisites to particular graduate courses and which, under certain conditions, may be accepted for credit toward graduate degrees. Within the limits described in the Degree Requirements and the Academic Policies and Procedures chapters, a student in the Graduate School–New Brunswick may register for an undergraduate course with the approval of his or her graduate adviser. Information about undergraduate course offerings must be sought in the appropriate undergraduate catalogs and separate schedules of classes. Graduate-level courses at the Rutgers professional schools and Princeton University also must be sought out in the catalogs of those schools.

Explanation of Three-Part Course Numbers

The number preceding each course title is divided into three parts. The first two digits are the administrative code (standing for a faculty or a school), the next three digits are the subject code, and the final three digits are the course code.

Administrative Codes

The administrative code for the Graduate School–New Brunswick is 16. The following administrative codes may be relevant for graduate students in New Brunswick:

01 Faculty of Arts and Sciences–New Brunswick
08 Mason Gross School of the Arts (graduate courses)
15 Graduate School of Education (graduate courses)
16 Graduate School–New Brunswick
17 School of Communication, Information and Library Studies (graduate courses)
18 Graduate School of Applied and Professional Psychology
19 School of Social Work (graduate courses)
26 Graduate School–Newark
34 Edward J. Bloustein School of Planning and Public Policy
37 School of Management and Labor Relations
53 School of Business–Camden
56 Graduate School–Camden

01 Faculty of Arts and Sciences–New Brunswick
08 Mason Gross School of the Arts (graduate courses)
15 Graduate School of Education (graduate courses)
16 Graduate School–New Brunswick
17 School of Communication, Information and Library Studies (graduate courses)
18 Graduate School of Applied and Professional Psychology
19 School of Social Work (graduate courses)
26 Graduate School–Newark
34 Edward J. Bloustein School of Planning and Public Policy
37 School of Management and Labor Relations
53 School of Business–Camden
56 Graduate School–Camden
Subject Codes

A subject code comprises the third through fifth digits in all course numbers and indicates the subject matter of the course. The following subject codes are used in this catalog:

030 Agricultural Economics
047 Alcohol Studies
067 Animal Sciences
082 Art History
098 Asian Studies
115 Biochemistry
125 Biomedical Engineering
126 Biotechnology
127 Bioresource Engineering
148 Cell and Developmental Biology
150 Ceramic and Materials Science and Engineering
155 Chemical and Biochemical Engineering
160 Chemistry
180 Civil and Environmental Engineering
185 Cognitive Science
190 Classic
194 Communication, Information, and Library Studies
195 Comparative Literature
198 Computer Science
215 Ecology and Evolution
220 Economics
300 Education
322 Electrical and Computer Engineering
350 English
352 English (American Literature)
356 English as a Second Language
370 Entomology
375 Environmental Sciences
390 Environmental Change, Human Dimensions of
400 Food Science
420 French
450 Geography
460 Geological Sciences
470 German
510 History
540 Industrial and Systems Engineering
545 Industrial Relations and Human Resources
554 Interdisciplinary Studies
560 Italian
615 Linguistics
617 Literature and Language
640 Mathematics
642 Mathematics, Applied
650 Mechanical and Aerospace Engineering
654 Mechanics
667 Medieval Studies
681 Microbiology and Molecular Genetics
695 Molecular and Cell Biology
696 Molecular Biophysics
700 Music
709 Nutritional Sciences
711 Operations Research
712 Oceanography
718 Pharmacology, Cellular and Molecular
720 Pharmacy (Pharmaceutical Science)
730 Philosophy
750 Physics and Astronomy
761 Physiology and Neurobiology
765 Plant Biology
790 Political Science
830 Psychology
832 Public Health
833 Public Policy
841 Quaternary Studies
859 Nutritional Sciences
899 Russian, Central and East European Studies
910 Social Work
920 Sociology
940 Spanish
960 Statistics
963 Toxicology
970 Urban Planning and Policy Development
988 Women’s Studies

Course Codes

The course code comprises the sixth, seventh, and eighth digits in all course numbers. Two course codes separated by a comma indicate that each term course may be taken independently of the other. Two course codes separated by a hyphen indicate that satisfactory completion of the first term course is a prerequisite to the second term; the first term may be taken for credit without taking the second, except if a statement is added to indicate that both term courses must be completed in order to receive credit.

Other Course Notations

Courses noted (F) and (S) indicate fall and spring anticipated schedule. Not all courses are offered every term or year.

Credits awarded for the successful completion of each course are indicated in parentheses following the course title. The notation BA indicates that the number of credits is determined by arrangement with the program offering the course.

Unless otherwise indicated, a course normally meets for a number of lecture hours equal to the number of credits to be earned. Special hours or modes of class, other than lecture, are usually indicated in italics below the course title.

Abbreviations

The following abbreviations are used in the faculty listings:

BCAE Biotechnology Center for Agriculture and the Environment
CABM Center for Advanced Biotechnology and Medicine
CABT Center for Advanced Food Technology
CAS Center of Alcohol Studies
CC Cook College
CCACC Camden College of Arts and Sciences
CCAS Center for Critical Analysis of Contemporary Culture
CCES Center for Coastal and Environmental Studies
CGS Center for Government Services
CINJ Cancer Institute of New Jersey
CMBN Center for Molecular and Behavioral Neuroscience
CN College of Nursing
CNCR Center for Negotiation and Conflict Resolution
CP College of Pharmacy
CTAG Center for Theoretical and Applied Genetics
CUPR Center for Urban Policy Research
EIP Eagleton Institute of Politics
EJBSPPM Edward J. Bloustein School of Planning and Public Policy
FAS–C Faculty of Arts and Sciences–Camden
FAS–N Faculty of Arts and Sciences–Newark
FAS–NB Faculty of Arts and Sciences–New Brunswick
FM Faculty of Management
GS–C Graduate School–Camden
GS–N Graduate School–Newark
GS–NB Graduate School–New Brunswick
GSAPP Graduate School of Applied and Professional Psychology
GSE Graduate School of Education
GSM Graduate School of Management
IHHCAPAR Institute for Health, Health Care Policy, and Aging Research
IMCS Institute of Marine and Coastal Sciences
IRC Interdisciplinary Research Center
MGCMCR Malcolm G. McLaren Center for Ceramic Research
MGSA Mason Gross School of the Arts
NTI National Transit Institute
RuCSC Rutgers Center for Cognitive Science
SB–NB School of Business–New Brunswick
SCILS School of Communication, Information and Library Studies
Agricultural Economics 030

Degree Program Offered: Master of Science
Director of Graduate Program: Professor Peter J. Parks,
108 Cook Office Building, Cook Campus (732/932-9155, ext. 218)

Members of the Graduate Faculty
Adesoji O. Adelaja, Professor of Agricultural Economics, CC; Ph.D., West Virginia
- Agricultural production economics; economics of the food industry
- Agricultural policy in urbanizing areas
Robin G. Brunthof, Associate Professor of Agricultural Economics and Marketing, CC; Ph.D., North Carolina State
- Production economics of the horticultural industry
Donn A. Derr, Associate Professor of Agricultural Economics, CC;
- Agricultural finance; agricultural marketing; agricultural management
Peter J. Parks, Associate Professor of Agricultural Economics, CC;
- Agricultural economics of food marketing; consumer economics
Sanjib Bhuyan, Assistant Professor of Agricultural Economics, CC;
- Economics of food industry; food marketing; cooperatives
Leslie E. Small, Professor of Agricultural Economics, CC; Ph.D., Cornell
- International agricultural development and irrigation management in Asia
Edmund M. Tavernier, Associate Professor of Agricultural Economics, CC;
- Agricultural development; international development science and technology policy
Ramu Govindaasamy, Assistant Professor of Agricultural Economics, CC;
- Agricultural development; international development science and technology policy

Programs

The objective of the graduate program in agricultural economics is to develop the ability of students to apply economic theory and methods to significant problems facing society, with emphasis in the areas of natural resources and the environment, food distribution and processing, and international agricultural development.

The program offers the Master of Science degree. Two options are available: 24 credits of course work and the successful completion of a research thesis (for which 6 credits are granted); or 30 credits of course work and the submission of an acceptable 3-credit research paper. A full-time student normally takes two years to complete the program. Teaching and research assistantships that include tuition remission are available for a limited number of full-time students. To the extent that space is available, full-time students are assigned office space in the Cook Office Building, which houses the Department of Agricultural Economics.

All students are required to take introductory econometrics in their first term (unless taken prior to entering the program). The remaining core course requirements consist of three graduate courses: microeconomic theory, research methods, and applied econometrics. A comprehensive examination must be passed after completing the required core courses. In addition, at least two other courses in agricultural economics must be taken. Selected courses may be taken from other programs including anthropology, computer science, economics, environmental sciences, geography, political science, psychology, sociology, statistics, and urban planning and policy development. There are no language or residency requirements for the degree.

A dual master’s degree program is available with the graduate programs in urban planning and policy development, leading to a Master of Science degree in agricultural economics and either a Master of Science in urban planning and policy development or a Master of City and Regional Planning. Students are accepted independently into both graduate programs after separate application to each. Students must meet the requirements of both programs; however, with proper course selection, 9 credits of course work from each program may be applied to the other degree.

Applicants to the graduate program in agricultural economics normally are accepted for matriculation only in the fall term of each year. Applicants must submit scores of the general test of the Graduate Record Examination, three letters of recommendation, and a statement of personal objectives. Foreign applicants whose native language is not English also must take the Test of English as a Foreign Language (TOEFL), and should score at a level of approximately 600 or better. For applicants wishing to receive full consideration for financial aid, the application and all supporting credentials should be received by the Office of Graduate Admissions by March 1.

Individuals interested in the program, but who have a limited undergraduate background in economics or agricultural economics, should complete the following courses prior to applying to the program: an undergraduate course in intermediate microeconomic theory and one in intermediate macroeconomic theory; calculus (minimum of one, but preferably two terms); and introductory statistics. In a few cases, outstanding students who lack these courses may be admitted on a conditional basis, subject to successful completion of the specified courses. Credits from these courses may not be used to fulfill the requirements of the master’s degree. Financial aid is not available to entering students admitted on a conditional basis, although such students may subsequently apply for aid upon completion of the conditions imposed at the time of admission.

Further details concerning the program can be found in a brochure entitled Graduate Program in Agricultural Economics, which is available upon request from the office of the graduate director.

Graduate Courses

16:030:502. (F) International Agricultural Development (3) Pray
The role of agriculture in economic development of low-income nations. Analysis of induced technical and institutional innovations, human capital investments, and public policies to promote development.

16:030:503. (F) Research Methods (3) Pray
The scientific method and applied research in economics. Planning and execution, including problem definition and preparation of research proposals. Overview of commonly used analytical techniques.

16:030:504. (S) Marketing and Food Systems (3) Bhuyan
Trends and issues in a consumer-driven food system; changing organization and structure of food markets; analysis of food consumption, prices, and expenditures.
Certificate Program

Students with a special interest in any aspect of alcohol studies may pursue a special concentration in alcohol studies in the course of their regular program of studies toward an advanced degree. Those who fulfill the requirements are awarded a certificate in alcohol studies upon completion of their degree. The requirements for the certificate, many of which may be used to satisfy the student’s graduate degree requirements, are:

1. Fifteen credits of course work in alcohol studies passed with a minimum grade average of B, of which 9 credits must be earned from the course offerings described below. The remaining 6 credits may also be distributed among approved courses within the student’s or another discipline.

2. For students in graduate programs with a clinical component, e.g., clinical psychology, some applied clinical experience with alcoholic and alcohol-abusing clients is expected. To fulfill this requirement, students must have the equivalent of two terms of a one-day-per-week practicum in an alcoholism treatment setting. This is equivalent to 6 N credits, 3 of which may be applied to the above 9-credit course requirement. Nonclinical practica, e.g., criminal justice, are available to interested students in other disciplines through special arrangement, but are not required.

3. Satisfactory completion of a research or scholarly project in the field of alcohol studies, including, but not limited to, the master’s thesis or doctoral dissertation.

4. Approval by the director of the certificate program and by the director of the student’s graduate degree program. Only students matriculated in a degree program may participate in the certificate program, although others may take courses with permission of course instructors. Further information is available from the director.

Graduate Courses

16:047:501. FOUNDATIONS IN ALCOHOL STUDIES: BIOLOGY, PSYCHOLOGY, AND SOCIOLOGY (3)
Bates, White
Provides a review of the essential information about alcohol’s acute and chronic effects on biology and behavior and the sociology of its use and misuse.

16:047:502,503. INDEPENDENT STUDY OF ALCOHOL-RELATED ISSUES (3,3)
Opportunity to pursue an area of interest concerning alcohol use and abuse under the supervision and guidance of a faculty member.

16:047:601,602. PRACTICUM: CLINICAL TREATMENT OF ALCOHOLIC PATIENTS (N-BA, N-BA)
Prerequisite: Previous experience in direct patient care. Required for students in degree programs that provide specific training in counseling or psychotherapy, such as clinical psychology (Ph.D. or Psy.D.), counseling psychology, social work, or psychiatric nursing.

16:830:565. PREVENTION OF ALCOHOL ABUSE AND ALCOHOLISM (3)
History, philosophy, and research evidence concerning the impact of education and public policy measures on the prevention of alcohol abuse and other forms of drug abuse.

16:830:566. ASSESSMENT AND TREATMENT OF ALCOHOL ABUSE AND ALCOHOLISM (3)
McCrady. Offered in alternate years.
Review of theoretical models, research, and clinical techniques related to the assessment, diagnosis, and treatment of alcohol abuse and alcoholism, with discussion of ongoing clinical cases carried by students.
Degree Programs Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Professor Henry John-Adler, Bartlett Hall, Cook Campus (732/932-3229)

Members of the Graduate Faculty
Juan P. Advis, Professor of Animal Sciences, CC; Ph.D., Southwestern Medical School (Dallas); D.V.M., Austral (Chile)

Carol A. Bagnell, Associate Professor of Animal Sciences, CC; Ph.D., Medical College of Georgia

Control of reproductive tissue growth; corpus luteum function

Wendie S. Cohick, Assistant Professor of Animal Sciences, CC; Ph.D., Cornell

Mammary gland biology; endocrine regulation of cell growth

Julie M. Fagan, Associate Professor of Animal Sciences, CC; Ph.D., Arizona

Proteases; mechanisms of protein breakdown in mammalian cells; muscle growth

Harold Hafs, Visiting Professor of Animal Sciences, CC; Ph.D., Cornell

Physiology and endocrinology of reproduction; estrous synchronization, postpartum anestrua, and puberty in cattle

Barry W. Jesse, Associate Professor of Animal Sciences, CC; Ph.D., Michigan State

Ruminant nutritional biochemistry; molecular biology

Henry B. John-Alder, Associate Professor of Animal Sciences, CC; Ph.D., California (Irvine)

Comparative and behavioral physiology and endocrinology; endocrine control of exercise performance

Larry S. Katz, Associate Professor of Animal Sciences, CC; Ph.D., California (Davis)

Endocrine regulation of reproductive behavior and wildlife contraception; inhibitors of reproductive behavior in health and disease

Gordon J. MacDonald, Professor of Anatomy, UMDNJ-RWJMS; Ph.D., Rutgers

Anterior pituitary, placenta, uterine, ovarian relationships

Sasha Malamed, Professor of Anatomy, UMDNJ-RWJMS; Ph.D., Columbia

Adenosorical cell structure and function; somatotroph function

Karyn Malinowski, Professor of Equine Physiology, CC; Ph.D., Rutgers;

V.M.D., Pennslyvania

Equine endocrinology and physiology

Kenneth H. McKeever, Associate Professor of Animal Sciences, CC; Ph.D., Arizona

Equine exercise physiology; comparative cardiovascular and renal physiology

Sarah L. Ralston, Associate Professor of Equine Physiology, CC; Ph.D.,

V.M.D., Pennslyvania

Equine nutrition and behavior; effects of age on glucose, insulin, and mineral metabolism

Dipak K. Sarkar, Chair and Professor of Animal Sciences, D.Phil., Oxford

Cellular and molecular neuroendocrinology

Patricia A. Schoknecht, Assistant Professor of Animal Sciences, CC; Ph.D., Cornell

Nutritional physiology in swine; neonatal growth

Michael V.K. Sukhdeo, Associate Professor of Parasitology, CC; Ph.D., McGill

Vertebrate parasitology

Malcolm Walford, Associate Professor of Nutrition, CC; D.Phil., Oxford

Regulation of glutamine metabolism

Jeffrey White, Adjunct Associate Professor of Animal Sciences, Ph.D., SUNY (Stony Brook)

Neuroendocrine control of growth and metabolism; drug discovery

Michael Westendorf, Assistant Professor of Animal Sciences, CC; Ph.D., Kentucky

Ruminant nutrition; by-product utilization; waste management

James E. Wohl, Professor of Animal Sciences, Ph.D., Illinois

Nutritional requirements and management practices for livestock

Edward J. Zambraski, Professor of Physiology, CC; FAS-NB; Ph.D., Iowa

Renal and exercise physiology

Programs

The graduate program in animal sciences offers M.S. and Ph.D. degrees as part of the large and interactive community of biological scientists at Rutgers and the Robert Wood Johnson Medical School of the University of Medicine and Dentistry of New Jersey. In addition to faculty from these universities, other members of the program come from research divisions of local pharmaceutical and agricultural industries. Major areas of research include: animal nutrition; by-product utilization; endocrinology of growth, lactation, and reproduction; equine science; exercise physiology; neuroendocrinology; and behavior.

Applicants are expected to have a strong background in biological sciences, including courses in general and organic chemistry and mathematics through calculus. The Graduate Record Examination (GRE) must be taken, including the subject test in biology.

All students in the program must demonstrate competence in physiology, molecular biology and biochemistry, animal science, and statistics. There are no language or residency requirements.

The M.S. degree requires 30 credits, including at least 12 credits of course work and 6 credits of research. A research thesis must be completed for this degree.

The Ph.D. degree requires 72 credits, including at least 24 credits of course work and 24 credits of research. Students must pass a comprehensive qualifying examination and complete a research dissertation.

Graduate Courses

16:067:501. CURRENT PRINCIPLES IN ANIMAL SCIENCES (3)

Current research and new technologies in the animal sciences. Use of animals in research, management and feeding of domestic animals, nutrition, control of pathogens, animal immunology, physiology, biotechnology, and animal welfare.

16:067:502. PHYSIOLOGY OF REPRODUCTION (3)

Advis. Prerequisites: Organic chemistry, vertebrate physiology. Reproductive physiology of the higher vertebrates. The estrous, menstrual, and ovulation cycles, pregnancy, and parturition and lactation. Emphasis on growth areas in the field of reproductive physiology research.

16:067:507. RUMINANT NUTRITION (4)

Wohl. Lect. 3hrs., lab. 3hrs. Prerequisite: An introductory course in biochemistry or nutrition.

Nutritional adequacy of feedstuffs as related to nutrient requirements and utilization, and metabolism in the ruminant animal for product development. Experimental designs in ruminant nutrition, anatomy and physiology of the digestive tract, rumen fermentation, water lipid, carbohydrates and protein metabolism, appetite, palatability, and control of feed intake.

16:067:508. EQUINE EXERCISE PHYSIOLOGY (3)

McKeever. Prerequisites: An introductory course in physiology. Physiological and environmental factors associated with exercise in the horse.

16:067:603,604. SPECIAL PROBLEMS IN ANIMAL SCIENCE (BA,BA)

16:067:611. TOPICS IN DOMESTIC ANIMAL NUTRITION (2)

Schoknecht

Nutrient intake and metabolism and the partitioning of nutrients in pregnancy, lactation, and growth. Basic mechanisms and applications to production species.

16:067:612. RECENT ADVANCES IN ANIMAL REPRODUCTION (2)

Advis

Survey and analysis of current literature pertaining to reproduction in domestic animals.

16:067:613. TOPICS IN ANIMAL GROWTH (2)

Growth in farm animals considered from a mathematical, biochemical, nutritional, and endocrinologic basis.

16:067:614. CURRENT TOPICS IN METABOLIC REGULATION (2)

Jesse. Prerequisites: Biochemistry and a course in animal or poultry science. Consideration of metabolic regulation discussed in reference to domestic livestock from a biochemical and molecular biological viewpoint. Discussions based on presentations by students and instructor using examples from the current literature.

16:067:615. TOPICS IN ANIMAL BEHAVIOR (2)

Suldeo

Behavior of animals considered from endocrinologic, evolutionary, and nutritional bases.

16:067:693,694. SEMINAR IN ANIMAL SCIENCE (1,1)

16:067:701,702. RESEARCH IN ANIMAL SCIENCE (BA,BA)
ANTHROPOLOGY 070

Degree Offered: Master of Arts, Doctor of Philosophy

Director of Graduate Program: Professor Michael Moffatt, Adams Building, Douglass Campus (732/932-9887)

Members of the Graduate Faculty

Myron J. Aroseff, Professor of Political Science, FAS-NB; Ph.D., Manchester

Political anthropology, complex societies; Israel, Middle East

Robert J. Blumenschine, Professor of Anthropology, FAS-NB; Ph.D., California (Berkeley)

Old world prehistory, zooarchaeology, hominid ecology, and social organization; Africa

Susan M. Cachel, Associate Professor of Anthropology, FAS-NB; Ph.D., Chicago

Physical anthropology, primate evolution, morphology

Sheila C. Cosmas, Associate Professor of Sociology and Anthropology, FAS-C; Ph.D., Brandeis

Cultural and medical anthropology, ethnic relations; Mesoamerica, Africa

Lee Cronk, Associate Professor of Anthropology, FAS-NB; Ph.D., Northwestern

Human behavioral ecology and human evolutionary ecology; Africa and Caribbean

Craig G. Feibel, Assistant Professor of Anthropology, FAS-NB; Ph.D., Utah

Environment and ecology in human evolution; rift valley sedimentation

Robin Fox, University Professor, FAS-NB; Ph.D., London

Kinship and marriage, evolution of behavior; North America, Northwestern Europe

Peter J. Guarnaccia, Associate Professor of Human Ecology, CC; Ph.D., Connecticut

Medical anthropology, nutritional anthropology, Hispanics in the U.S., cross-cultural psychiatry, anthropology and epidemiology; Mexico

John W.K. Harris, Chairperson and Professor of Anthropology, FAS-NB; Ph.D., California (Berkeley)

Paleoanthropology, old world prehistory, lithic analysis, method and theory; Africa

Angélique Haugerud, Associate Professor of Anthropology, FAS-NB; Ph.D., Northwestern

Economic and political anthropology; agrarian ecology; land tenure; social change and development; Africa

Dorothy L. Hodgson, Assistant Professor of Anthropology, FAS-NB; Ph.D., Michigan (Ann Arbor)

Gender, ethnicity, development, history, culture, and power; East Africa

Walton K. Johnson, Associate Professor of Africana Studies, FAS-NB; Ph.D., London

Cultural anthropology, race relations, religion; Southern Africa

Uli H. Linke, Associate Professor of Anthropology, FAS-NB; Ph.D., California (Berkeley)

Cultural anthropology, body politic; gender and difference; memory, history, and violence; European societies (Germany)

Bonnie J. McCoy, Professor of Anthropology and Ecology, CC; Ph.D., Columbia

Ecological and economic anthropology; fisheries, common property; North Atlantic

Michael Moffatt, Professor of Anthropology, FAS-NB; Ph.D., Chicago

Religion, diasporic Hinduism; ethnographic practice; South Asia; caste

George E.B. Morren, Jr., Professor of Human Ecology, CC; Ph.D., Columbia

Human ecology, evolutionary theory, environment; Oceania, United States

Ryne Palombi, Assistant Professor of Anthropology, FAS-NB; Ph.D., California (Davis)

Evolution and ecology of primate social behavior, male-female relationships, gibbons, baboons, saiki and titi monkeys

Louisa Schein, Assistant Professor of Anthropology, FAS-NB; Ph.D., California (Berkeley)

Cultural politics, ethnicity, gender, transnational issues; China

Carmel Schrire, Professor of Anthropology, FAS-NB; Ph.D., Australian National

Prehistory, historical archaeology, human ecology, hunter-gatherers; Australia, Southern Africa

Warren Shapiro, Professor of Anthropology, FAS-NB; Ph.D., Australian National

Social classification, symbols, history of anthropology; Australia, Lowland South America

Nobuo Shimahara, Professor of Education, GSE; Ed.D., Boston

Japanese educational development, industrialization and culture

Janet Siskind, Associate Professor of Anthropology, FAS-N; Ph.D., Columbia

Economic anthropology, women, personality; Lowland South America, Africa

H. Dieter Stelz, Professor of Anthropology, FAS-NB; Ph.D., California (Berkeley)

Primatology, mountain gorilla conservation, biology of behavior; central-East Africa

Heather Strange, Professor Emerita of Anthropology, FAS-NB; Ph.D., New York

Cultural anthropology, culture and aging, women's studies, and gender issues; Southeast Asia

Lionel Tiger, Charles Darwin Professor of Anthropology, FAS-NB; Ph.D., London

Political structures, roles, ethnicity, kibbutzim; Israel

Robert Trivers, Professor of Anthropology and Biological Sciences, FAS-NB; Ph.D., Harvard

Principles underlying social evolution, evolutionary genetics

Andrew P. Vayda, Professor of Anthropology and Ecology, CC; Ph.D., Columbia

Human ecology, methodology and explanation, ecological and evolutionary theory; Southeast Asia, New Guinea, Polynesia

Associate Members of the Graduate Faculty

Myra Bluebend-Langer, Professor of Anthropology, FAS-C; Ph.D., Illinois

Death, dying, bereavement, chronic illness; children and families

Anne-Marie Cantwell, Associate Professor of Anthropology, FAS-N; Ph.D., New York

North American archaeology, prehistoric trade, and ideology; complex societies

R. Brian Ferguson, Professor of Anthropology, FAS-N; Ph.D., Columbia

War, policing, contemporary “ethnich conflict,” state-tribe interaction, historical ecology; Lowland South America, Puerto Rico

Alex Harlow, Assistant Professor of Anthropology, FAS-N; Ph.D., Emory

Violence, genocide, globalization, emotion, and identity; Cambodia; Southeast Asia

Chun-fang Yu, Professor of Religion, FAS-NB; Ph.D., Columbia

Culture and religion, Buddhism; China

Programs

All second-year students are expected to present a scholarly paper at a day-long retreat. Ph.D. students also are expected to prepare three “field statements,” textual summaries, and extensive bibliographies of three areas of research broader than, but related to, their intended topic of dissertation research. After completion of their 48 credits of course work and their field statements, students prepare a dissertation research proposal and must pass an oral proposal defense on it. When the dissertation is completed, it is evaluated in an oral dissertation defense.

Students who enter in the Ph.D. program may earn an M.A. along the way by applying for one after completion of at least 30 credits and completion of the three field statements. Students who enter in the master’s program are expected to take the same required courses listed above for the Ph.D. program, and may either complete a written comprehensive exam after 30 credits, or write a 6-credit master’s thesis (with an oral exam) after 24 credits of course work. Students who entered in the master’s program may then apply to enter the Ph.D. program. A Master of Philosophy degree also is available to students on their way to a Ph.D., but not as a terminal degree.

Students are urged to complete their Ph.D. in five years. While there is no formal fieldwork requirement, most students in both evolutionary and cultural anthropology find fieldwork necessary for a doctoral degree. There is no specific language requirement, but students are expected to acquire such languages as will be necessary for successful completion of their research (e.g., contact languages and others they may need for fieldwork and library research). There is no residency requirement.

Selected courses may be taken in other programs, such as geological sciences, history, political science, psychology, sociology, urban planning, ecology, nutrition, and computer science.

Graduate Courses

16:070:501. PROSEMINAR IN ANTHROPOLOGY I (3)
Presentations in areas of current faculty research.

16:070:502. PROSEMINAR IN ANTHROPOLOGY II (3)
Basic overview of the central concepts, theories, resources, and methods fundamental to cultural anthropology, human ecology, physical anthropology, and archaeology.

16:070:503. SOCIAL/CULTURAL ANTHROPOLOGY (3)
Social anthropology past and present; kinds of explanation, ethnoscience, methods and fieldwork, new directions, process, transaction and symbolic interaction, modern role theory, and networks.

43
16:070:504. SOCIAL ORGANIZATION (3)
Examination of problems in social structure and organization with special reference to descent and alliance theory, kinship semantics and formal analysis, and evolution of social systems.

16:070:505. HISTORY OF ANTHROPOLOGICAL THEORY (3)
Origin and development of anthropology; surveying the central ideas of major figures from the seventeenth century to the present.

16:070:506. RESEARCH METHODS IN SOCIAL/CULTURAL ANTHROPOLOGY (3)
Survey and critical evaluation of methods in current anthropology, using original research as data.

16:070:508. EVOLUTIONARY THEORY AND PROCESSES (3)
Natural selection, adaptation, evolutionary genetics, speciation, extinction, adaptive radiation, and macroevolution with special emphasis on human and nonhuman primate evolution.

16:070:509. KINSHIP IN NATURE AND CULTURE (3)
Examination of the anthropological orthodoxy that kinship systems are a property of culture and hence of human society; systematic examination of the role of kinship in the lives of other species, particularly the higher primates. The adaptational significance of human innovations.

16:070:510. SOCIAL IMPLICATIONS OF GENDER DIFFERENCES (3)
Consideration of the results of the interaction between the biological fact of gender differences and the varieties of cultural response to and interpretation of these differences.

16:070:511. ANTHROPOLOGY OF GENDER (3)
Uses recent ethnographic and ethological studies of women to appraise such anthropological assumptions as the homogeneity of simple societies, the harmony and stability of large or small societies, the primacy of the family, and the validity of ethno- graphic data.

16:070:512. COGNITIVE ANTHROPOLOGY (3)
Theoretical and methodological issues in the study of culture and cognition.

16:070:513. LANGUAGE DEVELOPMENT (3)
Animal communication; theories of the origin of language; biological basis of language. Cross-cultural comparison of language development in children and language universals.

16:070:514. LANGUAGE IN CULTURE AND SOCIETY (3)
Cultural implications of language and its use. Relations between language and culture, language and cognition, language and social group.

16:070:516. SEXUALITY IN A CROSS-CULTURAL PERSPECTIVE (3)
Ethnographic issues in study of sexuality; major approaches; construction of sexuality, eroticism, and gender in wide range of cultures; relation of erotic culture to wider social order, history.

16:070:517. PSYCHOLOGICAL ANTHROPOLOGY (3)
The study of interrelations among personality and culture and social structure. Emphasis on the comparative perspective.

16:070:518. CORPORATE AND PERSONAL VIOLENCE (3)
Analysis of aggression and violence as features of individual and group behavior. Biological, evolutionary, sociological, and philosophical approaches.

16:070:519. POLITICAL ORGANIZATION (3)
Explorations of political organization of human societies at all stages of sociocultural development, beginning with hunter-gatherers and concluding with modern industrial state systems.

16:070:520. ANALYSIS OF STATE SYSTEMS (3)
The anthropological approach to the analysis of nation-states with special reference to boundary mechanisms, value systems, and the political control of everyday activities.

16:070:521. ANTHROPOLOGY OF INDUSTRIAL SOCIETY (3)
Effects of the industrial system on kinship behavior, socialization of the young, the use of time, ethnicity and kinship interests, and “alienation.” Limited, focused research project by the student.

16:070:522. ANTHROPOLOGY OF RELIGION (3)
Religion in the known cultures of the world, with special attention to ritual and myth. Detailed examination of particular ethnographic sources. The link between religious universals and theories of human nature.

16:070:523. CULTURE AND AGING (3)
Human aging in life course perspective. Focus on cross-cultural and intracultural diversity.

16:070:524,525. WORLD ETHNOGRAPHIC AREAS I,II (3,3)
Study of selected ethnographic areas such as Africa, Southeast Asia, India, or North America; cross-cultural analysis within an area. General theoretical and methodological issues as well as those unique to the particular area.

16:070:527. (F) THE ETHNOLOGY OF INEQUALITY: RACE, CLASS, AND ETHNICITY (3)
Stasko
Survey of anthropological literature on the relationships among race, class, and ethnicity. Ethnographic methods and the comparative approach to the study of hegemony, resistance, and conflict among groups defined as “racial” or “ethnic.”

16:070:528. EXPLANATION IN ANTHROPOLOGY (3)
Vayda
Analysis of modes of explanation used in anthropological studies, with consideration of such issues as holism versus individualism; essentialism versus nominalism; action explanations and other explanations; generalization and particularism; and the problem of other cultures and other periods.

16:070:530. PROBLEMS IN SOCIAL ANTHROPOLOGY (3)
For graduate students wishing to pursue advanced work supplementary to that provided in formal courses. Program of reading and conferences arranged by professor in charge.

16:070:531. PROBLEMS IN COMPARATIVE ANALYSIS (3)
For graduate students wishing to pursue advanced work in areas not provided for in formal courses. Conferences, reading, and empirical work arranged in consultation with the professor in charge.

16:070:532. PROBLEMS IN ETHNOGRAPHY (3)
For graduate students wishing to pursue advanced work in areas not provided for in formal courses. Conferences, reading, and empirical work arranged in consultation with the professor in charge.

16:070:543. ECOLOGICAL ANTHROPOLOGY (3)
The ecological approach in anthropology. Consideration of theory, method, and data analysis in ecological studies.

16:070:544. HUMAN ECOLOGY AND MODERN PROBLEMS (3)
Methods for the analysis of current socioeconomic, health, and environmental problems involving interactions between people and their environment.

16:070:545. ANTHROPOLOGY OF DEVELOPMENT (3)
Economic development and social change in third-world and advanced industrial societies. Theories of social change applied to areas such as education, urban planning, and social welfare.
16:070:546. MEDICAL ANTHROPOLOGY (3)
Examination of sociocultural factors influencing health and illness
and the impact of social and cultural change on disease patterns
and health-care systems. Includes ethnographic studies of systems
of illness causation, prevention, diagnosis, and treatment.

16:070:547. PARTICIPATORY PLANNING IN APPLIED
ANTHROPOLOGY (3)
Role of applied anthropologist in facilitating broad public
participation in development projects and other kinds of change
initiatives; ethics and professional practice.

16:070:550. ECONOMIC ANTHROPOLOGY (3)
Survey of theories and methods in economic anthropology.

16:070:551. MARITIME ANTHROPOLOGY (3)
Prerequisite: Course in anthropological theory.
An advanced course in sociocultural, economic, and ecological
anthropology focused on the study of fishing and other maritime
communities and problems concerning human relationships to
natural resources.

16:070:552. SEMINAR IN ECOLOGICAL ANTHROPOLOGY (3)
Interrelations of ecological and socioeconomic changes as an
interdisciplinary problem area.

16:070:553. PROBLEMS IN HUMAN ECOLOGY I (3)
For graduate students wishing to pursue advanced work in areas
not provided for in formal courses. Conferences, reading, and
laboratory work arranged in consultation with the professor
in charge.

16:070:554. PROBLEMS IN HUMAN ECOLOGY II (3)
For graduate students wishing to pursue advanced work in areas
not provided for in formal courses. Conferences, reading, and
laboratory work arranged in consultation with the professor
in charge.

16:070:558. EVOLUTION OF THE HOMINIDAE (3)
The fossil Old World higher primates; the Miocene fossil apes;
problems of when, where, and why hominids first appeared;
the australopithecines of Plio/Pleistocene Africa; early genus
Homo; Homo erectus; Neanderthals; the appearance of anatomically
modern man; Paleolithic cultures.

16:070:571. PRIMATE ECOLOGY AND SOCIAL BEHAVIOR (3)
The behavior of the nonhuman primates, emphasizing the relation-
ship between ecology and social organization; the structure of
social groups; and the development of behavior.

16:070:573. PROBLEMS IN BIOLOGICAL ANTHROPOLOGY (3)
Interdisciplinary problem area. Topics include aggression, territorial
behavior, cross-cultural, and genetic-neuro-hormonal data in the
analysis of human social behavior.

16:070:577. NEW WORLD PREHISTORY (3)
Key data and current interpretive models concerning the archae-
ology of hominid adaptations from earliest times through the
Neolithic in the Old World.

16:070:580. RESEARCH METHODS AND THEORY IN
ARCHAEOLOGY (3)
Conceptual basis and assumptions used in the formulation
of research designs and the interpretation of research results;
examination of fieldwork problems and techniques, with emphasis
on the problems of observation, use of documentary sources,
surveying and excavation, and use of quantitative data.

16:070:581. HISTORICAL DEVELOPMENT OF ARCHAEOLOGY (3)
Origins of classical and Near Eastern archaeology in Greek and
Roman philosophy, and developments from the revival of classical
learning in the Renaissance. Development of prehistoric archaeology
and New World archaeology as a subfield of general anthropology.

16:070:582. PALEOECOLOGY AND ARCHAEOLOGY (3)
Methods of environmental reconstruction. Emphasis on the
evolution of subsistence economies, with special attention to the
origins of animal and plant domestication.

16:070:583. ORIGINS OF AGRICULTURE (3)
Archaeological, zoological, botanical, geographical, and ethnog-
ographic data relating to ancient and modern hunter-gatherers
and farmers are used to compare and contrast their demography,
material culture, and economy, so that the origins of settled life
can be seen.

16:070:584. THE BUILT ENVIRONMENT (3)
Prerequisite: One year of graduate work in anthropology.
Anthropological principles applied to the planning process in
contemporary society. Emphasis on political, environmental,
technological, and biological planned change.
16:070:585,586. PROBLEMS IN ARCHAEOLOGY (3,3)
For graduate students wishing to pursue advanced work in areas not provided for in formal courses. Conferences, reading, and laboratory work arranged in consultation with the professor in charge.

16:070:587. FIELD STUDY IN ARCHAEOLOGY (3)
Minimum of six to ten weeks at field location. Course may be repeated with permission of program director. Supervised participation in fieldwork with instruction in excavation methods and practices. Personnel and field project location vary from year to year. Fees: Tuition, transportation to site, room, and board.

16:070:602. SEMINAR IN SOCIAL THEORY (3)
Prerequisites: 18 credits in graduate social science courses or permission of instructor. The intellectual history and philosophy of social science; exploration of the origins of the social and behavioral sciences in the western humanistic tradition.

16:070:626. VISUAL ANTHROPOLOGY (3)
Study, use, and production of anthropological and ethnographic photographs, films, and videos for research and communication; study of human behavior through visual media.

16:070:701,702. RESEARCH IN ANTHROPOLOGY (BA,BA)

ART HISTORY 082

Degree Programs Offered: Master of Arts, Doctor of Philosophy
Certificate Program Offered: Certificate in Museum Studies
Director of Graduate Program: Professor Catherine Puglisi
212 Voorhees Hall, College Avenue Campus
(732)/932-7819, ext. 16

Members of the Graduate Faculty
Matthew Baigell, Professor of Art History, FAS-NB; Ph.D., Pennsylvania
American art
Olga Berendse, Associate Professor Emerita of Art History, FAS-NB;
Ph.D., New York
Baroque
Sarah Brett-Smith, Associate Professor of Art History, FAS-NB; Ph.D., Yale
African
Martin Eidelberg, Professor of Art History, FAS-NB; Ph.D., Princeton
Baroque and rococo; modern decorative arts
Rona Goldin, Professor of Art History, FAS-NB; Ph.D., Columbia
Italian Renaissance
Archer St. Clair Harvey, Associate Professor of Art History, FAS-NB;
Ph.D., Princeton
Early Christian and Byzantine
Angela Howard, Associate Professor of Art History, FAS-NB; Ph.D., New York
East Asian
John F. Kenfield III, Associate Professor of Art History, FAS-NB; Ph.D., Princeton
Greek and Roman
Ted A. Marter, Professor of Art History, FAS-NB; Ph.D., Columbia
Renaissance; baroque
Joan M. Marter, Professor of Art History, FAS-NB; Ph.D., Delaware
Modern art; twentieth-century art; gender studies; curatorial studies
Sarah E. Blake McHam, Professor of Art History, FAS-NB; Ph.D., New York
Italian Renaissance
Elizabeth Parker McLachlan, Associate Professor of Art History, FAS-NB; Ph.D., Courtauld Institute (London)
Medieval
Catherine R. Puglisi, Associate Professor of Art History, FAS-NB;
Ph.D., New York
Baroque
Joellyn J. Small, Professor of Art History and Director, Sibyl, the database of
classical iconography; Ph.D., Princeton
Classical art and archaeology; iconography; Etruscoscopy
Jack J. Spector, Professor of Art History, FAS-NB; Ph.D., Columbia
Modern art and theory of criticism
Associate Members of the Graduate Faculty
Phillip D. Cate, Director of the Zimmerli Museum; M.A., Arizona State
History of the print; French nineteenth-century graphics

Jane Sharp, Assistant Professor of Art History, FAS-NB; Ph.D., Yale
Nineteenth- and twentieth-century European art; Russian
Mariet Westermann, Assistant Professor of Art History, FAS-NB; Ph.D., NYU
Northern Renaissance and baroque
Carla Yanni, Assistant Professor of Art History, FAS-NB; Ph.D., Pennsylvania
Nineteenth- and twentieth-century architecture

Programs
The faculty in art history offers degree programs leading to the M.A. and Ph.D. degrees in the major fields of Western art, sub-Saharan African art, and East Asian art. The faculty also offers a program leading to a certificate in curatorial studies. Both degree programs are designed to provide a well-rounded and comprehensive knowledge of the major historical periods. The Ph.D. program, in addition, allows for specialization in one of the major fields.

Applicants should have a minimum of eight art history courses as prerequisite for admission. Promising students who have taken fewer courses may be admitted but must make up deficiencies before beginning the graduate curriculum.

Requirements for the Ph.D. include fourteen courses (42 credits), reading knowledge of two languages, of which one must be German (one proficiency examination must be taken by the second term of study). The qualifying examination is in one of the major art historical periods, and acceptance of the dissertation. After completion of eight courses, the student's work is reviewed to determine if he or she will be allowed to continue for the Ph.D.

The M.A. program is designed for those who do not plan to pursue the Ph.D., and for those pursuing the certificate in curatorial studies. Requirements include ten courses (30 credits), one foreign language, a master's essay, and a comprehensive examination.

The curatorial studies certificate, which is awarded separately, requires one course in curatorial training and three curatorial internships (12 E credits total). Students must take at least one exhibition seminar, for which they earn 3 credits that are counted as part of their degree program. Students in the M.A. and Ph.D. programs are eligible to pursue a curatorial studies certificate.

There are no residence requirements for either degree program. Students who have earned an M.A. degree elsewhere are welcome to apply for admission to the Ph.D. program. The curriculum is flexible and allows students to explore interests in such areas as African-American studies, African studies, American studies, Asian studies, classics, archaeology, film studies, gender studies, medieval studies, Renaissance studies, Russian and Slavic studies, and theory and criticism.

Further information on program requirements (e.g., the ratio of 500- to 600-level courses, timing sequences between M.A. examination and submission of master's paper) can be found in the booklet The Graduate Program in Art History, which can be obtained from the art history graduate office in Voorhees Hall.

Graduate Courses
16:082:503,504. INDIVIDUAL STUDIES IN ART HISTORY (BA,BA)

16:082:506. APPROACHES TO ART HISTORY (3)
Spector
The history of art history and explanation of the basic methodologies (iconography, connoisseurship). Recent challenges from outside the field—political, psychological, semiotic.

16:082:509. AFRICAN ART AND ARCHITECTURE (3)
Brett-Smith
Survey of the art history of West Africa. Examines the different theoretical and practical models that have been used to look at African art history, their origins in the “discovery” of African art, and their relationship to multiculturalism and current attempts to study the “other.”

16:082:511. ARCHAIC GREEK ART (3)
Kenfield
Examination of the origins and early development of Greek architecture, sculpture, and painting.
16:082:514. HELLENISTIC PAINTING AND SCULPTURE (3)
Kendfield
Examination of the development of Hellenistic sculpture and painting from its origins in the late fifth century B.C.

16:082:515. ETRUSCAN ART (3)
Small
Focuses on the development of an independent culture within a world increasingly dominated by Greece and Rome.

16:082:517. ANCIENT MOSAICS (3)
Kendfield
Examination of mosaic painting from its origins through the early Byzantine period.

16:082:521. ART OF LATE ANTIQUITY (3)
Harvey
Art and architecture of the Mediterranean world, third to seventh centuries. Emphasis on religious and political contexts and theories of stylistic and iconographic development.

16:082:522. MEDIEVAL MANUSCRIPTS (3)
McLachlan
Introduction to codicology and manuscript production, development of ornament, etc., followed by specialization in a specific stylistic period or genre such as Psalters or Bibles.

16:082:524. CHRISTIAN ICONOGRAPHY (3)
Harvey
The origin and development of Christian imagery. Emphasis on methods of iconographical research.

16:082:525. THE MEDIEVAL TREASURY (3)
McLachlan
Investigation of the materials, techniques, forms, and functions of medieval liturgical and secular treasures: precious metals, enamels, ivory, and textiles included.

16:082:528. MODERN ARCHITECTURE (3)
McLachlan
Major architects and theorists in Europe and the Americas from the eighteenth century to the present. Emphasis on reading of theoretical texts and analysis of the most important architects and buildings from Laugier to postmodernism.

16:082:529. DESIGNS OF CITIES (3)
Harvey
History of urban design in Europe and the Americas from the seventeenth century to the present, with emphasis on major cities, their principal planning episodes, and urban planning theory and practice in cultural and social perspective.

16:082:531. ITALIAN GOTHIC SCULPTURE (3)
McHam
Sculpture in Italy focusing on major artists, such as Nicola and Giovanni Pisano, Andrea Pisano, Jacopo della Quercia, and Ghiberti.

16:082:532. ITALIAN PAINTING IN THE AGE OF DANTE (3)
Goehlen
Style, patronage, and iconography in painting from 1250–1400, emphasizing the work of such masters as Giotto, Duccio, Simone Martini, and the Lorenzetti.

16:082:533. ITALIAN FIFTEENTH-CENTURY SCULPTURE (3)
McHam
Major Italian fifteenth-century sculptors in Florence such as Donatello, Desiderio, and Verrocchio are discussed in comparison with sculptors active in other centers like Milan, Venice, and Rome.

16:082:534. VENETIAN PAINTING (3)
Goehlen,McHam
Painting in Venice and the Venetian empire between the fourteenth and sixteenth centuries, focusing on Giovanni Bellini, Titian, Tintoretto, and Veronese.

16:082:535. CENTRAL ITALIAN SIXTEENTH-CENTURY PAINTING (3)
Goehlen,McHam
Painting in Florence and Rome from 1480 to the end of the sixteenth century; the High Renaissance (Leonardo, Michelangelo, and Raphael); Mannerism, and Counter-Reformation painting.

16:082:536. RENAISSANCE ARCHITECTURE (3)
Marder
Modern architecture in Italy from 1400 to 1600, including issues of form, symbol, meaning, and intention. The influence of engineering, urban planning, military architecture, garden design, and theory as well as practice are addressed.

16:082:537. EARLY BAROQUE PAINTING IN ITALY (3)
Puglisi
Painting in Rome ca. 1600, focusing on the stylistic innovations and legacy of the Carracci and Caravaggio in the context of contemporary artistic trends, patronage, and theory.

16:082:538. BERNINI (3)
Marder,Puglisi
Consideration of Bernini’s career as the universal artistic genius of the Roman baroque. Sculpture, architecture, and painting and their contexts considered.

16:082:539. VELAZQUEZ AND BAROQUE PAINTING IN SPAIN (3)
Puglisi
Major achievements of the seventeenth-century painter and his impact on Spanish baroque painting.

16:082:540. ENGLISH ARCHITECTURE (3)
Marder
Arrival and development of classical architecture in England from 1500 to 1780. Emphasis on individual styles, urban schemes, and cultural contexts.

16:082:541. SEVENTEENTH-CENTURY NORTHERN EUROPEAN PAINTING (3)
Eidelberg
Study of major stylistic and thematic currents of the baroque as interpreted in the Netherlands, Flanders, and France.

16:082:542. ITALIAN SIXTEENTH-CENTURY SCULPTURE (3)
McHam
Major emphasis is on Michelangelo; his influence on other sixteenth-century sculptors like Bandinelli, Cellini, and Giambologna, and the reaction against his dominating style.

16:082:543. DUTCH GENRE PAINTING IN THE SEVENTEENTH CENTURY (3)
Westermann
Recent interpretations of the themes and pictorial "realism" of Dutch seventeenth-century genre painting and its antecedents. Artists include Frans Hals, Gerard Dou, Gerard Terborch, Johannes Vermeer, and Jan Steen.

16:082:544. REMBRANDT (3)
Westermann
In-depth study of the Flemish master’s works and their impact on European baroque art in terms of style and iconography.

16:082:546. REMBRANDT (3)
Westermann
In-depth study of the Dutch master’s works, the evolution of his students’ art, and their relation to Northern tradition.

16:082:547. BAROQUE ARCHITECTURE (3)
Marder
Emphasizing seventeenth-century Rome, the great architects Bernini, Borromini, and Pietro da Cortona are discussed in depth. Issues of urbanism, the contributions of the Piedmontesi architects, and eighteenth-century architecture are examined.
16:082:548. PRINTS AND PRINTMAKERS (3)
Westermann
History of printmaking emphasizing the processes and major artists involved.

16:082:551. ROMANTIC ART (3)
Scpecter
Nature, sources, and influences of nineteenth-century French romanticism (Gros, Cericaut, Delacroix, Ingres), with some consideration of literature (Hugo, Gautier, Baudelaire).

16:082:552. DAWN OF ABSTRACTION (3)
Scpecter
Analysis of the theories of critics and the practices of painters and sculptors in Europe from 1900 to 1920 in order to understand why and how abstraction emerged and evolved.

16:082:553. SURREALISM (3)
Specter
History of surrealist painting and writing as antimodernist avant-garde concerned with psychological and political questions.

16:082:554. NINETEENTH-CENTURY AMERICAN LANDSCAPE PAINTING (3)
Baigell
Consideration of various movements including the Hudson River School, luminism, American Barbizon, and impressionist painting as well as landscapes of the west.

16:082:555. NINETEENTH-CENTURY REALISM (3)
Specter, Snalls
Emphasis on social and political themes in French art (Courbet, Manet) and literature (Balzac, Flaubert, Zola).

16:082:556. AMERICAN ART, 1900-1960 (3)
Baigell
Consideration of various movements including the ashcan school, early modernism, precisionism, regionalism, social realism, and abstract expressionism.

16:082:557. FRENCH EIGHTEENTH-CENTURY PAINTING (3)
Baigell
Study of rococo, neoclassicism, and early romanticism from the reign of Louis XIV to Napoleon. Focus on the emergence of modern subject matter.

16:082:559. PICASSO (3)
Specter
Covers the full range of Picasso’s artistic creations and also his writings, political involvement, and personality.

16:082:561. POSTIMPRESSIONISM (3)
Specter
Developments between impressionism and fauvism mainly in France (Cezanne, Gauguin, Van Gogh, Seurat). Discussions will include nabis symbolism and art nouveau.

16:082:563. CURATORIAL TRAINING I (E3)
Eidelberg
History, philosophy, organizational structures, and operations of the museum as a sociocultural institution.

16:082:568. HISTORY OF MODERN DECORATIVE ARTS (3)
Eidelberg
Survey of both design and crafts of all media from 1850 to the present, from historicism, art nouveau, art deco to postmodernism; focus on the relation of design to the fine arts.

16:082:571. GERMAN EXPRESSIONISM (3)
Marter, Spector
German expressionist art in the context of nineteenth- and twentieth-century European modernism. Literary, philosophical, and psychological aspects considered.

16:082:574. FUTURISM (3)
Marter
Impact of futurist art and theory in Italy, France, Russia, Germany, and Great Britain. Futurist manifestos and their importance to modernism.

16:082:577. MODERN SCULPTURE (3)
Marter
Major developments in European and American sculpture from 1880 to 1960. Beginning with Auguste Rodin and his impact on early modernists, and including sculpture produced in France, Germany, Italy, and the United States.

16:082:580. CUBISM AND GEOMETRIC ABSTRACTION (3)
Marter
Origins of cubism, and links to cultural trends and scientific developments of the period. In addition to analytical and synthetic cubism, Russian constructivism, de Stijl, Bauhaus art, and international constructivism are examined.

16:082:581. ITALIAN BAROQUE SCULPTURE (3)
Puglisi
Major sculptors and trends in seventeenth-century Italian sculpture.

16:082:582. SEMINAR, EAST ASIAN BIBLIOGRAPHY AND METHODS (3)
Howard
Required of students majoring in Asian studies. Important sources for researching Chinese art.

16:082:583. TOPICS IN EAST ASIAN ART HISTORY (3)
Howard
Criteria of style and iconography for genuine Buddhist sculpture. Sculpture executed in different media (gilt bronze, stone, wood, and lacquer) and at different times.

16:082:584. CORTONA AND HIS CONTEMPORARIES (3)
Puglisi
Painting in Rome and other key Italian centers from ca. 1620 to 1700, focusing on Pietro da Cortona and the other major artists of his generation who defined Italian High Baroque art.

16:082:595,596. CURATORIAL INTERNSHIP III (E3,E3)
Must complete both courses to receive credit. Prerequisites: 16:082:563 and permission of program director.
Internships tailored to the individual’s special interest areas.

16:082:597,598. TEACHING APPRENTICESHIP (N1.5,N1.5)

16:082:599. CURATORIAL INTERNSHIP III (E3)
Prerequisites: Completion of 16:082:563 and permission of instructor.
Internship tailored to the individual’s special interest areas.

16:082:601,602. SPECIAL TOPICS IN ART HISTORY (3,3)

16:082:607. MASTER DRAWINGS (3)
Eidelberg
Seminar on the history of drawings, from the Renaissance to modern times, with emphasis on studio traditions and modern connoisseurship.

16:082:612. PROBLEMS IN ANCIENT ART (EARLY GREEK ARCHITECTURAL SCULPTURE) (3)
Kernfield
Seminar on the problems of the origins of the early Greek architectural orders and the kind of sculpture used to decorate those orders.

16:082:615. LYSIPPOS AND THE BEGINNINGS OF HELLENISTIC SCULPTURE (3)
Kernfield
Seminar on the careers of Lysippos and the members of his school and their paramount importance to the development of Hellenistic sculpture.
16:082:620. PROBLEMS IN EARLY CHRISTIAN AND BYZANTINE ART (3)
Harvey
Seminar focusing on a specific medium such as ivory carving, a specific problem such as cultural context, or a specific period such as the Macedonian Renaissance.

16:082:622. PROBLEMS IN MEDIEVAL ART (3)
McLachlan
Seminar with specialized focus on varied topics such as cycles on carved doors, reliquaries, or in monumental painting.

16:082:624. DONATELLO (3)
McHam
Seminar on Donatello’s career: his formation, his influence on his contemporaries such as Masaccio, Desiderio, and altar artists like Verrocchio and Michelangelo.

16:082:630. PROBLEMS IN ITALIAN RENAISSANCE PAINTING (3)
Goffen
Seminar on various topics in Italian painting from 1400 to 1500 such as patronage, gender studies, iconography, work of an individual artist, and cultural context.

16:082:632. PROBLEMS IN EARLY ITALIAN PAINTING (3)
Goffen
Seminar on various topics such as the relation of art and literature, Mendicant spirituality, public and private patronage, specialized study of such masters as Giotto, the Lorenzetti, and Paolo da Venezia.

16:082:634. THE HIGH RENAISSANCE (3)
Goffen
Seminar on various topics in Italian art from 1480 to 1600 such as cultural context, patronage, specialized study of one artist’s career, the Mannerist crisis, and art theory in painting and sculpture.

16:082:635. PROBLEMS IN LATER RENAISSANCE ART (3)
McHam
Topics in Italian painting, 1500 to 1600, involving patronage, gender studies, iconography, works of an individual artist, and/or cultural context.

16:082:636. TITIAN (3)
Goffen
Titian’s career considered in the context of sixteenth-century society, focusing on his stylistic and thematic innovations in sacred and secular art, notably his depiction of women.

16:082:640. PROBLEMS IN NORTHERN BAROQUE ART (3)
Seminar emphasizing either specific centers of art production or iconographic issues.

16:082:641. PROBLEMS IN BAROQUE ART OF ITALY AND SPAIN (3)
Marder, Paglisi
Seminar on topics related to the leading artists of the period. Matters of style, iconography, religious and political contexts, patronage, and cultural milieu considered.

16:082:643. PROBLEMS IN EIGHTEENTH-CENTURY ART (3)
Eidelberg
Topics related to leading artists of the period, with a primary focus on French art: genre painting and exoticism, the use of drawings, patronage.

16:082:646. SEVENTEENTH-CENTURY PATRONS AND PATRONAGE (3)
Seminar examining the evolving roles of collectors and art dealers, the social context of art collecting, and its impact on artists.

16:082:650. NORTHERN ROMANTICISM (3)
Seminar on specialized topics.

16:082:653. PROBLEMS IN NINETEENTH-CENTURY PAINTING (3)
Spector
Seminar on special topics in nineteenth-century painting; one or more major figures, landscape, art and literature, art criticism.

16:082:654. NINETEENTH-CENTURY FRENCH GRAPHICS (3)
Cate
Seminar based on the Zimmerli Art Museum’s nineteenth-century graphics arts collection.

16:082:655. PROBLEMS IN TWENTIETH-CENTURY ART (3)
Marter
Seminar on special topics in painting and/or sculpture.

16:082:656. PROBLEMS IN AMERICAN ART (3)
Baigell
Aspects of nineteenth-century American art.

16:082:657. PROBLEMS IN MODERN ART (3)
Spector
Seminar on special topics in twentieth-century painting: surrealism, the psychology of art, theories of criticism (psychoanalytic, feminist, semiotic).

16:082:660. PROBLEMS IN MODERN AMERICAN ART (3)
Seminar on specialized topics.

16:082:697,698. EXHIBITION SEMINAR (3,3)
Seminar on research problems and on relevant aspects of the exhibition’s ongoing development. An exhibition seminar is normally available at least once a year.

16:082:699. NONTHESIS STUDY (1)

16:082:701,702. RESEARCH IN ART HISTORY (BA,BA)

16:082:705. RESEARCH PROPOSAL IN ART HISTORY (BA)
Prerequisite: Permission of instructor. Preparation of dissertation proposal. Students must have completed all course work and have scheduled their qualifying examination.

ARTS, VISUAL AND THEATER
(See the catalog of the Mason Gross School of the Arts for information on M.F.A. programs in visual and theater arts.)

ASIAN STUDIES 098

Program Offered: Certificate in Asian Studies
Director of Certificate Program: Professor Ching-I Tu, 330 Scott Hall, College Avenue Campus (732/932-7605)

Participating Faculty
The following members of the graduate faculty, identified more fully under the subject headings indicated, are among those in charge of the curricular arrangements for a certificate program in Asian studies as part of a wider advanced-degree program:
M. Adas, History
S. Boocock, Sociology
N.L. Chou, Communication, Information, and Library Studies
V. Dayal, Linguistics
M. Dutta, Economics
I.N. Gang, Economics
M. Gasser, History
P. Golden, History
A. Howard, Art History
D. Ko, History
P. Li, Comparative Literature
M.M. Moffatt, Anthropology
Certificate Program

Students with a special interest in any aspect of East, Southeast, or South Asian civilization may undergo a specific concentration in Asian studies in the course of their regular program of studies toward an advanced degree. Those who fulfill the requirements may be awarded a Certificate in Asian Studies upon completion of their degree. The special requirements for the certificate, some of which may be used at the same time to satisfy the student's own graduate degree requirements, are as follows:

1. Successful completion with a minimum grade-point average of 3.0 in a minimum of two term courses on Asia within the chosen discipline and in a minimum of two term courses on Asia in one or more cognate fields (12 credits in total). At least two of these courses must be at the graduate level.

2. Reading proficiency in an Asian language.

3. Satisfactory completion of a research project in the field of Asian studies.

4. Either a master's thesis or an expanded seminar paper on a topic related to Asia.

Only students already admitted to a degree program in the Graduate School—New Brunswick may participate in the certificate program. Courses in Asian Studies are offered by the participating faculty and additional faculty through their departments and graduate degree programs. Further information is available from the director of the certificate program in Asian studies.

BIOCHEMISTRY 115

Degree Programs Offered: Master of Science, Doctor of Philosophy

Acting Director of Graduate Program: Professor Stephen Anderson, Center for Advanced Biotechnology and Medicine, Busch Campus (732/235-4100)

Associate Director of Graduate Program: Professor N. Ronald Morris, UMDNJ-RWJMS, Busch Campus (732/235-4081)

Members of the Graduate Faculty

D. Roden, History
K. Sato, Economics
P. Schalow, Comparative Literature
L. Schein, Anthropology
N. Shimahara, Anthropology
C.-I Tu, Comparative Literature
A.P. Vayuda, Anthropology
J.A. Walker, Comparative Literature
S.P. Walker, Comparative Literature
R.W. Wilson, Political Science
O. Wou, History
C.F. Yu, Anthropology

Cory Abate-Shen, Associate Professor of Neuroscience and Cell Biology, Acting Director of Graduate Program: Professor Stephen Anderson, Degree Programs Offered: Master of Science, Doctor of Philosophy

BIOCHEMISTRY 115

Degree Programs Offered: Master of Science, Doctor of Philosophy

Acting Director of Graduate Program: Professor Stephen Anderson, Center for Advanced Biotechnology and Medicine, Busch Campus (732/235-4100)

Associate Director of Graduate Program: Professor N. Ronald Morris, UMDNJ-RWJMS, Busch Campus (732/235-4081)

Members of the Graduate Faculty

D. Roden, History
K. Sato, Economics
P. Schalow, Comparative Literature
L. Schein, Anthropology
N. Shimahara, Anthropology
C.-I Tu, Comparative Literature
A.P. Vayuda, Anthropology
J.A. Walker, Comparative Literature
S.P. Walker, Comparative Literature
R.W. Wilson, Political Science
O. Wou, History
C.F. Yu, Anthropology

Cory Abate-Shen, Associate Professor of Neuroscience and Cell Biology, Acting Director of Graduate Program: Professor Stephen Anderson, Degree Programs Offered: Master of Science, Doctor of Philosophy

Barbara Brodsky, Professor of Biochemistry, UMDNJ-RWJMS; Ph.D., Harvard

Structure and binding of triple-helix peptides as models for collagen and the macromolecular receptor

Harry D. Brown, Professor of Biochemistry, CC; Ph.D., Columbia

Energy of enzymatic reactions calorimetry; AChE carcinogens

George M. Carman, Professor of Food Science, CC; Ph.D., Massachusetts

Enzymology of phospholipid metabolism

Kiran K. Chada, Professor of Biochemistry, UMDNJ-RWJMS; D.Phil., Oxford

Functional genomics in cancer and obesity

Theodore Chae, Jr., Professor of Biochemistry, CC; Ph.D., California (Berkeley)

Enzymology and molecular biology of plants, especially with reference to flavor compounds

Xiuguo Chen, Assistant Professor of Chemistry, FAS-NB; Ph.D., Yale

Biochemistry and function of polynucleotides and hypoxane; gene regulation in cell aging and tumor reversion; nutraceuticals, cancer and aging

Suzie Chi, Assistant Professor of Chemical Biology and Pharmacognosy, CP; Ph.D., Albert Einstein

Interactions of SV40 and cellular targets in transformation and growth control, and molecular mechanisms of commitment to cellular control

Xuemei Chen, Assistant Professor of Genetics, WIM/FAS-NB; Ph.D., Cornell

Molecular genetic analysis of flower development in Arabidopsis

Khw-Voon Chin, Assistant Professor of Medicine and Pharmacology, CINJ/UMDNJ-RWJMS; Ph.D., Rutgers

Drug resistance in cancers; regulation of gene expression

David T. Denhardt, Professor of Cell and Molecular Biology, FAS-NB; Ph.D., California Institute of Technology

Molecular biology of cancer; cell signaling and regulation of gene expression; structure and function of osteopontin and tissue inhibitor or metalloproteases

Monica A. Driscoll, Associate Professor of Molecular Biology and Biochemistry, CABM; Ph.D., Harvard

Molecular genetics of degenerative cell death; mechanical signaling

Richard H. Ebright, Professor of Chemistry, WIM/FAS-NB; Ph.D., Harvard

Transcription; protein-DNA interaction; protein-protein interaction; single molecule imaging

Isaac Edery, Assistant Professor of Molecular Biology and Biochemistry, FAS-NB/CABM; Ph.D., McGill

Molecular and cellular mechanisms underlying biological clocks

Eric F. Eikenberry, Associate Professor of Pathology, UMDNJ-RWJMS; Ph.D., Massachusetts Institute of Technology

Macromolecular structure; X-ray diffraction; collagen

Julie M. Fagan, Associate Professor of Animal Sciences, CC; Ph.D., Arizona

Proteases and their inhibitors in health and disease

Abram Gabriel, Associate Professor of Molecular Biology and Biochemistry, FAS-NB; M.D., Johns Hopkins

Molecular cloning and expression of retrotransposon replication

Marc Gartenberg, Assistant Professor of Pharmacology, UMDNJ-RWJMS; Ph.D., Yale

Drug design and pharmacology; transcriptional silencing

Millicent Georgiadis, Assistant Professor of Chemistry, WIM/FAS-NB; Ph.D., California (Los Angeles)

X-ray crystallographic studies of enzyme-nucleic-acid complexes

Donald Gerecke, Assistant Professor of Pharmacology and Toxicology, CP; Ph.D., Harvard

Molecular biology of lung fibrosis

Marion Gordon, Assistant Professor of Pharmacology and Toxicology, CP; Ph.D., UMDNJ-RWJMS

Collagen gene regulation during cornea development; regulation and function of EMMPRIN, a matrix metalloproteinase stimulator, in normal and transformed cells

Richard A. Harvey, Professor of Biochemistry, UMDNJ-RWJMS; Ph.D., Utah

Antibiotic binding to surgical prostheses

Sarah E. Hitchcock-DeGregori, Professor of Neuroscience and Cell Biology, UMDNJ-RWJMS; Ph.D., Case Western Reserve

Biochemistry and molecular biology of contractile proteins

Shu-Chin Hou, Assistant Professor of Cell Biology and Neurosciences, FAS-NB; Ph.D., British Columbia

Molecular mechanisms of synaptic development and function

Masayori Inouye, Professor of Biochemistry, UMDNJ-RWJMS; Ph.D., Osaka

Membrane biogenesis; regulation of synthesis of outer membrane proteins

Sumiko Inouye, Associate Professor of Biochemistry, UMDNJ-RWJMS; Ph.D., Nagoya

Myobacteria and bacterial reverse transcriptases

Kenneth D. Irvine, Assistant Professor of Molecular Biology and Biochemistry, WIM/FAS-NB; Ph.D., Stanford

Cell signaling and growth control during Drosophila development

Stephan S. Isied, Professor of Chemistry, FAS-NB; M.D., Johns Hopkins

Mechanisms of retrotransposon replication

Marc Gartenberg, Assistant Professor of Pharmacology, UMDNJ-RWJMS; Ph.D., Yale

Drug design and pharmacology; transcriptional silencing

Millicent Georgiadis, Assistant Professor of Chemistry, WIM/FAS-NB; Ph.D., California (Los Angeles)

X-ray crystallographic studies of enzyme-nucleic-acid complexes

Donald Gerecke, Assistant Professor of Pharmacology and Toxicology, CP; Ph.D., Harvard

Molecular biology of lung fibrosis

Marion Gordon, Assistant Professor of Pharmacology and Toxicology, CP; Ph.D., UMDNJ-RWJMS

Collagen gene regulation during cornea development; regulation and function of EMMPRIN, a matrix metalloproteinase stimulator, in normal and transformed cells

Richard A. Harvey, Professor of Biochemistry, UMDNJ-RWJMS; Ph.D., Utah

Antibiotic binding to surgical prostheses

Sarah E. Hitchcock-DeGregori, Professor of Neuroscience and Cell Biology, UMDNJ-RWJMS; Ph.D., Case Western Reserve

Biochemistry and molecular biology of contractile proteins

Shu-Chin Hou, Assistant Professor of Cell Biology and Neurosciences, FAS-NB; Ph.D., British Columbia

Molecular mechanisms of synaptic development and function

Masayori Inouye, Professor of Biochemistry, UMDNJ-RWJMS; Ph.D., Osaka

Membrane biogenesis; regulation of synthesis of outer membrane proteins

Sumiko Inouye, Associate Professor of Biochemistry, UMDNJ-RWJMS; Ph.D., Nagoya

Myobacteria and bacterial reverse transcriptases

Kenneth D. Irvine, Assistant Professor of Molecular Biology and Biochemistry, WIM/FAS-NB; Ph.D., Stanford

Cell signaling and growth control during Drosophila development

Stephan S. Isied, Professor of Chemistry, FAS-NB; M.D., Johns Hopkins

Mechanisms of retrotransposon replication
Frederick C. Kaufman, Professor of Pharmacology, CP; Ph.D., Illinois
Biochemical aspects of toxicity
Avedis Khatchadurian, Professor of Medicine, UMDNJ-RWJMS; M.D.,
American University of Beirut
Cholesterol and lipoprotein metabolism; hyperlipidemias
Megerditch Kiledjian, Assistant Professor of Cell Biology and Neuroscience,
FAS-NB; Ph.D., Pennsylvania
RNA-protein interactions in the regulation of eukaryotic gene expression
Terri Goss Karzy, Assistant Professor of Molecular Genetics and Microbiology,
UMDNJ-RWJMS; Ph.D., Case Western Reserve
Eukaryotic translation elongation and regulation of gene expression
Daniel Klessig, Professor of Molecular Biology and Biochemistry, WIM/
FAS-NB; Ph.D., Harvard
Gene regulation and signal transduction in plant defense
Marilyn Kozak, Professor of Biochemistry, UMDNJ-RWJMS; Ph.D.,
Johns Hopkins
Mechanism of protein synthesis in eukaryotic cells
Eric Larm, Associate Professor of Plant Science, BC/CAE/CC; Ph.D.,
California (Berkeley)
Plant gene targeting; programmed cell death; chromatin imaging
Debra Laskin, Professor of Pharmacology and Toxicology, CP; Ph.D.,
Medical College of Virginia
Immunology; inflammation; cytokines; nitric oxide; macrophages
Jeffrey D. Laskin, Professor of Environmental and Community Medicine, UMDNJ-RWJMS; Ph.D., SUNY (Buffalo)
Carcinogenesis and differentiation in cell culture; nitric oxide
John Lenard, Professor of Physiology, UMDNJ-RWJMS; Ph.D., Cornell
Transcription, replication, and fusion of RNA viruses; cellular fusion mechanisms
Ronald M. Levy, Professor of Chemistry, FAS-NB; Ph.D., Harvard
Computational molecular biology; computational modeling of protein structure; folding and dynamics; structural genomics
Alice Y.-C. Liu, Professor of Biological Sciences, FAS-NB; Ph.D., Mount Sinai
Stress, aging, and the role of redox in cell signaling and regulation
Fang Liu, Assistant Professor of Chemical Biology, CP/CA/BM; Ph.D., Harvard
Growth and differentiation control
Leroy Liu, Professor of Pharmacology, UMDNJ-RWJMS; Ph.D.,
California (Berkeley)
Cancer biology; pharmacology; DNA conformational analysis
Kirnan Madura, Assistant Professor of Biochemistry, UMDNJ-RWJMS; Ph.D., Rochester
Mechanisms and significance of ubiquitin-dependent degradation of G-alpha
Pali Maliga, Professor of Genetics, WIM/ FAS-NB; Ph.D., Hungarian Academy of Sciences
Genetics and molecular biology of plastids; RNA editing
Paul Manowitz, Professor of Psychiatry, UMDNJ-RWJMS; Ph.D., Brandeis
Behavioral genetics; neuropharmacology; mental illness
Fumio Matsumura, Professor of Molecular Biology and Biochemistry, FAS-NB; Ph.D., Nagoya
Molecular cell biology of cell division
Richard Mendelsohn, Professor of Chemistry, FAS-N; Ph.D., Massachusetts Institute of Technology
Biophysical studies of membrane structure
Joachim W. Messing, University Professor of Molecular Biology, WIM/ FAS-NB; Ph.D., Munich
Plant molecular biology
Gaetano T. Montelione, Professor of Molecular Biology and Biochemistry,
FAS-NB; Ph.D., Cornell
Protein NMR spectroscopy; protein recognition; rational drug design;
structural bioinformatics
N. Ronald Morris, Professor of Pharmacology, UMDNJ-RWJMS; M.D., Yale
Molecular biology of nucleotides and amides
Lenore Neigeborn, Lecturer in Life Sciences, FAS-NB; Ph.D., Columbia
Control of gene expression in yeast
Robert A. Niederman, Professor of Molecular Biology and Biochemistry,
FAS-NB; D.V.M., Ph.D., Illinois
Structure, function, and assembly of photosynthetic membranes
David N. Norris, Assistant Professor of Molecular Biology and Biochemistry,
WIM/ FAS-NB; Ph.D., Harvard
Genetic recombination, meiosis, and checkpoint regulation
Wilma Olson, Mary L. Bunting Professor of Chemistry, FAS-NB; Ph.D., Stanford
Relation of structure, conformation, and function in nucleic acids
Richard Padgett, Associate Professor of Molecular Biology and Biochemistry,
WIM/ FAS-NB; Ph.D., North Carolina (Chapel Hill)
TFG-beta signal transduction in C. elegans and Drosophila
Garth Patterson, Assistant Professor of Molecular Biology and Biochemistry,
FAS-NB; Ph.D., Oregon
Development, signal transduction, genetics, gene expression, aging
Stuart Peltz, Assistant Professor of Molecular Genetics and Microbiology,
UMDNJ-RWJMS; Ph.D., Wisconsin (Madison)
Eukaryotic gene expression
Isaac Peng, Assistant Professor of Neuroscience and Cell Biology, UMDNJ-
RWJMS; Ph.D., Temple
Incorporation of actin into the microfilaments of myofibrils
Sidney Pestka, Professor of Molecular Genetics and Microbiology; M.D., Pennsylvania
Natural interferons; genes, receptors
George Piatek, Associate Professor of Biochemistry, CC; Ph.D., New York
Evolutionary paradigms for molecular information
Regina Pietruszko, Professor of Molecular Biology and Biochemistry, FAS-NB; Ph.D., London
Human aldehyde dehydrogenase structure and function
Claudio Pikielny, Assistant Professor of Neuroscience and Cell Biology, UMDNJ-RWJMS; Ph.D., Brandeis
Molecular genetics of cell adhesion and phenotype response in Drosophila
John Pinter, Professor of Neuroscience, UMDNJ-RWJMS; Ph.D., Oregon
Molecular analysis of gene expression in mammalian development
Ronald D. Foret, Professor of Biochemistry, CC; Ph.D., SUNY (Buffalo)
Inherited susceptibility to neurotoxins and intracellular targeting of pharmaceuticals
Carl A. Price, Professor Emeritus of Plant Biochemistry, WIM/ FAS-NB; Ph.D., Harvard
Molecular biology of plastids
Arnold Rabson, Associate Professor of Microbiology and Molecular Genetics,
UMDNJ-RWJMS; M.D., Brown
Molecular biology of human retroviruses; regulation of gene expression in lymphocytes
Taqi Rana, Associate Professor of Pharmacology, UMDNJ-RWJMS; Ph.D.,
California (Davis)
RNA-protein interactions; regulation of HIV-1 gene expression; drug design;
artificial proteolysis
Danny F. Reinberg, Professor of Biochemistry, UMDNJ-RWJMS; Ph.D.,
Albert Einstein
Mechanisms that control the regulation of gene expression in higher eukaryotes
Monica Roth, Associate Professor of Biochemistry, UMDNJ-RWJMS; Ph.D.,
Albert Einstein
Genetics and biochemistry of murine leukemia virus
Carl F. Schaffer, Professor Emeritus of Biology, WIM/ FAS-NB; Ph.D., Illinois
Antibiotic and antitumor chemistry and biology; prostatic cholesterolgenesis
Aaron Shatkin, Professor of Molecular Genetics and Microbiology, UMDNJ-
RWJMS; University Professor of Molecular Biology, Rutgers; Director of the Center for Advanced Biotechnology and Medicine, Ph.D., Rockefeller
Eukaryotic gene expression; viral cytopathogenesis
Michael M. Shen, Assistant Professor of Pediatrics, UMDNJ-RWJMS; Ph.D., Cambridge
Growth factor signaling during mouse embryogenesis
Navin K. Sinha, Associate Professor of Biology, WIM/ FAS-NB; Ph.D., Minnesota
Accuray of DNA replication; chemical carcinogenesis
William Sofer, Professor of Genetics, FAS-NB; Ph.D., Miami
Prediction of secondary structure of proteins using genetic algorithms
Ruth Steward, Professor of Molecular Biology and Biochemistry, WIM/ FAS-NB;
Ph.D., Switzerland
Nuclear migration; RNA localization, and patterning in Drosophila
Ann P. Starke, Associate Professor of Biochemistry, UMDNJ-RWJMS/CA/BM; Ph.D., California (Berkeley)
Structure and function of signal transduction proteins
Kevin S. Sweeder, Assistant Professor of Chemical Biology, CP; Ph.D., California
Institute of Technology
Mechanisms of DNA repair; transcription-coupled repair; translesion synthesis
Mark Takahashi, Associate Professor of Physiology, UMDNJ-RWJMS; Ph.D., Wisconsin
Cytokines and signal transduction pathways; apoptosis in epithelial cells
T. J. Thomas, Associate Professor of Medicine, UMDNJ-RWJMS; Ph.D., Indian
Institute of Science
Development of gene targeted strategies for breast cancer treatment
Lynn D. Vales, Associate Professor of Biochemistry, UMDNJ-RWJMS; Ph.D.,
Albert Einstein; College of Medicine
Transcriptional regulation of gene expression
Theodorus van Es, Professor of Biochemistry, CC; Ph.D., Witwatersrand
Carbohydrate chemistry; nonimmunogenic enzymes; quinolone chemistry
Andrew K. Verson, Associate Professor of Molecular Biology and Biochemistry,
WIM/ FAS-NB; Ph.D., Massachusetts Institute of Technology
Structure/function of yeast transcriptional regulatory proteins
Nancy Walworth, Assistant Professor of Pharmacology, UMDNJ-RWJMS; Ph.D., Yale
Regulation of cell cycle progression in eukaryotic cells
William W. Ward, Associate Professor of Biochemistry, CC; Ph.D.,
Johns Hopkins
Bioluminescence mechanisms; protein and peptide biochemistry
Eileen White, Professor of Molecular Biology and Biochemistry, FAS-NB/CA/BM;
Ph.D., SUNY (Stony Brook)
Programmed cell death
Programs

The joint graduate program in biochemistry at Rutgers, The State University of New Jersey, and the University of Medicine and Dentistry of New Jersey—Robert Wood Johnson Medical School provides high quality graduate training in biochemistry. The most appropriate preparation for graduate study is an undergraduate concentration in biochemistry or in either biology (particularly molecular biology, cell biology, or microbiology) or chemistry (particularly organic chemistry or physical chemistry) with a minor in the other discipline. Applicants also are expected to have studied mathematics through calculus, and to have completed one year of physics, and analytical and physical chemistry, although those who lack one or two of these prerequisites may complete them (without graduate credit) after admission to graduate school. Applicants also are required to take the general and subject tests of the Graduate Record Examination. *

The program is interdepartmental and interinstitutional with a wide variety of research areas in biochemistry and molecular biology that include regulation of DNA replication and transcription, virus gene expression, gene expression in development and differentiation, tumor biology, molecular genetics, structural biochemistry, plant molecular biology, signal transduction and molecular targeting, cell cycle control, membrane biochemistry, protein chemistry, muscle biochemistry, and enzymology. Faculty members are drawn from the Departments of Molecular Biology and Biochemistry, Chemistry, Biological Sciences, and Applied Microbiology and Plant Physiology, the Waksman Institute of Microbiology, and the Biotechnology Center for Agriculture and the Environment at Rutgers; and the Departments of Biochemistry, Neuroscience and Cell Biology, Pathology, Physiology, Pharmacology, and Microbiology and Molecular Genetics at UMDNJ; and from the Center for Advanced Biotechnology and Medicine, a joint center of Rutgers and UMDNJ.

The Ph.D. program has been updated to address the recent remarkable developments in molecular biology and biochemistry. It requires a minimum of 30 credits of coursework and 42 credits of advanced research. Ph.D. students take a common first-year core curriculum as described under the molecular biosciences heading within this chapter. The course requirements for the Ph.D. include 16:115:501 Biochemistry (3 credits); 16:115:502 Biochemistry (Molecular Biology) (3 credits); 16:115:613,614 Seminar in Biochemistry (2 credits); 16:160:337 Biophysical Chemistry I (3 credits); 16:695:601 Advanced Cell biology (3 credits); 16:695:615,616 Laboratory Rotation in Molecular and Cell Biology II (6 credits); and electives (6 credits). The above requirements can be coordinated readily with the requirements of the first-year core curriculum for the consolidated programs in molecular biosciences. The Ph.D. program also requires a minimum of one year of full-time research in residence. Joint Ph.D. degrees are available in this program. See the Degree Programs Available chapter.

Graduate Courses

16:115:501. (F) BIOCHEMISTRY (3)

16:115:502. (F) BIOCHEMISTRY (MOLeCULAR BIOLOGY) (3)

16:115:508. (S) PROTEINS AND ENZYMES (3)
Chase. Prerequisite: 16:115:501 or equivalent. Assay and purification of enzymes and other proteins. Kinetics, chemical modification, and site-directed mutagenesis as tools in understanding structure-function relationships and enzyme mechanisms. Selected examples of posttranslational modification. General theories and specific examples of the chemical basis of enzymic catalysis.

16:115:511, 512. (F) MOLECULAR BIOLOGY AND BIOCHEMISTRY (3,3)
Prerequisite: One year organic chemistry. These courses recommended for students outside the program in biochemistry.
First term: Photosynthesis, properties of membranes, signal transduction, structure and function of proteins, catalysts of biochemical reactions, intermediary metabolism, oxidative phosphorylation.

16:115:533. (F) PHYSICAL BIOCHEMISTRY (3)
Kahn. Prerequisites: Biochemistry, physical chemistry. Protein folding used as theme to discuss principles of physical chemistry of macromolecules of biochemical importance. Specific aspects of thermodynamics and kinetics are related to biopolymers. Spectroscopic techniques, including circular dichroism, as well as other biophysical methods.

16:115:552. BIOCHEMICAL SEPARATIONS (3)
Prerequisite: 01:115:313 or 11:115:313; or 11:115:413. Survey of recent literature regarding the regulation of gene expression in the nervous system. Emphasis on the molecular mechanisms involved in gene regulation during neuronal development.

16:115:556. (F) ETHICAL SCIENTIFIC CONDUCT (1)
Lebowitz. Introduction to ethical issues of scientific investigation, including intellectual property, plagiarism, conflict of interest, human and animal subjects, record keeping, etc. Intended for Ph.D. candidates in the biomedical sciences.

16:115:605,606. ADVANCED STUDIES IN BIOCHEMISTRY (BA,BA)
Independent library and laboratory research into special aspects of biochemistry arranged under the supervision of faculty members in any of the participating groups.

16:115:613,614. SEMINAR IN BIOCHEMISTRY (1,1)

16:115:616. SPECIAL TOPICS IN BIOCHEMISTRY (BA)
Faculty members occasionally offer a special course on a new or developing topic in biochemistry.

16:115:701,702. RESEARCH IN BIOCHEMISTRY (BA,BA)
BIOMEDICAL ENGINEERING 125

Degree Programs Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Professor Stanley M. Dunn, 113 Biomedical Engineering Building, Busch Campus (732/445-3706 or 732/445-4462)

Codirector of Graduate Program: Professor Michael G. Dunn, Medical Education Building, Room 424, UMDNJ-RWJMS (732/235-7972)

Members of the Graduate Faculty

Metin Akay, Visiting Assistant Professor of Biomedical Engineering, SE; and Assistant Professor of Biomedical Engineering at Dartmouth College; Ph.D., Rutgers

Stochastic modeling, detection, estimation, and processing of biomedical signals

Harold Alexander, President, Orthogen, Inc.; New York; President, Academic Research and Analysis, Short Hills, New Jersey

Biomechanics; biomaterials; orthopedic implant design

Helen M. Baetke, Associate Professor of Chemical and Biomedical Engineering, SE; Ph.D., Pennsylvania

Chemical and biochemical engineering; nerve regeneration

Grigore C. Burdea, Associate Professor of Electrical and Computer Engineering, SE; Director, Human-Machine Interface Laboratory; Ph.D., New York

Medical robotics and virtual reality; biomechanics; rehabilitation

Richard J. Contrada, Associate Professor of Psychology; Ph.D., New York

Cardiovascular psychophysiology, personality, and self-regulation; prevention and adaptation to technic disease

William C. Cua, Associate Professor of Biomedical Engineering, SE; Ph.D., Northwestern

Cardiac and neural electrophysiology

Gary M. Drzewiecki, Professor of Biomedical Engineering, SE; Ph.D., Pennsylvania

Circulatory system dynamics; noninvasive hemodynamics; chaos and fractals

Michael G. Dunn, Associate Professor of Surgery, UMDNJ-RWJMS; Ph.D., Rutgers

Tissue engineering; tendons; ligaments; resorbable biomaterials; wound healing, biomaterials

Stanley M. Dunn, Professor of Biomedical Engineering, SE; Ph.D., Maryland; Ph.D., Free University of Amsterdam

Quantitative radiography; bone densitometry; image analysis microscopy

Eric F. Eikenberry, Associate Professor of Pathology, UMDNJ-RWJMS; Ph.D., Massachusetts Institute of Technology

Macromolecular structure; X-ray diffraction; collagen

Sandra J. England, Professor of Pediatrics, UMDNJ-RWJMS; Ph.D., Dartmouth

Neonatal development of respiratory control systems

Herbert M. Geller, Professor of Pharmacology, UMDNJ-RWJMS; Ph.D., Case Western Reserve

Cellular mechanisms of neurotransmission

Abdullah N. Guzelsoy, Associate Professor of Biomechanics, UMDNJ-SOM; Ph.D., Princeton

Biomechanics; bone; electromechanical properties of tissues

Joseph Kodem, Associate Professor of Physiology, UMDNJ-RWJMS; Ph.D., Hebrew University of Jerusalem

Quantitative relationships between cardiac function and metabolism

Joachim B. Kohn, Professor of Chemistry, FAS-NB; Ph.D., Weizmann Institute of Science

Interaction of living cells with artificial surfaces

John B. Kostis, Professor and Chairperson of Medicine, UMDNJ-RWJMS; and Adjunct Professor of Biomedical Engineering; SE; M.D., Athens

Cardiovascular diseases and hypertension

Eileen Kovler, Professor of Psychology, FAS-NB; Ph.D., Maryland

Eye movements and visual information processing

Noshir A. Langrana, Professor of Mechanical and Aerospace Engineering, SE; Ph.D., Cornell

Spinal mechanics; fracture fixation; knee joint; kinematics

John K.-J. Li, Professor of Biomedical Engineering, SE; Ph.D., Pennsylvania

Cardiovascular dynamics; biomedical instrumentation

Richard Mammone, Professor of Electrical Engineering, SE; Ph.D., CUNY

Digital image restoration of ultrasound images

Evgelia Micheli-Tzanakou, Professor and Chairperson of Biomedical Engineering, SE; Ph.D., Syracuse

Visual pattern recognition; neural networks; digital signal processing

Prabha V. Moghe, Assistant Professor of Chemical and Biomedical Engineering, SE; Ph.D., Minnesota

Matrix microarchitecture, tissue engineering, cell–biomaterials interactions

Donald A. Molony, Professor Emeritus of Biomedical Engineering, SE; M.S., Rutgers

Computer applications; heart assist systems; instrumentation

Judith A. Neubauer, Associate Professor of Medicine, UMDNJ-RWJMS; Ph.D., Rutgers

Neuromodulation of central neurons

Thomas V. Papathomas, Professor of Biomedical Engineering, SE; Ph.D., Columbia

Motion, depth, and texture perception; visual pattern recognition

John R. Parsons, Professor of Orthopaedics, UMDNJ-NJMS; Ph.D., Pennsylvania

Biomechanics; biomaterials; orthopedic implant design; articular cartilage injury and biomechanics

Mark R. Plummer, Associate Professor of Biology and Neuroscience, FAS-NB; Ph.D., Rutgers

Signal transmission; nervous transmission

E. Diane Rekow, Professor and Chairperson, Department of Orthodontics, UMDNJ-NJDS; Ph.D., D.D.S., Minnesota

Machinable ceramics; CAD/CAM for dental applications

John Ricci, Associate Professor of Orthopaedics, UMDNJ-NJMS; Ph.D., UMDNJ

Cell and tissue response to biomaterials and implantable biomedical devices

Alvin J. Saltiel, Professor of Surgery/ Bioengineering, UMDNJ-RWJMS; and Professor of Biomedical Engineering, SE; D.Ch.E., Polytechnic Institute of New York

Physiological sensors and stimulators; pacemakers; catheters

John Semmlow, Professor of Biomedical Engineering, SE; and Professor of Surgery, UMDNJ-RWJMS; Ph.D., Illinois

Neural control of eye movements; noninvasive detection of coronary artery disease

George K. Shoane, Professor of Biomedical Engineering, SE; Ph.D., California (Berkeley)

Visual control models; early visual processing, machine vision applications

Samuel Sideman, Distinguished Visiting Professor of Biomedical Engineering, SE; D.Sc., Technion-Israel Institute of Technology

Transport phenomena; modeling cardiovascular systems

Frederick H. Silver, Professor of Pathology, UMDNJ-RWJMS; Ph.D., Massachusetts Institute of Technology

Biomaterials; connective tissue structure and mechanics

Robert Treistl, Professor of Pathology, UMDNJ-RWJMS; M.D., Harvard

Tissue injury and repair

Kathryn Uttich, Assistant Professor of Chemistry, FAS-NB; Ph.D., Cornell

Biopolymer synthesis

Tritika K. Vaidyanathan, Professor of Prosthodontics and Biomaterials, UMDNJ-NJDS; Ph.D., Polytechnic Institute of New York

Dental biomaterials; ceramics, polymers, metals; corrosion microscopy

William C. Van Buskirk, Professor of Mechanical Engineering; Provost and Senior Vice President of Academic Affairs, NJIT; Ph.D., Stanford

Bone mechanics; vestibular mechanics

Yehuda Vardi, Professor of Statistics, FAS-NB; Ph.D., Cornell

Positron emission tomography; operations research; applied probability and industrial statistics

Harvey R. Weiss, Professor of Physiology, UMDNJ-RWJMS; Ph.D., Duke

Circulatory and cardiophysics

Walter Weikowitz, Professor Emeritus of Biomedical Engineering, SE; Ph.D., Illinois

Cardiovascular research; heart assist systems

Joseph Wilder, Research Professor of Electrical and Computer Engineering, SE; Ph.D., Pennsylvania

Human visual perception

Mark C. Zimmerman, Group Leader; Physical and Analytical Characterization, Johnson & Johnson; Ph.D., Rutgers

Orthopedic biomaterials and biomech, acoustic microscopy

Associate Members of the Graduate Faculty

Robert E. Brolin, Associate Professor of Surgery, UMDNJ-RWJMS; M.D., Michigan

Intestinal ischemic disease and morbidity obesity

Kenneth J. Ciuffreda, Professor of Vision Sciences, SUNY (College of Optometry); Ph.D., California (Berkeley)

Clinical and research aspects of visual function and ocular motor control

Robert D. Harten, Associate Professor of Orthopaedics, UMDNJ-RWJMS; Ph.D., Rutgers

Orthopaedic biomechanics; bone repair; distraction osteogenesis; acoustic microscopy; tissue engineering

Mel L. Kantor, Associate Professor of Oral Pathology, Biology, and Diagnostic Sciences, UMDNJ-NJDS, and Clinical Associate Professor of Radiology, UMDNJ-NJMS; D.D.S., North Carolina

Observer performance, diagnostic efficacy, and visual psychophysics in radiology

Sanford L. Klein, Chairperson, and Professor of Anesthesia, UMDNJ-RWJMS; M.D., Albany Medical Center, D.D.S., New York

Laser-assisted anastomosis for blood vessel and nerve repair

Irwin Krause, Professor of Pediatric Surgery, UMDNJ-RWJMS; M.D., Chicago Medical School

Intestinal blood flow; splenic transplants; cancer growth

Suzanne H. Maxian, Department of Surgery, Pennsylvania College of Medicine; Ph.D., Rutgers; UMDNJ

Biomechanics and biomaterials; research on novel hard tissues
Robert M. Olson, Associate Professor of Surgery, UMDNJ-RWJMS; M.D.,
Pennsylvania
Wound healing; burns; collagen; synthetic skin; epithelialization
Steve Petrucci, Assistant Professor of Biomedical Engineering, SE; Ph.D., Rutgers
Design of microcomputer-based analytical instrumentation
Daniel M. Shindler, Associate Professor of Medicine, UMDNJ-RWJMS;
M.D., Seville
Cardiac ultrasound imaging; processing using ANSIC and PERL
Charles Steiner, Professor Emeritus of Osteopathic Sciences, UMDNJ-SOM; D.O.,
Philadelphia College of Osteopathic Medicine
Biomedical basis of clinical findings
Heikki Uustal, Staff Physiatrist, J.F.K. Johnson Rehabilitation Institute;
M.D., Vermont
Prosthetics and orthotics; amputees
Adjunct Members of the Graduate Faculty
David L. Christiansen, Assistant Professor of Pathology, UMDNJ-RWJMS;
Ph.D., Rutgers/UMDNJ-RWJMS
Biomimetic materials; bioceramics; extracellular matrix mineralization
Robert G. Fisher, Professor of Neurosurgery, UMDNJ-RWJMS;
M.D., Pennsylvania
Increased intraocular pressure; spine mechanics; CNS circulation
Carey Glass, President, CG Medical, CP; B.S., New York
Prosthetic materials and devices
Dorene A. O'Hara, Associate Professor of Anesthesia, New York Medical College;
M.D., Harvard
Computer-controlled delivery of drugs; computer modeling of drug kinetics
George S. Tzankos, Visiting Associate Professor of Biomedical Engineering, SE;
Ph.D., Syracuse
Positron emission tomography (PET); R&D of new PET scanners and detectors,
image reconstruction

Programs

The academic, research, and training activities of the graduate program in biomedical engineering are carried out collaboratively by the faculties of the University of Medicine and Dentistry of New Jersey—Robert Wood Johnson Medical School and the School of Engineering of Rutgers, The State University of New Jersey, located on the Busch campus in Piscataway, New Jersey.

The biomedical engineering faculty has established research programs in cardiovascular systems analysis; automated diagnostic devices; bioinstrumentation, including biotelemetry and implants; cardiac assist devices; medical applications of pattern recognition; medical imaging; neural network applications to biomedical engineering; neurologic control; neuromuscular modeling; biomechanics; and biomaterials. Research areas in the medical school also include electrophysiology, neural information processing and modeling, hypertension, respiratory controls, computer-assisted diagnosis, nuclear magnetic resonance, positron emission tomography, the study of binocular oculomotor balance, and the study of artificial implant materials.

Minimum requirements for the M.S. degree include 38 credits of course work, 6 credits of research, and an M.S. thesis. Minimum requirements for a Ph.D. degree are 48 credits with satisfactory grades in approved courses and 24 credits for an acceptable research thesis. There is no foreign language requirement. The residence requirement depends on the area of specialization.

Students who have been accepted to both the Graduate School–New Brunswick and the University of Medicine and Dentistry of New Jersey—Robert Wood Johnson Medical School and who satisfy the requirements of both institutions are eligible to pursue an M.D./Ph.D. curriculum.

The qualifying examination normally consists of four written examinations. All students take examinations in both physiology and in the research area of their thesis. Depending on specific concentrations within the program, students take examinations in either (1) systems analysis and computer applications, and instrumentation or (2) biomaterials and biomechanics. An oral examination, in the appropriate area of specialization, is administered by the student’s thesis committee. Candidates are required to present seminars, which are attended by all members of the thesis committee, in order to allow the committee to evaluate research progress.

The program in biomedical engineering has been selected to participate in the Graduate Professional Opportunities Program, which provides fellowships for women and minority students.

Graduate Courses

16:125:503,504. THEORY AND DESIGN OF BIOMEDICAL INSTRUMENTS (3,3)
Seminar
The principles of instrument-type transducer design, with illustrations of resistance, inductance, capacitance, piezoelectric, magnetostrictive, and force-balance-type transducers. Examples of stress instruments for medical applications.

16:125:505. (F) BIOPOLYMERS (3)
Silver. Prerequisite: Elementary biochemistry. Recommended: Physical chemistry. Relationship between macromolecular structure, maintenance of tissue shape, and mechanical integrity, particularly in mammalian connective tissues. Emphasis on structural mechanisms related to viscoelastic behavior of collagen and matrix components, as well as rubberlike behavior of elastin. Laboratory demonstrations emphasize relationship of structure and physical properties of structural biomaterials.

16:125:506. (S) ARTIFICIAL IMPLANTABLE MATERIALS (3)

16:125:507. (F) WAVES PHENOMENA IN BIOMEDICAL SYSTEMS (3)
Wave propagation in electrical, mechanical, thermal, and chemical systems; the common parameters of distributed systems; blood flow in arteries; chemical diffusion in organs; and nerve action potential transmission.

16:125:508. (S) PATHOBIOLOGY (3)
Silver. Prerequisite: 01 or 11:115:301 or equivalent, and permission of instructor. Cellular and tissue reaction to injuries resulting from ischemia, physical forces, and exposure to chemicals including synthetic and natural polymers. Inflammation, immune reactions, regeneration, and repair. Transplantation of natural and synthetic materials as well as reactions to implanted materials.

16:125:509. MEDICAL DEVICE DEVELOPMENT (3)
Development of medical devices that employ primarily polymeric materials in their construction. Materials selection, feasibility studies, prototype fabrication, functionality testing, prototype final selection, biocompatibility considerations, efficacy testing, sterilization validation, FDA regulatory approaches, writing of IDE, SID(K) and PMAs, device production, and record keeping.

16:125:510. (S) ENGINEERING HEMODYNAMICS (3)
Drezdicki
Application of engineering techniques to the study of blood flow. Topics include the analysis of physiologically relevant models of the left ventricle, aorta, and peripheral vascular system in normal and diseased states. The analysis is applied to the design of circulatory assist devices and cardiovascular instrumentation.

16:125:512. (S) FUNDAMENTALS OF COMPUTED TOMOGRAPHY (3)
Dunn. Prerequisite: 16:332:543.
Image restoration and enhancement techniques, convex projections, pseudo inverse, back projection, simplex methods, least mean square error, constrained solutions, nonlinearities. Applications include X-ray, ultrasound, NMR, and optical medical imaging systems.

16:125:513. (S) VISUAL RESEARCH AND INSTRUMENTATION (3)
Sheane. Prerequisite: 14:332:345 or equivalent.
Control system analysis of human visual systems and survey of instrumentation used. Topics include anatomy of the visual system; triad: accommodation, vergence, and pupil; saccadic and pursuit eye movements.
substructures of the brain.

16:125:516. (S) VISUAL PATTERN RECOGNITION (3)
Micheli-Tzanakou. Prerequisites: 01:119:356 and 01:640:244, or equivalent.
Patterns are the means by which living organisms and “thinking” machines sense, interpret, classify, and act on information extracted from their surroundings. Recognition in the visual system within the context of information processing in living organisms and computers. Computer vision compared to biological vision.

16:125:517. (F) CIRCULATORY DYNAMICS (3)
Li
The circulatory system with emphasis on invasive and noninvasive measuring techniques. Topics include measurement of blood pressure and flow in arteries and veins, muscle mechanics, models of the heart, microcirculation, the closed cardiovascular system, and cardiac assist devices.

16:125:518. (S) COMPUTER APPLICATIONS IN BIOMEDICAL ENGINEERING (3)
Eikenberry, Papathomas
Digital and other computer techniques applied to the problems of biomedicine. The acquisition of data and its processing with small computers. Modeling of biological and other systems.

16:125:519. (F) BIOLOGICAL MATERIALS (3)
Guzelsu. Prerequisite: Bachelor’s degree in engineering.

16:125:520. (S) NEUROELECTRIC SYSTEMS (3)
Micheli-Tzanakou. Prerequisites: 16:332:505 and general physiology.
Introduction to function and models of the nervous system; generator and action potentials; conduction in nerve fibers and across synaptic junctions; analysis of sensory and neuromuscular systems; ECG and EEG waveforms.

16:125:523. (F) BIOMEDICAL INSTRUMENTATION LABORATORY (3)
Li. Prerequisites: 16:125:503, 504.
Practical design of biomedical transducers, electrodes, amplifiers. Operation and performance evaluation of biomedical instruments. Recording, filtering, processing, and analysis of physiological signals.

16:125:525. (F) BIOLOGICAL CONTROL SYSTEMS (3)
Salkind. Prerequisite: 01:119:356 or equivalent.
Application of control theory to the analysis of physiologic systems. Topics include: pharmacokinetics, cardiovascular system, pulmonary system, stability analysis using Nyquist and root locus, LMS adaptive algorithm, renal concentrating mechanism, membrane potential, and ionic channels. Computer simulation exercises parallel each lecture topic.

16:125:526. BRAIN DYNAMICS (3)
Micheli-Tzanakou. Prerequisite: 16:125:520 or equivalent.
Combined analysis procedures of EEG and evoked potentials may provide information on signal neural events provided that experiments are adequately designed. Presents conceptual development of resonance phenomena in biophysical sciences and considers the system at moment of stimulation for estimating and prediction of its response. Stereodynamics, simultaneously recorded multichannel EEG data, and evoked potentials from substructures of the brain.

16:125:528. (S) MOLECULAR SYSTEMS ENGINEERING (3)
Craelius. Prerequisites: Mammalian physiology and cell physiology.

16:125:530. NONLINEAR BIODYNAMICS, CHAOS, AND Fractals (3)
Dziewiecki
Introduction to nonlinear dynamics and chaos, phase plots, strange attractors, deterministic/random fractals, fractal dimension. Applications in cardiopulmonary science and neurosciences.

16:125:531. (S) ELECTROMAGNETIC COMPATIBILITY (3)
Craelius
Medical applications of electromagnetic (EM) energy; principles of reducing EM emission and noise susceptibility of devices in the 25–1000 MHz band; test and measurements of EM fields for regulatory compliance.

16:125:532. CYTOMECHANICS (3)
Craelius. Prerequisite: Undergraduate degree in engineering.
Mechanical properties and measurements of cells; stress-strain relationships in cells, organelles, and biomatrices, including methods of mechanical measurements.

16:125:533. DESIGN OF MICROPROCESSOR-BASED MEDICAL INSTRUMENTATION (3)
Petracelli. Prerequisites: 16:125:504 and 14:332:374, or equivalent.
Signal processing, display, and control components of medical instrumentation systems. Topics include bus and communication protocols, microprocessor interface design, signal conditioning and acquisition circuitry, and data display interfaces.

16:125:540. (S) INTRODUCTION TO LIMB PROSTHETICS I (3)
Basics of prosthesis practice, ethics, health economics, and professionalism; neuropathology and orthopaediatrics.

16:125:541. (F) BIOMECHANICAL MEASUREMENTS (3)
Craelius, Dunn
Techniques for measuring biomechanical properties of limbs, organs, and tissues, as well as prosthetic devices, both at rest and during ambulation. Topics include experimental and statistical methods, clinical research study design, mechanical properties and behavior of tissues, use of transducers, and major imaging modalities.

16:125:542. (S) PROSTHETICS FOR THE UPPER LIMB (4)
Craelius, Uustal
Material selection and mechanical-electrical design criteria for the upper-limb amputee. Design and fabrication of operational prostheses, starting from measurements of amputee subjects, and finishing with operational testing.

16:125:543. (F) PROSTHETICS FOR THE LOWER LIMB I (4)
Uustal, Craelius
Material selection and mechanical design criteria for the transfemoral amputee. Design and fabrication of operational prostheses, starting from measurements of amputee subjects, and finishing with operational testing. Bodily responses to amputation; casting; components; initial fitting; gait evaluation and training; pre- and postoperative care.

16:125:544. (S) PROSTHETICS FOR THE LOWER LIMB II (4)
Craelius
Material selection and mechanical design criteria for the transfemoral amputee. Design and fabrication of operational prostheses, starting from measurements of amputee subjects, and finishing with operational testing. Bodily responses to amputation; casting; components; initial fitting; gait evaluation and training; pre- and postoperative care.
Provides chemists, as well as chemical and biomedical engineers, with a solid understanding of the key principles that differentiate polymers as unique materials. Upon completion, students will be able to select polymers for industrial/medical applications, comprehend the scientific literature in polymer chemistry, and conduct applications-related research involving polymeric materials. Prior knowledge of polymer chemistry or materials science not required.

Provides fundamental instruction on the methods and rationales used in characterization of metal, ceramic, polymeric, and biologic materials used in biomedical implant fabrication. Instruction in microscopy and imaging techniques, spectroscopy and electron probe methods, mechanical characterization, and models used to characterize cell and tissue response to biomaterials. Includes topics such as response of specific tissues to biomaterials, tissue engineering, and artificial organs.

Advanced study of computer applications in biomedical engineering. Possible topics include: computerized axial tomography (CAT), positron emission tomography (PET), magnetic resonance imaging (MRI), use of artificial intelligence (AI) in medical diagnosis, learning systems, digital and sampled data implementations, large scale systems, filtering, and image reconstruction. Topics vary.

Emphasis on assisted circulation and artificial hearts, noninvasive indices of cardiac disorders and their measurement, and models of coronary circulation.

Advanced study of current research areas of brain research. Topics include information processing in the brain, pattern recognition in different sensory modalities, advanced techniques of diagnosing different system disorders, and data recording and techniques of analysis. Topics vary depending on student interest and faculty availability.

Classical theories such as the Perceptron; LMS algorithm; the Boltzmann machine; Hopfield nets; back propagation; associative neurons; as well as adaptive algorithms, such as the ALOPEX algorithms, are examined in detail. Different applications and current literature examined and discussed.
Graduate Courses

16:127:507. (F) ENVIRONMENTAL SYSTEMS ANALYSIS (3)
Ting, Nieswand
The philosophy of the systems approach. The modeling of systems. Quantitative methods in environmental systems analysis. The application of the systems approach and techniques of systems analysis to environmental problems.

16:127:508. (S) INSTRUMENTS IN BIORESOURCE ENGINEERING (3)
Wolf
General measurement systems, error analysis, transducer and signal conditioning. Digital data acquisition and control systems.

16:127:611,612. SEMINAR IN BIORESOURCE ENGINEERING (1,1)
Giacomelli

16:127:697,698. SPECIAL PROBLEMS IN BIORESOURCE ENGINEERING: I,II (BA,BA)
Directed studies of special problems that involve unique applications of bioresource engineering.

16:127:699. NONTHESIS STUDY (1)

16:127:701,702. RESEARCH IN BIORESOURCE ENGINEERING (BA,BA)

BIOTECHNOLOGY 126

Program Offered: Core Curriculum in Biotechnology

Directors of Interdisciplinary Core Curriculum: Professor Henrik Pedersen, Department of Chemical and Biochemical Engineering, Busch Campus, (732/445-2568, 5514); Professor Aaron J. Shatkin, Center for Advanced Biotechnology and Medicine, Busch Campus, (732/235-5300)

Participating Faculty

The following members of the graduate faculty, identified more fully under the subject headings indicated, are affiliated with the core curriculum in biotechnology:

Cory Abate-Shen, Physiology and Neurobiology
Stephen Anderson, Biochemistry
Edward Arnold, Chemistry
Helen Berman, Chemistry
Ira Black, Physiology and Neurobiology
Kenneth J. Breslauer, Chemistry
Helen M. Buettner, Chemical and Biochemical Engineering
William Caedius, Biomedical Engineering
Stanley Dunn, Biomedical Engineering
Richard H. Ehrignt, Chemistry and Molecular Genetics
Celine Gelinas, Microbiology and Molecular Genetics
Herbert Geller, Pharmacology
Masayori Inouye, Biochemistry
Daniel F. Klessig, Microbiology and Molecular Genetics
Joachim Kohn, Chemistry
David Kosson, Chemical and Biochemical Engineering
Casimir Kulikowski, Computer Science
Debra Laskin, Toxicology
Michael J. Leibowitz, Microbiology and Molecular Genetics
Peter Lobel, Pharmacology
Joachim Meseing, Microbiology and Molecular Genetics
Prabhus Moghe, Chemical and Biochemical Engineering
Gaetano T. Montelione, Biochemistry
Robert A. Moss, Chemistry
Fernando Muzzio, Chemical and Biochemical Engineering
Henrik Pedersen, Chemical and Biochemical Engineering
Sidney Pestka, Microbiology and Molecular Genetics
Arnold Rabson, Microbiology and Molecular Genetics
David J. Riley, Physiology and Neurobiology
Aaron J. Shatkin, Microbiology and Molecular Genetics
Ann M. Stock, Biochemistry
Eileen White, Microbiology and Molecular Genetics
Kathryn Uhrich, Chemistry
Gerben J. Zylstra, Microbiology and Molecular Genetics

Core Curriculum Program

The goal of the biotechnology core curriculum is to provide predoctoral students with an integrated, interdisciplinary education in biotechnology. Students apply to the core curriculum after they have been admitted as full-time students in any one of the biological, physical, or mathematical science doctoral programs in the Graduate School–New Brunswick. Upon graduation, students within the core curriculum receive a Ph.D. in their primary field (e.g., microbiology, biochemistry, chemical engineering) with specialization in biotechnology. Because of the interdisciplinary nature of the subject matter, specific course guidelines, laboratory rotations, and seminars have been established to ensure that students are not only well-educated within one primary discipline, but also acquire the cross-disciplinary skills needed to translate basic science discoveries into technological developments.

The course structure is flexible. However, formal course requirements include a minimum of 6 credit hours in molecular and cellular biology, 3 credit hours in biophysical chemistry, and 3 credit hours in engineering or computer science. All students are required to complete two laboratory rotations (one of which is in an industrial laboratory) and to enroll in 16:126:603, 604 Topics in Advanced Biotechnology during each term of enrollment. The laboratory rotation allows students a broader exposure to the methods of biotechnology and the faculty of the core curriculum. The topics course provides students with an in-depth exposure to new developments in biotechnology and serves to unify the students and faculty. Students also work closely with a faculty mentor from the participating faculty list on a dissertation topic. The emphasis of the research training are in the areas of protein production, tissue engineering, drug design and delivery, and biomolecular engineering. Students in the core curriculum expected to have a science background that includes one year of college mathematics, one year of biology, three years of chemistry (general, organic, physical), and one year of physics.

Graduate Courses

16:126:603,604. TOPICS IN ADVANCED BIOTECHNOLOGY (1,1)
Oral presentations and discussions of the current literature in biotechnology.

CELL AND DEVELOPMENTAL BIOLOGY 148

Degree Programs Offered: Master of Science, Doctor of Philosophy

Director of Graduate Program: Professor Richard W. Padgett, Nelson Biology Laboratories, Busch Campus (732/445-3430)

Members of the Graduate Faculty

Cory Abate-Shen, Associate Professor of Neuroscience and Cell Biology, UMDNJ-RWJMS; Ph.D., Cornell Medical College
Kurt F. Amsler, Assistant Professor of Physiology, UMDNJ-RWJMS; Ph.D., Pennsylvania State University
Regulation of keratinocyte gene expression by retinoids and fatty acids
Bruce S. Babiarz, Associate Professor of Cell Biology and Neuroscience, FAS-NB; Ph.D., Cincinnati
Development of the neural tube and neural crest cells
Salvatore J. Caradonna, Associate Professor and Chairperson of the Department of Molecular Biology, UMDNJ-RWJMS; Ph.D., Buffalo
Regulation of keratinocyte gene expression by retinoids and fatty acids
Kiran K. Chada, Associate Professor of Biochemistry, UMDNJ-RWJMS; Ph.D., Oxford
Developmental gene expression in transgenic mice
Kuang Yu Chen, Professor of Chemistry, FAS-NB; Ph.D., Yale
Biochemistry and function of polyamines and hypusine-containing eIF-5A, cancer biology, transcription factors and cellular senescence
Suzie Chen, Assistant Professor of Chemical Biology and Pharmacognosy, CP; Ph.D., Albert Einstein College of Medicine. Transgenic mice predisposed to melanoma development; molecular mechanism of adipoocyte differentiation; Ius-inducible genes.

Xueming Chen, Assistant Professor of Genetics, WIM/ FAS-NB; Ph.D., Cornell University. Molecular genetic analysis of flower development in Arabidopsis.

Lori Covey, Assistant Professor of Cell Biology and Neuroscience, FAS-NB; Ph.D., Columbia University. Switch recombination in human B-lymphocytes in response to T-cell factors.

Bill D. Davis, Associate Professor of Cell Biology and Neuroscience, FAS-NB; Ph.D., Stanford University. Regeneration and electrophysiology of peripheral auditory neurons.

David T. Denhardt, Professor of Cell and Molecular Biology, FAS-NB; Ph.D., Stanford University. Molecular aspects of membrane transport.

Emmet A. Dennis, Professor of Cell Biology and Neuroscience, FAS-NB; Ph.D., Connecticut College. Parasitology, schistosome pathology.

David M. Egger, Professor of Neuroscience and Cell Biology, UMDNJ-RWJMS; Ph.D., Yale University. Neurophysiology; neuroanatomy; neurogenetics.

Francine B. Eisen, Professor of Cell Biology and Neurology, FAS-NB; Ph.D., Albert Einstein College of Medicine. Developmental genetics; genetics.

Allahverdi Farmanfarmaian, Professor of Physiology, FAS-NB; Ph.D., Stanford University. Molecular genetics of membrane transport.

Dunne Fong, Associate Professor of Cell Biology and Neuroscience, FAS-NB; M.D., Johns Hopkins University. Developmental and cellular neurobiology.

Donald Gercke, Assistant Professor of Pharmacology and Toxicology, CP; Ph.D., Harvard University. Development of tubular biology of lung fibrosis.

Bijan K. Ghosh, Professor of Neuroscience and Cell Biology, UMDNJ-RWJMS; Ph.D., Yale University. Neurophysiology; neuroanatomy; neurogenetics.

Herbert M. Geller, Professor of Pharmacology and Neurology, UMDNJ-RWJMS; Ph.D., Rutgers University. Biology of reproduction; endocrinology.

Sasha Malamed, Professor of Anatomy, UMDNJ-RWJMS; Ph.D., Columbia University. Nervous and neurotrophic regulations of ovarian follicle formation.

Charles Martin, Professor of Cell Biology and Neuroscience, FAS-NB; Ph.D., Florida State University. Genetic control of membrane assembly.

John Pintar, Professor of Neuroscience and Cell Biology, UMDNJ-RWJMS; Ph.D., Case Western Reserve University. Developmental and cellular neurobiology.

Isaac Peng, Assistant Professor of Neuroscience, UMDNJ-RWJMS; Ph.D., Temple University. Parasitology, schistosome pathology.

Richard W. Padgett, Associate Professor of Molecular Biology and Biochemistry, UMDNJ-RWJMS; Ph.D., Case Western Reserve University. Developmental and cellular neurobiology.

Lenore Neigeborn, Lecturer in Life Sciences, FAS-NB; Ph.D., Columbia University. Development of tubular biology of lung fibrosis.

Randall D. McKinnon, Assistant Professor of Neurosurgery, UMDNJ-RWJMS; Ph.D., Case Western Reserve University. Developmental and cellular neurobiology.

John Lenard, Professor of Physiology and Biophysics, UMDNJ-RWJMS; Ph.D., Stanford University. Molecular genetics of development in Drosophila and C. elegans.

Marcus D. McKee, Professor of Pharmacology, UMDNJ-RWJMS/CABM; Ph.D., Columbia University. Molecular biology of hormone action; structure and function of protein hormones and their receptors.

Robert M. McCallum, Professor of Pharmaceutical Sciences, FAS-NB; Ph.D., Michigan State University. Organelle function; roles of naturally occurring chemicals in regulation of heart and skeletal muscle.

Jerome A. Langer, Associate Professor of Molecular Genetics and Microbiology, UMDNJ-RWJMS; Ph.D., Yale University. Cloning and analysis of cell surface receptors for alpha interferon; mechanism of action of interferons; protein recognition; receptors.

Debra L. Laskin, Professor of Pharmacology and Toxicology, CP; Ph.D., Medical College of Virginia. Immunology; inflammation; toxicology; cytokinesis.

Hsin-Yi Lee, Professor of Biological Sciences, FAS-C; Ph.D., University of Minnesota. Developmental biology; tissue culture.

John Lenard, Professor of Physiology and Biophysics, UMDNJ-RWJMS; Ph.D., Cornell University. Envelope virus fusion; transcription and replication of negative-stranded RNA viruses.

Alleyne-C. Liu, Professor of Cell Biology and Neuroscience, FAS-NB; Ph.D., Mount Sinai School of Medicine. Stress, aging, and the role of redox in cell signaling and regulation.

Fang Lu, Assistant Professor of Chemical Biology, CP; Ph.D., Harvard University. Growth and differential control.

Peter Lobel, Associate Professor of Pharmacology, UMDNJ-RWJMS/CABM; Ph.D., Columbia University. Protein targeting, mannose-6-phosphate receptors, cancer prognostic indicators.

Robert E. Loveland, Associate Professor of Cell Biology and Neuroscience, FAS-NB; Ph.D., Harvard University. Marine science; invertebrate zoology; mathematical modeling.

Richard A. Luiz, Professor of Marine and Coastal Sciences, CC; Ph.D., Maine University. Biology of deep-sea hydrothermal vent; molluscan ecology.

Gordon J. Macdonald, Professor of Neuroscience and Cell Biology, UMDNJ-RWJMS; Ph.D., Rutgers University. Biology of reproduction; endocrinology.

Sasha Malamed, Professor of Anatomy, UMDNJ-RWJMS; Ph.D., Columbia University. Nervous and neurotrophic regulations of ovarian follicle formation.

Charles Martin, Professor of Cell Biology and Neuroscience, FAS-NB; Ph.D., Florida State University. Genetic control of membrane assembly.

Fumio Matsumura, Professor of Molecular Biology and Biochemistry, FAS-NB; Ph.D., Nagoya University. Molecular and cellular biology of cytokinesis.

Michael McCormack, Professor of Pathology, UMDNJ-SOM; Ph.D., Minnesota University. Human genetics; behavioral genetics; biochemical genetics; genetic counseling.

Terry R. McGuire, Associate Professor of Cell Biology and Neuroscience, FAS-NB; Ph.D., Illinois University. Behavioral and neurogenetics; biometrical genetics.

Kim S. McKim, Assistant Professor of Microbiology and Genetics, CC/WIM; Ph.D., British Columbia. Cytokinesis.

Gary F. Merrill, Professor of Physiology, Cell Biology, and Neuroscience, FAS-NB; Ph.D., Michigan State University. Organ perfusion; roles of naturally occurring chemicals in regulation of heart and skeletal muscle.

N. Ronald Morris, Professor of Pharmacology, UMDNJ-RWJMS; M.D., Yale University. Molecular biology of mitosis.

William R. Moore, Professor of Obstetrics and Gynecology, UMDNJ-RWJMS; Ph.D., Harvard University. Molecular biology of hormone action; structure and function of protein hormones and their receptors.

Robert G. Nagle, Associate Professor of Molecular Biology, UMDNJ-SOM; Ph.D., Rutgers University. Chromatin organization in the cell nucleus.

Lenore Neigeborn, Lecturer in Life Sciences, FAS-NB; Ph.D., Columbia University. Developmental and cellular neurobiology.

Richard S. Nowakowski, Associate Professor of Anatomy, UMDNJ-RWJMS; Ph.D., Harvard University. Cell proliferation and migration during the early development of central nervous system.

Richard W. Padgett, Associate Professor of Molecular Biology and Biochemistry, WIM/ FAS-NB; Ph.D., North Carolina University. Molecular genetics of development in Drosophila and C. elegans.

Howard C. Passmore, Jr., Professor of Genetics, FAS-NB; Ph.D., Michigan University. Molecular biology of mitosis.

Isaac Peng, Assistant Professor of Neuroscience, UMDNJ-RWJMS; Ph.D., Temple University. Actin and the cytoskeleton.

John Pintar, Professor of Neuroscience and Cell Biology, UMDNJ-RWJMS; Ph.D., Oregon University. Genetic analysis of mammalian growth and neuroendocrine development.

Mark R. Plummer, Associate Professor of Cell Biology and Neuroscience, FAS-NB; Ph.D., Stanford University. Pharmacology and kinetic studies of neuronal calcium channels and synaptic plasticity.
Jamsheed Rabii, Professor of Cell Biology and Neuroscience, FAS-NB; Ph.D., California (San Francisco)

Neuroendocrinology: dynamics of brain-pituitary axis

Yakov Ron, Associate Professor of Molecular Genetics and Microbiology, UMDNJ-RWJMS; Ph.D., Weizmann Institute of Science

Gene therapy approaches for treatment of autoimmune diseases; development of T and B cells

David Seiden, Professor of Neuroscience and Cell Biology, UMDNJ-RWJMS; Ph.D., Temple

Skeletal and cardiac muscle

Michael M. Shen, Assistant Professor of Pediatrics, UMDNJ-RWJMS/CABM; CINJ; Ph.D., Cambridge

Growth factor signaling in vertebrate development

Robert Treistad, Chairperson and Professor of Pathology, UMDNJ-RWJMS; M.D., Harvard

Morphogenesis; patterning mechanisms; medical informatics

Richard E. Tremer, Professor and Chair of Cell Biology and Neuroscience, FAS-NB; Ph.D., Chicago

Cell biology; plant molecular biology; chloroplast development; function and regulation, carbohydrate metabolism

Andrew K. Vershon, Associate Professor of Molecular Biology and Biochemistry, WIM/FAS-NB; Ph.D., Massachusetts Institute of Technology

Regulation of transcription in the yeast S. cerevisiae

Robert C. Vrijenhoek, Professor of Theoretical and Applied Genetics, CC; Ph.D., Connecticut

Molecular evolution; phylogeny; population genetics; conservation biology

William C. Wadsworth, Assistant Professor of Pathology, UMDNJ-RWJMS; CINJ; Ph.D., Missouri (Columbia)

Extracellular matrix and the guidance of cell migrations in C. elegans

W. Steven Ward, Assistant Professor of Surgery, UMDNJ-RWJMS; Ph.D., Vanderbilt

Mammalian DNA organization and molecular biology of prostate cancer

Eileen White, Professor of Molecular Biology and Biochemistry, FAS-NB/CABM; Ph.D., SUNY (Stony Brook)

Regulation of programmed cell death (apoptosis) by viral oncoproteins and tumor suppressor genes

Frank J. Wilson, Professor of Neuroscience and Cell Biology, UMDNJ-RWJMS; Ph.D., Pittsburgh

Functions of motility-related proteins in muscle and nonmuscle systems

Donald A. Winkelmann, Associate Professor of Pathology, UMDNJ-RWJMS; Ph.D., Wisconsin (Madison)

Molecular cell biology and assembly; motor protein dynamics

Mengjin Xiang, Assistant Professor of Pediatrics, UMDNJ-RWJMS; Ph.D., Texas

Molecular mechanisms of neurosensory development

Chung S. Yang, Professor of Pharmacognosy, CP; Ph.D., Cornell

Mechanisms of drug metabolism and toxicity; molecular changes in carcinogenesis and their inhibition by dietary constituents

Wiseth Young, Professor of Cell Biology and Neuroscience, FAS-NB; Ph.D., Iowa; M.D., Stanford

Spinal cord regeneration

Peter D. Yurchenco, Professor of Pathology and Laboratory Medicine, UMDNJ-RWJMS; M.D., Ph.D., Albert Einstein College of Medicine

Basement membrane assembly and structure; biochemistry cell biology and molecular genetic approaches

James Q. Zeng, Assistant Professor of Neuroscience and Cell Biology, UMDNJ-RWJMS; Ph.D., Tsinghua

Molecular/cellular mechanisms underlying the formation of neuronal circuitry

Associate Members of the Graduate Faculty

Recco V. Carsia, Associate Professor of Cell Biology, UMDNJ-SOM; Ph.D., Rutgers

Adrenal cortical cell physiology

Julie M. Fagan, Associate Professor of Animal Sciences, CC; Ph.D., Arizona State University

Mechanisms of protein breakdown in mammalian cells; muscle growth; molecular, cellular, and immunological studies of proteinases and their inhibitors in health and disease

Paul D. Foglesong, Assistant Professor of Biology, CC; Ph.D., SUNY (Stony Brook)

DNA topoisomerases in normal and neoplastic human cells

Dennis J. Joslyn, Professor of Zoology, FAS-C; Ph.D., Illinois

Insect cyto genetics

Leonard Sciara, Professor of Obstetrics/Cynecology and Reproductive Sciences, UMDNJ-RWJMS; Ph.D., Indiana University

Human cytogenetics; fluorescence in situ hybridization; chromosome structure

Kathleen M. Scott, Associate Professor of Biological Sciences, FAS-NB; Ph.D., Yale

Mammalogy; vertebrate paleontology; functional morphology

David Seiden, Associate Professor of Neuroscience and Cell Biology, UMDNJ-RWJMS; Ph.D., Temple

Skeletal and cardiac muscle; electron microscopy

Programs

The graduate program in cell and developmental biology is a part of a large, diverse, and highly interactive community of biological scientists at Rutgers and the University of Medicine and Dentistry of New Jersey—Robert Wood Johnson Medical School. The graduate program has approximately eighty-five faculty members from a number of departments in the two universities. Faculty research spans the fields of molecular, cellular, and developmental biology, drawing upon diverse experimental systems to study development, human, and molecular genetics; signal transduction and regulation of gene expression; developmental biology; regulation, structure, and function of the cytoskeleton; parasitology; cellular and molecular endocrinology; ultrastructural and molecular analysis of mammalian cells; and neurobiology.

Applicants are expected to have had one year each of undergraduate mathematics, chemistry, and physics in addition to two years of biology-related courses, although those who lack some of these prerequisites may complete them (without graduate credit) after admission to the program. Undergraduate concentrations in biology or other life-science related fields and research experience are desirable although not necessary. The graduate program in cell and developmental biology offers advanced studies leading to the M.S. and Ph.D. degrees. Classroom instruction combines a core of courses in biochemistry and molecular biology, molecular genetics, cell biology, and developmental biology, with speciality area courses selected on the basis of area of specialization. Other graduate level course offerings at Rutgers and UMDNJ-RWJMS are available to students, providing training opportunities in related areas such as neurobiology, immunology, bioinformatics, computer science, and systems physiology. The major goal of the program is to provide a challenging and rewarding environment in which students can develop individual research and teaching skills to the fullest.

* Admission is offered by the consolidated graduate programs in molecular biosciences. For further information, refer to the Molecular Biosciences heading within this chapter.
Graduate Courses
16:148:503. (F) CELLULAR AND MOLECULAR SIGNALING (3)
Moyle. Prerequisite: General biochemistry. Signal/transduction at the molecular level. Use of newer research techniques emphasized.

16:148:504. (S) DEVELOPMENTAL BIOLOGY (3)
Babiarz. Mechanisms responsible for the morphogenetic changes that occur during development of selected vertebrates and invertebrates. The role of intercellular communication in development, including mechanisms of action of receptors and cell adhesion proteins needed for this process.

16:148:507. (F) IMMUNITY TO ANIMAL PARASITES (3)
Herman. Various aspects of natural and acquired humoral and cellular immune mechanisms operative in animals and other hosts against protozoan and helminth parasites. The effects of immunosuppression, antigenic variation, and stage-specific immunity in experimental parasitic infections.

16:148:509.510. ADVANCED PROBLEMS IN BIOLOGY (BA, BA)
Required for seniors who wish to work toward a master's degree. May also be used for independent study. Prerequisite: Permission of graduate director. Meets the needs of individual students.

16:148:514. (F) MOLECULAR BIOLOGY OF CELLS (3)

16:148:517. CELLULAR AND MOLECULAR MECHANISMS OF DISEASE (3)
Theories on the cellular and molecular mechanisms that underlie the development and progression of human diseases. Cell injury, inflammation, regeneration and repair, neoplasia, immune protection and immune disorders, environmental disorders, vascular diseases, connective tissue disorders.

16:148:530. (S) HUMAN GENETICS (3)

16:148:534. (S) CYTOGENETIC ANALYSIS (4)
Sciorra. Covers field of eucaryotic chromosome analysis from standpoint of development and application of various techniques to the elucidation of chromosome structure, organization, and function. Examples taken largely from mammalian and human material. Some emphasis on human molecular cytogenetics and the phenotypic manifestations of chromosomal aberrations.

16:148:547.548. CURRENT TOPICS IN ENDOCRINOLOGY (1,1)
Prerequisite: Permission of instructor. Course may be repeated for credit. Biochemical, physiological, and biological aspects of important current topics of endocrine research as reflected in recent journal articles. Topics vary to reflect the state of endocrine research.

16:148:550. (S) ADVANCED DEVELOPMENTAL BIOLOGY (3)
Stewart. Prerequisite: 16:148:514 or equivalent; or permission of the instructor. Suggested Genetics. Also open to advanced undergraduates. Molecular mechanisms of cell type differentiation and body part specification. Cell-cell interaction, signal transduction during development, morphogenetic gradients, pattern formation, focusing on three experimental organisms: the nematode C. elegans, Drosophila, and the mouse. Genetic experimental approaches will be emphasized.

16:148:555. (F) CELL BIOLOGY AND HISTOLOGY (4)
F. Wilson. Lec. 3 hrs., lab. 3 hrs. Prerequisite: Permission of instructor. Study of microscopic structure of cells, tissues, and organs as seen in the light and electron microscopes. Emphasis on correlation of structure and function.

16:148:565. (F) GROSS AND DEVELOPMENTAL ANATOMY (7)
Seiden, et al. Lec. 4 hrs., lab. 8 hrs. Prerequisite: Permission of instructor. Study of macroscopic structure of the human body by dissection and other methods with reference to functional mechanisms and changes during development and clinical correlations.

16:148:581. (F) IMMUNOGENETICS (3)
Passmore. Prerequisites: Immunology, genetics, or permission of instructor. Examination of the genetic control of antibody structure, immune response, graft rejection, and cell surface antigens. The use of immunology as a tool in genetic research.

16:148:591. (F) IMMUNOLOGY: CELLULAR AND MOLECULAR (3)
Grove. Prerequisite: Basic immunology. Development of humoral and cell mediated immune systems.

16:148:598. SEMINAR IN CELL AND DEVELOPMENTAL BIOLOGY (1)
Student, staff, and guest lectures on current topics in cell and developmental biology. Student presentation required.

16:148:600 THROUGH 605. SELECTED TOPICS IN CELL AND DEVELOPMENTAL BIOLOGY (1 EACH)

16:148:610,611. LABORATORY ROTATION (1,1,1,5)
Laboratory research for incoming students.

16:148:652. CURRENT CELL BIOLOGY (3)
Moyle. Analyses of progress in all areas of cell biology.

16:148:701,702. RESEARCH IN BIOLOGY (BA, BA)

CELLULAR AND MOLECULAR PHARMACOLOGY
(See Pharmacology, Cellular and Molecular 718)

CERAMIC AND MATERIALS SCIENCE AND ENGINEERING 150

Degree Programs: Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Professor W. Roger Cannon, MGMCCR, 129 Engineering Building, Busch Campus (972/445-4718)

Members of the Graduate Faculty
W. Roger Cannon, Professor of Ceramics, SE; Ph.D., Stanford
Mechanical properties; tape casting; sintering; Raman stress measurement

Frederic Cosandey, Professor of Ceramics, SE; Ph.D., Carnegie Mellon
Electron microscopy; texture; analysis; semiconductor sensors

Stephen C. Danforth, Professor of Ceramics, SE; Ph.D., Brown
Solid free-form fabrication; fused deposition; microstructure; property relationships

Stephen H. Garofalini, Professor of Ceramics, SE; Ph.D., Stanford
Molecular dynamics simulations; surface physics; structure; properties of glass surfaces; diffusion in glasses; intergranular films

Victor A. Greenhut, Corning-Saint Gobain
MGMCCR, 129 Engineering Building, Busch Campus (972/445-4718)

Richard A. Haber, Associate Professor of Ceramic Engineering, SE; Ph.D., Rutgers
Slip casting; rheology; whitewares
Areas of specialization in ceramics include the following: fiber optics; structure and properties of glass; relation of microstructure and properties of ceramic materials; sintering mechanisms; rheology of slips; slip casting; preparation and properties of ceramic powders; dielectric materials, including ferroelectric, piezoelectric and ferromagnetic ceramics; sol-gel processing; thin films; high-temperature materials; strength, toughening, and impact resistance; ceramic-metal systems and composites.

The facilities of the program include approximately 25,000 square feet of well-equipped laboratories. Major pieces of analytical and processing equipment include: field emission scanning electron microscope; high-resolution TEM Raman microscope; FTIR; Thermoanalyzer; induction coupled plasma (ICP); X-ray diffraction equipment; X-ray photoelectron spectroscopy; hot isostatic press; pressure caster; mechanical testing machines; and SEMs.

The focus of much of the research in ceramics is on the science and technology of synthesis of advanced ceramics materials. Processing ceramics from powders includes: synthesis and characterization of powders, green forming (slip casting, tape casting, rapid prototype methods, injection molding, and spray drying/powder compaction), and densification of powder preforms (sintering, hot pressing, hot isostatic pressing, and preceramic polymer pyrolysis). In addition, ceramics are synthesized directly from sol-gels and used for coatings, filters, battery components, etc. Ceramics can be characterized mechanically, electrically, and thermally. Surfaces are studied using scanning tunneling microscopes and atomic force microscopes and simulated by computer modeling using molecular dynamics. Ceramic composites are being studied to develop stronger, tougher ceramics. Dielectric, ferroelectric, piezoelectric, and other active functional materials are being developed for electronic substrates, capacitors, actuators, sensors, and smart/intelligent materials.

The fiber optic materials research program conducts research in the areas of synthesis of optical materials, fabrication and characterization of optical waveguides, and a wide variety of fiber device applications such as fiber lasers and amplifiers, optical sensors, infrared and ultraviolet transmitting fibers, and fibers for optical power delivery. Experimental facilities are available, including laboratories for preparation of optical quality oxide and nonoxide glasses, chemical vapor deposition equipment, commercial drawing towers, numerous optical spectrometers and fiber optic analyzers, lasers, mechanical testing laboratories, and extensive optical and electro-optical characterization laboratories.

A prospective candidate for the degree of Doctor of Philosophy must spend not less than one academic year as a full-time student in residence. The residence requirement means that every student seeking the doctorate must make their principal commitment of time for one year to courses of study and research within the university. Academic and research training in the area of packaging science and engineering is available in this program. For further information, see the packaging science and engineering courses and program description in this section under Packaging Science and Engineering.

Graduate Courses

16:150:501. (F) ADVANCED POWDER PROCESSING I (3)
Riman. Prerequisite: 16:150:501.
Examination and comparison of classical and high technology ceramic processing systems using chemical thermodynamics and kinetics, understanding of the approaches for chemically synthesizing ceramic material, coprecipitation, sol-gel processing, hydrothermal synthesis, plasma and CVD.

16:150:502. (F) ADVANCED POWDER PROCESSING II (3)
Danforth
Microstructure development: powder, consolidation behavior; and sintering process, including thermodynamics compared with kinetics, and solid state compared with liquid phase or reactive densification.
16:150:503. (F) THEORY OF SOLID-STATE MATERIALS (3)
Khachatryan
The basic principles of classical and quantum mechanics, as well as the experimental basis for introduction of quantum postulates. Application of these concepts to various physical phenomena to develop an understanding of solid-state material behavior.

16:150:504. (F) STRUCTURAL DEFECTS IN SOLIDS (3)
Cosandey. Prerequisite: 16:150:531 or equivalent.
Atomistic aspects of defects in solids, including point defects, dislocations and grain boundaries; nature of partial dislocations; grain boundary-dislocation interactions; grain boundary migration and segregation phenomena; nature of interfaces.

16:150:505. (F) ADVANCED GLASS I (3)
Wenzel
Advanced topics in glass science and engineering. Major emphasis on the structure and transport properties of oxide and selected nonoxide glasses. Detailed discussion of glass structure, structural modeling, and the relationship between structure and properties.

16:150:506. (S) ADVANCED GLASS II (3)
Sigel
Correlation of the fundamental optical properties of glasses to their structure and bonding. Intrinsic absorption and scattering, color, luminescence, photochromism, laser action, and nonlinear effects in glasses.

16:150:508. ADVANCED CERAMIC-METAL SYSTEMS (3)
Greenhut
The physical and chemical principles of interactions between metals and ceramic materials. Solid, liquid, and interfacial energies. The effect of microstructure in cermets bodies and its relationship to the exhibited properties. Practical systems such as oxide base cermets, carbides, and composite materials.

16:150:509. (F) ADVANCED ELECTRONIC CERAMICS (3)
Safari. Prerequisite: 14:154:421.
The electrical, optical, and magnetic properties of ceramic materials based on their electronic structure, defect chemistry, and transport processes.

16:150:510. (S) PHYSICAL PROPERTIES OF CRYSTALS (3)
Safari
Physical properties of crystals in tensor notation. What tensors are and how they are used. Common mathematical basis of tensor properties; thermodynamic relations among them.

16:150:511. THERMAL ANALYSIS OF CERAMIC MATERIALS (3)
Description of equipment used for differential thermal analysis (DTA), differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA). Calibration techniques. Interpretation of results. Relationships between sample thermal properties, particle size, sample size, crucible materials, heating rates, and atmospheres.

16:150:512. (S) ADVANCED CERAMIC MICROSCOPY (3)
McCaeley. Prerequisite: 14:150:407.
Use of optical microscopy for the study of ceramic microstructures. Advanced techniques, including image analysis for studying both polished sections and thin sections. Techniques in photomicroscopy with application to a particular problem of interest to each student.

16:150:513. (F) MECHANICAL BEHAVIOR OF CERAMIC MATERIALS I (3)
Cannon
Mechanical behavior and properties of oxide and nonoxide ceramics, emphasizing fracture, microstructure, and environment. Differences in plastic behavior of ceramics related to creep, wear resistance, and hardness.

16:150:514. (S) MECHANICAL BEHAVIOR OF CERAMIC MATERIALS II (3)
Matthewson. Prerequisite: 16:150:513.
In-depth usage of advanced topics concerned with mechanical properties of ceramic materials, including thin films, fibers, and stress effects on properties.

16:150:515. (F) PROPERTIES OF OPTICAL CERAMICS (3)
Harrington. Prerequisites: 16:150:506.
Waveguide propagation starting with Maxwell's equations, slab and cylindrical waveguides, active waveguides, fiber laser materials and configurations, infrared fiber waveguides, optical power delivery, fiber optic sensors.

16:150:516. (S) PROPERTIES OF NONCRYSTALLINE SOLIDS (3)
Garofalini. Prerequisite: 14:150:303.
Nature of the glass transition, structure of oxide glasses, physical and chemical properties, surface properties of glasses.

16:150:517. (F) ADVANCED REFRACTORIES (3)
McCauley.
The role of the phase equilibria and microstructure in the corrosion of refractories. Stability and behavior in selected environments, including ferrous and nonferrous metals, glass, and advanced energy systems.

16:150:520. (S) X-RAY AND SPECTROGRAPHIC METHODS IN CERAMICS (3)
Greenhut, Mayo. Principles, operation, and application: X-ray diffraction, X-ray fluorescence, analytical electron microscopy, microprobe analysis, high-temperature X-ray image and backscatter electron analysis, qualitative diffraction, and quantitative chemical and phase analysis.

16:150:521. (S) X-RAY AND SPECTROSCOPIC METHODS LABORATORY (1)
Qualitative and quantitative chemical and phase analysis by X-ray fluorescence and diffraction methods, automated diffractometry, microanalysis and image analysis, strain and particle size determination, and sample preparation techniques, including random sampling.

16:150:522. (F) SCANNING ELECTRON MICROSCOPY AND X-RAY MICROANALYSIS (3)
Greenhut
Principles, operation, and application of scanning electron microscopy and X-ray microanalysis: electron optics; instrumental and signal resolution; qualitative and quantitative chemical microanalysis; image processing; signal and metallic samples for ceramic, organic, and metallic samples.

16:150:523. (F) SCANNING ELECTRON MICROSCOPY AND X-RAY MICROANALYSIS LABORATORY (1)
Operation of the scanning electron microscope: secondary, backscatter, and specimen current images; elemental distribution by line scans and mapping and quantation by X-ray fluorescence; electronic image enhancement; stereoscopy; preparation of inorganic and organic samples.

16:150:524. (F) ADVANCED CERAMIC CHARACTERIZATION (3)
Instrumental techniques for characterization of ceramics and the study of processing and properties, including absorption and emission spectroscopy, FTIR and Raman spectroscopy, secondary ion mass spectrometry, XPS scanning Auger microscopy, neutron scattering.

16:150:525. (F) PROPERTIES OF CERAMIC SURFACES (3)
Garofalini
Surface structure of ceramic materials, absorption, surface diffusion, thin films.
16:150:526. (S) CRYSTAL CHEMISTRY OF CERAMIC MATERIALS (3)
McCadey
Relationship of structure to composition, temperature, and pressure. Importance of ionic radii, charge, and polarizability in determining structure. Study of families of compounds, compound formation, and phase transitions.

16:150:527. (F) THERMODYNAMICS OF CERAMIC SYSTEMS (3)
Matthewson
Emphasis on special thermodynamic considerations for ceramics: chemical thermodynamics, solution thermodynamics, and thermodynamics related to phase diagrams, surfaces, and point defects.

16:150:529. (F) COLLOIDAL CHEMISTRY OF CASTING SLIPS (3)
Riman
The fundamentals of colloidal chemistry as they apply to ceramic slips. Surfactants, wetting agents, and dispersants of all kinds for clay and nonclay. Rheology and rheometry as they apply to casting slips. The effect of particle size and distribution.

16:150:532. (S) KINETICS OF MATERIALS SYSTEMS (3)
Klein. Prerequisite: Differential equations.

16:150:551. (F) PHYSICAL METALLURGY (3)
Tsakalakos
Crystal structure of metals and nature of bonding; free energy and phase diagrams; defect structure and relationship to mechanical properties; phase transformations and hardening mechanisms; recovery and recrystallization processes.

16:150:552. (S) PHASE TRANSFORMATIONS IN METAL AND ALLOYS (3)
Prerequisite: 16:150:551 or equivalent.

16:150:553. (F) MECHANICAL BEHAVIOR OF METALS (3)
Mayo. Prerequisite: 16:150:551.
Response of metals to applied forces from both macroscopic and microscopic points of view. Crystal defect structures as they relate to plastic flow and the onset of fracture. Case studies of metal deformation and fracture, including fatigue, creep, environmentally assisted fracture, and wear.

16:150:561. (F) MATERIALS SCIENCE LABORATORY (3)
Mayo. Prerequisite: Previous computer experience.
Use of instrumentation in the modern analysis laboratory, such as X-ray diffractometers, creep machines, torsional pendulum. Computer-controlled data acquisition, noise reduction, and curve fitting methods.

16:150:563. (F) ELEMENTARY X-RAY DIFFRACTION (4)
Prerequisite: 16:150:563.
Principles of atomic arrangements; X-ray diffraction by real crystals and elucidation of structure-sensitive properties; identification of unknown substances, phase analysis, X-ray topographic methods, and special methods to characterize defect structures of materials.

16:150:564. (S) ADVANCED DIFFRACTION ANALYSIS (3)
Prerequisite: 16:150:563.
Application of Fourier transform and convolution methods to diffraction of amorphous and crystalline materials; elucidation of lattice defects and correlation to properties of materials, dynamical theory, and application in materials science.

16:150:566. (S) ELECTRON MICROSCOPY (3)
Cosadey
Nature of the electron microscope; techniques of specimen preparation; theory of electron diffraction; diffraction patterns; application to crystal structure; crystal morphology and defects in various engineering materials.

16:150:567. (S) ELECTRON MICROSCOPY LABORATORY (1)
Cosadey

16:150:568. (F) ADVANCED ELECTRON MICROSCOPY (3)
Cosadey. Prerequisites: 16:150:566, 567, or equivalent.
Principles and aspects of dynamical theory. Weak beam analysis. High-resolution imaging. Convergent beam diffraction. Scanning transmission and analytical microscopy. Description and application of specialized microscopy techniques to materials problems, including metals, ceramics, and polymers.

16:150:569. (F) QUANTITATIVE METALLOGRAPHY (3)
Tsakalakos
The theory and practice of stereological aspects of quantitative analysis of microstructures observed in alloy, ceramic, polymeric, histological, and other materials. Determination of three-dimensional properties of microstructures by means of measurements of two-dimensional sections, transmission, or scanning electron micrographs.

16:150:571, 572. INTRODUCTION TO PACKAGING ENGINEERING I,II (3,3)
Materials science, engineering, design, development and testing, packaging machinery, package production, distribution, marketing and resource utilization.

16:150:575. (F) PACKAGING—REGULATORY ASPECTS (3)
Cosadey. Prerequisites: 16:150:571, 572.
State and federal regulation of packaging and labeling for consumer and environmental protection. Regulations for engineers and scientists to design and fabricate legal containers. Forecasting and aiding in development of future trends in regulatory action.

16:150:576. (S) PACKAGING MACHINERY (3)
Prerequisites: 16:150:571, 572.
Interrelationship between machinery and materials; package production lines; principles of machine design and selection, and economics of choice of alternatives.

16:150:577, 578. MATERIALS AND DESIGN IN PACKAGING (3,3)
Idol. Prerequisites: 16:150:571, 572.
Package design principles from point of view of chemical, physical, and engineering behavior of entire system. Emphasis on properties of packaging materials and relation of those properties to structure and performance.

16:150:581, 582. SEMINAR IN PACKAGING I,II (1,2)
Idol. Prerequisites: 16:150:571, 572.

16:150:583, 584. MATERIALS AND PACKAGE EVALUATION LABORATORY I,II (3,3)
Prerequisites: 16:150:571, 572.
The principles and practices used in the characterization and evaluation of the engineering properties of packaging materials and packages. Gas and vapor permeation of materials and packages; physical properties of materials and packages; package dynamics.

16:150:587, 588. SPECIAL PROBLEMS IN PACKAGING (BA,BA)
Idol. Prerequisites: 16:150:571, 572, and permission of instructor.

16:150:595. STRUCTURAL TRANSFORMATIONS IN SOLIDS I (3)
Tsakalakos. Prerequisites: 16:150:551, 552.
16:150:596. ADVANCED TOPICS IN MATERIALS (3)
Khachaturyan, Prose prerequisites: 16:150:551, 552 or equivalent.

16:150:597,598. (F,S) CASE STUDIES IN MANUFACTURING CERAMICS (3,3)
Niesz
Students work in groups to research problems and present reports. Students solve an actual industrial manufacturing problem in collaboration with a local industrial company.

16:150:601,602. CERAMICS AND MATERIALS SEMINAR (1,1)
Collaboration with a local industrial company.

16:150:597,598. (F,S) CASE STUDIES IN MANUFACTURING CERAMICS (3,3)
Cannon
Current areas of research studied and discussed.

16:150:603,604. (F,S) SPECIAL PROBLEMS IN CERAMICS AND MATERIALS SCIENCE (BA,BA)

16:150:701,702. RESEARCH IN CERAMICS AND MATERIALS (BA,BA)

CHEMICAL AND BIOCHEMICAL ENGINEERING 155

Degree Programs Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Professor David S. Kosson, C150 Engineering Building, Busch Campus (732/445-4950)

Members of the Graduate Faculty
Fred R. Bernath, Associate Professor of Chemical and Biochemical Engineering, SE; Ph.D., Rutgers
Biomedical engineering; transport phenomena

Helen M. Buetter, Associate Professor of Chemical and Biochemical Engineering, SE; Ph.D., Pennsylvania
Neurobiology; cell motility; biomedical engineering

Yee C. Chew, Professor of Chemical and Biochemical Engineering, SE; Ph.D., Pennsylvania
Statistical thermodynamics

Aliks Constantindes, Chair and Professor of Chemical and Biochemical Engineering, SE; D.E.Sc., Columbia
Biochemical engineering; modeling of fermentation processes

Peter R. Couchman, Professor of Chemical and Biochemical Engineering, SE; Ph.D., Virginia
Polymer theory; behavior of finite-size systems; thermodynamics, polymers at interfaces

Alberto M. Cuitiño, Associate Professor of Mechanical and Aerospace Engineering, SE; Ph.D., Brown
Powder mechanics; micromechanics; computer methods

Burton Davidson, Professor of Chemical and Biochemical Engineering, SE; Ph.D., Northwestern
Alternate fuels; control theory; safety systems engineering

Benjamin J. Glasser, Assistant Professor of Chemical and Biochemical Engineering, SE; Ph.D., Princeton
Multiphase flows and reactors; granular materials and particulate suspensions; nonlinear dynamics of transport processes

Masaomi Hara, Professor of Chemical and Biochemical Engineering, SE; Ph.D., Kyoto
Polymer physics; structure-property relationships of ion-containing polymers in solid and solution

Michael T. Klein, Dean and Board of Governors Professor of Engineering, SE; Ph.D., Massachusetts Institute of Technology
Kinetics, catalysis and reaction engineering; automated kinetic modeling; hydrocarbon conversion; reactions in supercritical fluids

Joachim B. Kohn, Associate Professor of Chemistry, FAS-NB; Ph.D., Weizmann Institute of Science
Biotechnology; biorganic chemistry; new methods for drug delivery

David S. Kosson, Professor of Chemical and Biochemical Engineering, SE; Ph.D., Rutgers
Hazardous waste control; environmental engineering

Prabhas V. Moghe, Assistant Professor of Chemical and Biochemical Engineering, SE; Ph.D., Minnesota
Bioengineering and microarchitecture of polymeric tissue analogs; cell-biomaterial interactions; tissue engineering of liver, skin, and blood vessels; fluid flow and “cellular stress engineering”; quantitative 3-D reconstructive confocal microscopy

Fernando Muzzio, Associate Professor of Chemical and Biochemical Engineering, SE; Ph.D., Massachusetts (Amherst)
Mixing; chaos and randomness; transport phenomena

Balaji Narasimhan, Assistant Professor of Chemical and Biochemical Engineering, SE; Ph.D., Purdue
Transport phenomena in polymers; polymer dynamics

Brian A. Newman, Professor of Chemical and Biochemical Engineering, SE; Ph.D., Bristol
Structure and morphology of electrowov polymers; X-ray diffraction studies of polymers; high pressure polymorphism

Henrik Pedersen, Professor of Chemical and Biochemical Engineering, SE; Ph.D., Yale
Biocatalytic engineering; reactor design; plant cell culture

Alfred Salkind, Professor of Surgery, UMDNJ-RWJMS; D.C.H.E., Polytechnic Institute of New York
Electrochemical engineering; energy; metal recovery

Jerry J. Scheinbeim, Professor of Chemical and Biochemical Engineering, SE; Ph.D., Pittsburgh
Polymer electophoresis; structure-electroactive property relationships in electrowoven polymeric materials; ferroelectric, piezoelectric, pyroelectric, dielectric, and electrophoretic properties of polymers

Kathryn E. Uhrich, Assistant Professor of Chemistry, FAS-NB; Ph.D., Cornell
Polymer design, synthesis, and characterization; microfluidics

Shaw S. Wang, Professor of Chemical and Biochemical Engineering, SE; Ph.D., Rutgers
Biocatalytic engineering; food science and technology

Martin L. Yarmush, Visiting Professor of Chemical and Biochemical Engineering, SE; Ph.D., Rockefeller
Applied immunology; bioprocessing; artificial organs and tissue engineering

Associate Members of the Graduate Faculty
Robert Cowan, Assistant Professor of Environmental Science, CC; Ph.D., SUNY (Buffalo)
Environmental engineering; bioremediation; bioregenerative life support

William Craelius, Associate Professor of Biomedical Engineering, SE; Ph.D., Northwestern
Cardiac and neural electrophysiology

Panagiotos G. Georgopoulos, Associate Professor of Environmental and Community Medicine; UMDNJ-RWJMS; Ph.D., California Institute of Technology
Environmental engineering; turbulent transport; reactive flows

Marianthi G. Ierapetritou, Assistant Professor of Chemical and Biochemical Engineering, SE; Ph.D., Imperial College
Process systems engineering; process design, planning and scheduling; uncertainty and environmental considerations; nonlinear and mixed integer optimization

Johannes G. Khinast, Assistant Professor of Chemical and Biochemical Engineering, SE; Ph.D., Graz
Reaction and environmental engineering; reactive flows; numerical analysis of large dynamical systems

Gustavo T. Montelione, Associate Professor of Molecular Biology and Biochemistry, FAS-NB; Ph.D., Cornell
Nuclear magnetic resonance studies of proteins; protein molecular design; mechanisms of protein folding

Richard E. Rimai, Associate Professor of Chemical Science and Engineering, SE; Ph.D., Massachusetts Institute of Technology
Hydrothermal synthesis, microencapsulation, solid-state synthesis; mixedness, reactive vesicles; gel-salt synthesis; solution thermodynamics, crystallization, granulation

Carlos B. Rosas, Distinguished Visiting Professor and Administrative Director, Pharmaceutical Engineering Program; M.E., Stevens
Fine chemicals, pharmaceuticals, and biologicals

K. Venkatassubramanian, Visiting Professor of Chemical and Biochemical Engineering, SE; Ph.D., Rutgers
Applied molecular biology; biochemical process economics

Adjunct Members of the Graduate Faculty
Rolfe R. Aranda, Assistant Research Professor of Chemical and Biochemical Engineering, SE; Ph.D., Rutgers
Molecular simulations and modeling of contaminant behavior in soil systems

Ingo B. Bossert, Assistant Research Professor of Chemical and Biochemical Engineering, SE; Ph.D., Rutgers
Microbial processes in the environment; biodegradation and bioremediation
Programs

The graduate program in chemical and biochemical engineering is composed of several major elements: engineering science, applied chemistry, and biochemical engineering. Engineering science includes the transport processes, with special emphasis on mass transfer, thermodynamics, and applied mathematics. Applied chemistry encompasses surface chemistry, applied chemical kinetics, catalysis, synthesis, and properties of polymers, semipermeable membranes, and electrochemistry. Biochemical engineering deals with microbial and enzyme technology, fermentations, applied biochemical kinetics and catalysis, biological separations, and applied molecular biology.

The program emphasizes integration of instruction and application, placing great importance on individual student projects and expressions of creativity and originality in the application of fundamentals to the solution of research and design problems. The use of basic and advanced chemical and biochemical engineering principles is stressed, together with development of practical applications relating to industrial processing, environmental quality improvement and regulation, and conceptual advances in the understanding of chemical and biochemical reaction processes. Research effort is applied to the advancement of basic scientific theories as well as applications.

Master’s degree candidates may elect a thesis or nonthesis option. The thesis option consists of a minimum of 24 course credits and a total of 30 credits, including a thesis on a research or design problem. In the nonthesis option, a candidate must complete 30 course credits and a critical essay in partial fulfillment of course requirements. The nonthesis option is especially suited to the student who has extensive research experience or full-time professional responsibilities in industry. The program for the Ph.D. normally consists of a minimum of 30 credits of course work and 24-42 credits of research beyond the B.S. degree. The total number of credits required is 72. The course work for the Ph.D. and M.S. degrees includes a sequence of five courses that form the core—chemical engineering analysis; advanced transport phenomena I and II; advanced chemical engineering thermodynamics; and kinetics, catalysis, and reactor design. The Master of Philosophy degree is available to doctoral candidates. The doctoral qualifying examination, given each year, stresses fundamentals of chemical engineering and advancements in the profession as reflected in the current graduate instructional program.

All students must give an oral presentation on their research or special area of interest before their program is complete. There is no language or residency requirement.

Faculty and students in the program are involved in a broad range of research areas. Research in biochemical engineering includes such topics as enzyme and microbial engineering, biomembrane transport theory, plant and insect cell culture, imaging and biosensing, mammalian cell culture, and biomedical engineering. Chemical environmental efforts involve the use of basic chemical engineering principles such as mass, momentum, and energy balances, reactor theory, and system simulation to solve problems that relate to surface water and groundwater quality, advanced biological and physiochemical treatment systems, solid-waste management, incineration, and hazardous substance evaluation and disposal. Pharmaceutical engineering research focuses on topics such as solids mixing, granular materials and particulate suspensions, powder processing, and crystallization. Alternate fuels research includes enhanced alcohol fermentation and electrochemical engineering, with emphasis on battery failure analysis. Liquid-liquid extraction, supercritical extraction processes, and flow simulation in mixing processes are examples of mass transfer applications. Work in statistical thermodynamics also is available.

Graduate assistantships and fellowships are available for both first-year and advanced graduate students. Students participating in the research program on a sponsored basis receive a stipend for either a ten-month or a twelve-month period and have tuition remitted. Support usually is associated with sponsoring grants or contracts, and specific information on available projects should be requested from the graduate director. It is common for an exchange of information on assistantships or fellowships to take place during consideration of admission, with identification of student interests prior to entry to the program.

Graduate Courses

16:155:501. (F) ADVANCED TRANSPORT PHENOMENA I (3)
Prerequisite: Undergraduate transport phenomena.
Momentum transport processes in laminar and turbulent flow systems. Development and application of steady and unsteady boundary layer processes including growth, similitude principles, and separation. Potential flow theory coupled with viscous dissipation at boundaries. Momentum transport in fixed and fluid bed exchangers and reactors.

16:155:502. (S) ADVANCED TRANSPORT PHENOMENA II (3)
Prerequisite: Permission of instructor.
Energy balances derived from first and second law approaches to open systems, with reaction. Conduction in fluids and solids, both steady and unsteady examples. Convection in laminar and turbulent flow systems. Diffusion and its treatment in stagnant and flowing media. Two phase systems, coupled reaction and mass transfer. Interphase transport.

16:155:503. (F) ADVANCED TRANSPORT PHENOMENA III (3)
Advanced topics in momentum, heat, and mass transfer. Special emphasis on computational techniques.

16:155:504. (S) MIXING: THEORY AND APPLICATIONS (3)
Prerequisite: Undergraduate fluid mechanics.
Theory of mixing processes in laminar and turbulent flows. Practical aspects of mixing processes (equipment selection, design, scale-up) used in industrial operations.

16:155:507. (F) ANALYTICAL METHODS IN CHEMICAL AND BIOCHEMICAL ENGINEERING (3)
Prerequisites: Undergraduate differential and integral calculus and differential equations or permission of the graduate director.
Analytical solutions to deterministic mathematical models encountered in chemical and biochemical engineering, including environmental and safety systems. Emphasis is on purpose, philosophy, classification, development, and analytical solutions of models occurring in transport phenomena, thermochemical, and reactor systems.

16:155:508. (F) CHEMICAL ENGINEERING ANALYSIS (3)
Prerequisite: Undergraduate or graduate degree in chemical engineering or in the biological or physical sciences.

16:155:511. (F) ADVANCED CHEMICAL ENGINEERING THERMODYNAMICS (3)
Prerequisite: Undergraduate or graduate degree in engineering or chemistry.
Basic principles of classical chemical thermodynamics. Chemical and physical equilibria and their relationships in simple and reactive systems. Estimation and correlation of thermodynamic functions, applications of thermodynamic principles to transport and rate processes. Irreversible and statistical thermodynamic topics also introduced.

16:155:512. ADVANCED CHEMICAL ENGINEERING MOLECULAR THERMODYNAMICS (3)
Prerequisite: 16:155:511 or equivalent.
Statistical ensembles; ideal and non-ideal gases; liquids; distribution function theories; Ornstein-Zernike equation; computer simulation methods; perturbation theories; engineering semi-empirical equations of state; applications to chemical engineering systems.
116:155:514. (S) KINETICS, CATALYSIS, AND REACTOR DESIGN (3)
Prerequisites: 16:155:501 and 507, or equivalent. Principles of applied chemical kinetics, reaction mechanisms and rate laws, and engineering design of reactor vessels. Applications to homogeneous and heterogeneous reaction systems with internal, transphase, and external mass transfer. Noncatalytic gas-solid reaction and gas-liquid absorption with reaction. Micromixing and macromixing in reactor systems.

16:155:517. ADVANCED PROCESS CONTROL (3)
Prerequisite: Process control or permission of instructor. Review of analysis and design of feedback control systems. Advanced process control systems. Control systems for multivariable processes. Process control systems, using computers and artificial intelligence techniques. Intelligent control laboratory.

16:155:518. (S) PROCESS SYSTEMS ENGINEERING (3)

16:155:531. (F) BIOCHEMICAL ENGINEERING (3)
Prerequisites: Degree or option in biochemical engineering, or 01 or 11:115:301 and 01:119:301, or equivalent. Integration of the principles of chemical engineering, biochemical and microbiology. Development and application of biochemical engineering principles. Analysis of biochemical and microbial reactions.

16:155:532. (F) TOPICS IN BIOCHEMICAL ENGINEERING (3)
Prerequisite: 16:155:531. An advanced course devoted to current topics of interest in biochemical and enzyme engineering. Topics include production, isolation, and purification of enzymes; downstream processing; design and analysis of bioreactors; bioprocess economics; modeling, optimization, and scale-up of biochemical systems. Content and format may vary from year to year.

16:155:533. (S) BIOSEPARATIONS (3)
Prerequisite: Permission of instructor. Fundamental problems of separation processes important to the recovery of products from biological processes. Topics include membrane filtration centrifugation, chromatography, extraction, electrokinetic methods. Emphasis on protein separations.

16:155:534. (S) ENZYME ENGINEERING (3)
Prerequisite: Undergraduate or graduate degree in chemical or biochemical engineering or in the biological sciences. Application of biochemical engineering principles to enzyme technology. Enzyme structure and function, biochemical and biophysical properties, enzyme stability, mathematical models for inactivation. Design and analysis of enzyme and fixed microbial cell reactors. Use of enzymes in industrial, environmental, and medical applications. Case studies of commercial enzyme processes.

16:155:551. (F) POLYMER SCIENCE AND ENGINEERING I (3)
Prerequisite: 16:155:551. Physical and chemical structure of polymers; morphology of polymer crystals; microscopic texture. Mechanical properties; influence of orientation; effects of temperature and environment; engineering applications.

16:155:552. POLYMER SCIENCE AND ENGINEERING II (3)
Prerequisite: 16:155:551. Emphasis on a modern treatment of polymers, including statistical mechanics scaling concepts and polymer properties and characterization.

16:155:553. (F) POLYMER SCIENCE AND ENGINEERING LAB (1)
Pre-or-corequisite: 16:155:551. Basic structure-property relationships of polymeric materials in their liquid, glassy, and crystalline states including synthesis, molecular weight distribution, morphology, thermal and mechanical properties.

16:155:554. POLYMER PROCESSING (3)

16:155:555. (F) POLYMER PHYSICS (3)
Prerequisites: 16:155:551, 552. Introduction to physics of high polymers and their properties in the solid state; discussion of dielectric, mechanical, and nuclear magnetic resonance phenomena and application to relaxation behavior; theories of rubber elasticity and viscoelasticity; yield and fracture behavior.

16:155:556. (S) POLYMER RHEOLOGY (3)
Prerequisites: 16:155:551, 552. Introduction to viscosity and rheological phenomena in high polymers; the relation of these to molecular parameters and their applications in polymer physics, polymer engineering, and polymer processing.

16:155:557. (S) ADVANCED POLYMER PHYSICS (3)

16:155:558. (F) VIBRATIONAL SPECTROSCOPY OF POLYMERS (3)

16:155:559. (F) SCATTERING METHODS IN POLYMER SCIENCE (3)

16:155:561. (F) APPLIED SURFACE CHEMISTRY (3)
Prerequisite: Undergraduate or graduate degree in chemical engineering or in the biological or physical sciences. Phenomena and processes relevant to chemical engineering characterized by large interfacial area relative to phase volume. Fundamental principles of surface chemistry and physics, such as interfacial tension and pressure. Study of colloidal state and colloidal particles. Theories of electrical double layer and stability of suspensions. Application of theory to important processes such as foaming, emulsification, detergency, adsorption, ole floation, and rate processes controlled at a phase interface, including nucleation and crystallization.

16:155:562. (S) SYNTHESIS AND PROPERTIES OF SOLID POLYMERS (3)
Prerequisite: Undergraduate or graduate degree in chemical engineering or in the biological or physical sciences. Advanced treatment of polymer processes and resultant polymer properties from the interrelated points of view of reaction engineering (including catalytic routes) and materials science (structure-property relationships) appropriate to the modern generation of engineering polymers.
16:155:563. (F) SEMIPERMEABLE MEMBRANES (3)
Prerequisite: Undergraduate or graduate degree in chemical engineering or in the biological or physical sciences.
Applied physicochemical principles that underlie the frontier applications of barrier diffusion.

16:155:572,573. ELECTROCHEMICAL ENGINEERING I,II (3,3)
Prerequisite: Undergraduate or graduate degree in chemical engineering or in chemical engineering.
Introduction to the principles and applications of electrochemical engineering properties of electrodes. Electrochemical engineering, energy conversion, and storage thermodynamics and design features in primary and secondary fuel cells, and in metallic corrosion, electroforming, and electrolysis.

16:155:574. (S) SOLVENT EXTRACTION ENGINEERING (3)
Prerequisite: Undergraduate or graduate degree in chemical engineering or in chemical engineering.
Advanced treatment of solvent extraction operations including both practical design approaches and a systematic development based on the fundamental aspects of mass transfer, mass transfer with reaction, and dispersion modeling in various contractor configurations.

16:155:575. ELECTROCHEMICAL ENGINEERING TECHNIQUES (3)
Lecture-laboratory course providing theoretical and practical experience in techniques of studying charge-transfer and mass-transfer controlled reactions in corrosion, electropolating, battery energy conversion, the production of chemicals, and other electrochemical applications.

16:155:582. (S) FUNDAMENTALS OF CONTAMINANT MASS TRANSFER (3)
Prerequisite: Undergraduate degree in chemical, biochemical, or environmental engineering, or permission of instructor.
Theory and mathematical modeling of thermodynamics, reaction, and diffusive and convective mass transfer for inorganic and organic contaminants in porous media, emphasizing behavior in sediments and saturated soils.

16:155:588. (F) SPECIAL PROBLEMS IN CHEMICAL ENVIRONMENTAL ENGINEERING (3)
Prerequisites: 16:155:501,502, or equivalent.
Natural water bodies described by the techniques developed for chemical and biochemical reactor analysis. Physical transport, interfacial exchanges, and biochemical reactions. Examples drawn from reaeration processes, surface water temperature and energy balances, and stochastic variations in stream discharge.

16:155:601,602. CHEMICAL ENGINEERING GRADUATE SEMINAR (N1,N1)
Graduate students make a formal presentation on their independent study and/or research. Outside speakers also are invited.

16:155:603,604. TOPICS IN ADVANCED BIOTECHNOLOGY (1,1)
Prerequisite: Permission of instructor.
Oral presentations and discussions of current literature in biotechnology. Topics selected from: tissue, genetic, and protein engineering; growth control; receptor signaling; immunotechnology; neurotechnology; and others.

16:155:701,702. RESEARCH IN CHEMICAL AND BIOCHEMICAL ENGINEERING (BA, BA)

CHEMISTRY 160

Degree Programs Offered: Master of Science, Master of Science for Teachers, Doctor of Philosophy
Director of Graduate Program: Professor Roger A. Jones, Wright-Rieman Laboratories, Busch Campus (732/445-3223)
Vice Chairperson for Graduate Studies: Professor Martha A. Cotter, Wright-Rieman Laboratories, Busch Campus (732/445-2259)

Members of the Graduate Faculty

Stephen Anderson, Associate Professor of Molecular Biology and Biochemistry, FAS-NB; Ph.D., Harvard
Proteases and protease inhibitors; protein folding; molecular recognition
Georgia A. Arbuckle, Associate Professor of Chemistry, FAS-C; Ph.D., Pennsylvania
Synthesis, properties of conducting polymers; quartz crystal microbalance study of electroactive surfaces
Edward Arnold, Professor of Chemistry, FAS-NB; Ph.D., Cornell
Cryobiophysical studies of human viruses and viral proteins
Jean S. Baum, Associate Professor of Chemistry, FAS-NB; Ph.D., California (Berkeley)
Structural studies of proteins by nuclear magnetic resonance techniques
Maurice Berman, Professor of Chemistry, FAS-NB; Ph.D., Pittsburgh
X-ray crystallographic and molecular modeling studies of biological molecules
Robert S. Beekes, Professor of Chemistry, FAS-NB; Ph.D., Columbia
Chemical education
John G. Brennan, Associate Professor of Chemistry, FAS-NB; Ph.D., California (Berkeley)
Solid-state inorganic chemistry; thin films; nanoclusters
Kenneth J. Breslauer, Professor of Chemistry, FAS-NB; Ph.D., Yale
Biopolymer structures and drug-nucleic acid interactions
Edward Castner, Jr., Associate Professor of Chemistry, FAS-NB; Ph.D., Chicago
Photo-induced reaction dynamics in solution; intermolecular interactions and dynamics in condensed phases
Kuang-Yu Chen, Professor of Chemistry, FAS-NB; Ph.D., Yale
Biophysical and biological chemistry; proteins in cancer and aging
Martha A. Cotter, Professor of Chemistry, FAS-NB; Ph.D., Georgetown
Theoretical studies of liquid crystals and micellar systems
Richard H. Eby, Professor of Chemistry, WIM/FAS-NB; Ph.D., Harvard
Protein-DNA interaction; protein engineering; regulation of gene expression
Eric L. Garfunkel, Professor of Chemistry, FAS-NB; Ph.D., California (Berkeley)
Surface science; thin-film growth; molecular adsorption on surfaces
Michelle G. Georgiadis, Assistant Professor of Chemistry, WIM/FAS-NB; Ph.D., California (Los Angeles)
X-ray crystallographic studies of retroviral enzymes
Alan S. Goldman, Professor of Chemistry, FAS-NB; Ph.D., Columbia
Organometallic reaction mechanisms, photochemistry, and catalysis
Lionel Goodman, Professor of Chemistry, FAS-NB; Ph.D., Iowa State
Laserscopic spectroscopy with emphasis on multiphoton processes
Martha Greenblatt, Professor of Chemistry, FAS-NB; Ph.D., Polytechnic Institute of New York
Solid-state inorganic chemistry; crystal growth
Gene S. Hall, Associate Professor of Chemistry, FAS-NB; Ph.D., Virginia Polytechnic Institute
Applied analytical chemistry; trace analysis
Gregory F. Herzog, Professor of Chemistry, FAS-NB; Ph.D., Columbia
Origin and evolution of meteorites; cosmogenic radioisotopes
Jane Hinch, Associate Professor of Chemistry, FAS-NB; Ph.D., Cambridge
Molecular beam-surface interactions and diffractive techniques
Stephen S. Iosif, Professor of Chemistry, FAS-NB; Ph.D., Stanford
Bioorganic chemistry; long-range intramolecular electron transfer
Leslie S. Jimenez, Associate Professor of Chemistry, FAS-NB; Ph.D., California (Los Angeles)
Molecular recognition, synthesis and characterization of analogs of anticancer antibiotics, total synthesis of natural products
Roger A. Jones, Chairperson of Department and Professor of Chemistry, FAS-NB; Ph.D., Alberta
Nucleic acid synthesis and structural analysis; ligand-nucleic acid interactions
Spencer A. Knapp, Professor of Chemistry, FAS-NB; Ph.D., Cornell
Total synthesis of natural products; new synthetic methods
Joachim B. Kohl, Professor of Chemistry, FAS-NB; Ph.D., Weizmann Institute of Science
Biotechnology; bioorganic chemistry; new methods for drug delivery
John Krenos, Associate Professor of Chemistry, FAS-NB; Ph.D., Yale
Chemical physics, particularly molecular beam chemistry
Karen Krog-Hjersisen, Professor of Chemistry, FAS-NB; Ph.D., New York
Computational studies of molecular electronic structure; excited electronic states
Jeehun Katherine Lee, Assistant Professor of Chemistry, FAS-NB; Ph.D., Harvard
Biological and organic reactivity, recognition, and catalysis; computational chemistry; mass spectrometry
Ronald M. Levy, Professor of Chemistry, FAS-NB; Ph.D., Harvard
Biophysical chemistry; chemical physics; dynamics of macromolecules
Jing L. Li, Associate Professor of Chemistry, FAS-C; Ph.D., Cornell
Experimental and theoretical studies of solid-state inorganic materials
Frederick H. Long, Assistant Professor of Chemistry, FAS-NB; Ph.D., Columbia
Optical spectroscopy of condensed matter
Theodore E. Madey, Professor of Physics and Chemistry, FAS-NB; Ph.D., Notre Dame
Structure and reactivity of surfaces and ultrathin films
The program for the Ph.D. degree requires a thesis and an assortment of approximately 150 personal computers and workstations, presenter systems, video animation equipment, and calorimetric instrumentation. Computing facilities in the Wright-Rieman Laboratories include four multiprocessor servers, more than 45 graphics workstations, a 48 processor cluster of PC-based workstations, presenter systems, video animation equipment, an assortment of approximately 150 personal computers and X-terminals, and an array of laser and color printers. The program for the master’s degree requires a minimum of 30 credits and either a critical essay or a thesis on some research problem. The program for the Ph.D. degree requires a thesis and an appropriate combination of course work and research credits. The Master of Philosophy degree is available to doctoral candidates.

A Ph.D. candidate must complete a minimum of 15 credits of course work, including 9 credits in his or her principal subfield of study (analytical, biological, inorganic, organic, or physical chemistry) and 6 credits chosen from among core courses in other subfields. The Ph.D. qualifying examination consists of a series of written cumulative examinations and the oral presentation and defense of a research proposal. There is no language requirement. A Ph.D. candidate must spend not less than one academic year as a full-time student in residence. This residence requirement may be waived in cases of outstanding professional accomplishment and experience.

Most graduate courses are scheduled in the late afternoon and early evening hours. This provides an opportunity for students who are unable to attend classes during the day because of employment restrictions to pursue an M.S. degree. Teaching assistantships and fellowships are available for both first-year and advanced graduate students; virtually all full-time doctoral students receive financial support. Teaching assistants spend no more than six contact hours per week on their duties and normally take 6 to 10 credits of graduate courses or research each term. Fellowships normally do not entail special duties, and those who hold them can devote their time to course work and to research related to their Ph.D. dissertation. Further information on these and other matters may be found in The Graduate Program in Chemistry, a brochure available from the department.
16:160:571. (F) ADVANCED INORGANIC CHEMISTRY (3)
Prerequisite: 01:160:371 or equivalent.
Survey of bonding, electronic-structural, and magnetic properties of transition metal complexes, followed by a survey of the kinetics and mechanisms by which such materials undergo substitution, isomerization, and redox reactions.

16:160:575. (S) PRINCIPLES OF ORGANOMETALIC CHEMISTRY (3)
Prerequisites: 01:160:367, 368, or equivalent.
Detailed survey of the mechanisms of organometallic reactions.

16:160:576. BIOINORGANIC CHEMISTRY (3)
Prerequisites: 01:160:367 or equivalent.
Spectroscopic, chemical, and other properties of metal-containing biological systems such as hemoglobin, vitamin B12, and carboxypeptidase.

16:160:577. (S) SOLID-STATE CHEMISTRY (3)
Prerequisites: 01:160:371 or equivalent.
Relation between crystal structure, bonding and physical properties of solids, imperfections in solids; nonstoichiometric compounds; electronic and magnetic properties of various types of solids; transformation in solids; solid-state reactions; crystal growth; solid-state electrochemistry.

16:160:579. SPECIAL TOPICS IN INORGANIC CHEMISTRY (3)
Prerequisite: 01:160:371 or equivalent.
Advanced topics of current interest.

16:160:601,602. INDEPENDENT STUDIES IN CHEMISTRY (BA,BA)
Individualized instruction supervised by a faculty member.

16:160:603. INTRODUCTION TO RESEARCH (1)
Enrollment restricted to first-year Ph.D. students in chemistry.
Introduction to doctoral and postdoctoral research in chemistry. Identification of research problems. Presentation of research results. Use of chemical literature. Research proposals and funding. Research ethics.

16:160:605,606. LABORATORY Rotation in CHEMISTRY I,II (BA 1-3,BA 1-3)
Enrollment restricted to Ph.D. students in chemistry. No more than a total of 6 credits of laboratory rotation can be earned.
Introduction to the techniques of chemical research through participation in research projects of selected members of the graduate faculty.

16:160:611,612. SEMINAR in CHEMISTRY (1,1)
For second- and third-year Ph.D. students.
Student seminars on topics of current interest in chemistry.

16:160:701,702. RESEARCH in CHEMISTRY (BA,BA)

CIVIL AND ENVIRONMENTAL ENGINEERING 180

Degree Programs Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Professor Nenad Gucunski,
Civil and Environmental Engineering Building, Busch Campus (732/445-2232)
Email: gucunski@dora.rutgers.edu

Members of the Graduate Faculty
Perumalsamy N. Balaguru, Professor of Civil Engineering, SE; Ph.D., Illinois (Chicago)
Email: balaguru@ce.illinois.edu

Adjunct Members of the Graduate Faculty
Kenneth Y. Lee, Assistant Professor of Civil Engineering, SE; Ph.D., California (Irvine)
Groundwater engineering; numerical modeling; water resources; contaminant flow

Mohamed H. Mahe, Chair and Associate Professor of Civil and Environmental Engineering, SE; Ph.D., Michigan
Soil/site improvement; soil composite materials; geotechnical soil dynamics; environmental geotechnology

Hani I. Nassif, Assistant Professor of Civil Engineering, SE; Ph.D., Michigan
Analysis and design of bridges; reliability analysis; structural modeling and analysis

Edward G. Navey, Professor of Civil Engineering, SE; D.Eng., Pisa
Structural concrete; materials and systems; cold weather concrete construction

Kaan A. Ozbay, Assistant Professor of Civil Engineering, SE; Ph.D., Virginia Tech
Polytechnic Institute
Transportation and traffic engineering; intelligent transportation systems; network flows; traffic simulation; real-time traffic control

Trefor P. Williams, Associate Professor of Civil Engineering, SE; Ph.D., Georgia Institute of Technology
Construction management; traffic engineering; decision support systems; neural networks

Yook-Kong Yong, Professor of Civil Engineering, SE; Ph.D., Princeton
Structural mechanics; computational mechanics; composite plates; finite element analysis

Adjunct Members of the Graduate Faculty
Yossi Berechman, Visiting Professor of Civil Engineering, SE;
Ph.D., Pennsylvania
Transportation economics; land use and transportation; transportation planning and policy

Reuben Karl, Visiting Professor in Civil Engineering; M.S., Rutgers
Soil grouting

M.H. Phillip Liu, Visiting Associate Professor in Environmental Engineering, SE;
Ph.D., Rutgers
Environmental system analysis; modeling; biological waste treatment

Steven J. Medlar, Visiting Professor of Environmental Engineering, SE; M.S., Tufts
Wastewater treatment; chemical feed; water quality and treatment

Programs
Programs of graduate study leading to the M.S. and Ph.D. degrees may be arranged in a wide variety of areas. The fields of specialization available include structural analysis and design, computational mechanics, structural reliability, structural optimization, structural dynamics, concrete structures, experimental mechanics, soil mechanics and foundations, soil dynamics, soil composite materials, constitutive modeling of geometrals, hydraulic engineering, hydromechanics, coastal studies, water and wastewater treatment, environmental fluid mechanics, water resource systems, transportation engineering, intelligent transportation systems, transportation infrastructure design operations, construction engineering, and management.

Students with a B.S. degree from an accredited civil engineering field may apply for direct admission to the graduate program. Students with backgrounds in engineering programs other than civil engineering are required to complete certain prerequisite undergraduate courses in civil engineering.

Master of Science degree candidates may elect either a thesis or non-thesis option. The thesis option consists of 24 credits of course work, 6 credits of research in a specialized area, and a final thesis presentation. In the nonthesis option, a candidate must complete 27 credits of course work, a 3-credit special project with a report, and pass an oral final examination.

Requirements for the M.S. degree may be satisfied for all options in a part-time evening program designed specifically for students employed in industry and other students whose obligations preclude full-time study. Admission and academic standards for part-time students are the same as for full-time students. This arrangement makes it possible for students to combine day and evening schedules simultaneously or at different periods in their academic careers.

The Master of Philosophy degree is available to doctoral students. The degree of Doctor of Philosophy is primarily a research degree and is not conferred solely as a result of the completion of a series of prescribed courses. The requirements for the Ph.D. degree include a minimum of 48 credits of course work beyond the baccalaureate, a minimum of 24 credits of research beyond the M.S.
degree, and the successful completion of a research dissertation. There is no language requirement. Ph.D. candidates normally are required to register for at least two consecutive terms as full-time students in residence. Exceptions to this requirement may be made in certain special situations.

Significant computing and experimental laboratory resources are available to graduate students. The computer resources of the School of Engineering include three IBM RS/6000 servers, a number of IBM RS/6000 workstations, and X-stations that also serve as a computer-aided design laboratory. Located within the School of Engineering is the Supercomputer Remote Access and Graphics Center, which provides facilities for development and implementation of large-scale computational programs, for high-speed access to the National Science Foundation’s Supercomputer Centers, and for graphical processing and display. The Department of Civil and Environmental Engineering has a graduate Civil Engineering and the Rutgers Intelligent Transportation Systems (RITS) computing laboratories. Silicon Graphics O2 and Sun Ultra workstations, and a number of UNIX/PC-based stations provide excellent computational capabilities, software packages specific to civil/environmental engineering, and access to supercomputing resources. A number of research laboratories are used to complement the theoretical and analytical course work and for a wide range of doctoral and master thesis research. The laboratories include: Concrete Structures and Materials Laboratory, Large-Scale Structural Laboratory, Soil Mechanics Laboratory, Soil Dynamics and Highway Materials Laboratory, Rutgers Asphalt Pavement Laboratory (RAPL), Fluid Mechanics and Environmental Hydraulics Laboratory, and Environmental Engineering Laboratory. Additional research opportunities are provided through the department’s Center for Advanced Infrastructure and Transportation (CAIT).

Degree programs in civil and environmental engineering may be arranged with the program director. Further details may be found in Program Information/Manual for Graduate Students, available on request from the program office.

Graduate Courses

16:180:501. (F) ANALYTICAL METHODS IN CIVIL ENGINEERING (3) Yong
Review of series solutions of differential equations; perturbation methods, applications in civil engineering; derivations of well-posed partial differential equations for engineering problems and their classical solutions; Fourier analysis; applications of probability and statistics to model loads and responses of engineering systems.

16:180:515. (F) STRUCTURAL ANALYSIS (3) Balaguru
Principle of superposition as applied to statically indeterminate structures; energy methods; approximate methods for the analysis of braced and framed structures; failure theories; plastic analysis; introduction to matrix methods for structural analysis; analysis of composite structures.

16:180:516. (S) ADVANCED STRUCTURAL DESIGN I (3) Nassif
Topics include elastic and inelastic column and plate buckling; plate girder design; bracing design; structural modeling and analysis; bridge design; composite design, connections.

16:180:517. (F) STRUCTURAL DYNAMICS (3) Yong
Analysis of structural members and systems subjected to dynamic loads; single-degree-of-freedom and multi-degree-of-freedom analytical models of civil engineering structures; free vibrations, harmonic and transient excitation, foundation motion, response spectrum, Lagrange’s equation; modal superposition and direct integration methods; response by a general purpose dynamic computer code.

16:180:519. (F) ADVANCED STRUCTURAL ANALYSIS (3) Balaguru
Rigorous matrix formulation of the stiffness and flexibility methods of structural analysis applied to skeletal structures. Development of computer programs for the analysis of space and plane trusses and frames.

16:180:522. (S) FINITE ELEMENT METHODS IN CIVIL ENGINEERING (3) Yong, Prerequisite: 14:180:402 or 515.
General finite element formulation of two- and three-dimensional boundary value problems; advanced finite element techniques; finite element formulation problems in continuum mechanics; applications in civil engineering problems; use of a general purpose finite element software package; introduction to the boundary element method.

16:180:523. (S) STRUCTURAL OPTIMIZATION (3) Prerequisite: 16:180:519.
Developments in optimal structural design. Optimality criteria methods. Formulation of structural design problems as optimization problems using special techniques, linear and nonlinear optimization methods. Fully-stressed design versus optimal design.

16:180:525. STRUCTURAL RELIABILITY (3) Nassif
Elements of probability theory and its application to structural engineering, statistical distributions of load, probable strength of structural elements, safety analysis and reliability prediction of structural systems, and reliability-based design codes.

16:180:526. STRUCTURAL STABILITY (3) Nassif
Elastic and inelastic buckling of members under pure compression, pure moment, and combined compression and moment; local buckling; elastic and inelastic buckling of frames; design criteria.

16:180:531. (F) TRAFFIC ENGINEERING: MODELING OF THE TRANSPORTATION SYSTEMS AND OPERATIONS (3) Ozbay
Techniques and hardware used for real-time traffic data collection, sources of errors and sample size determination; design parameters, including economic and human factors and environmental constraints; experiment design for model development and transportation operations analyses; deterministic and stochastic models of traffic processes, including queuing theory, headway distributions and gap acceptance; stream flow characteristics, including car-following and multilane models, bottleneck, fuel consumption, and noise models; models for automatic vehicle control; network operations; models for modes of traffic; traffic control, short-term planning, and system evaluation.

16:180:532. (F) TRANSPORTATION PLANNING: INTELLIGENT TRANSPORTATION SYSTEMS (ITS) (3) Ozbay
ITS projects in U.S., Europe, and Japan; advanced traveler information systems; advanced traffic management systems; automated highway systems; commercial vehicle operations; operational field tests; system architecture; human factors; safety; institutional and legal issues; multimodal ITS applications; modeling Intelligent Transportation Systems as hybrid systems; evaluation and selection of candidate Intelligent Transportation Systems.

16:180:533. (S) TRAFFIC OPERATIONS: ANALYSIS AND CONTROL OF TRANSPORTATION SYSTEMS OPERATIONS (3) Ozbay
Real-time transportation operations; transportation system evaluation; demand modeling; time-sensitive transportation problems, including real-time traffic control and network-wide feedback control; linear and nonlinear network optimization; deterministic and stochastic queuing models of the control of rush hour traffic; traffic signal timing, and ramp metering; incident management; operations; strategic versus tactical transportation infrastructure planning; operation of parking facilities; congestion management strategies; automatic vehicle control.
16:180:534. (S) DESIGN OF TRANSPORTATION FACILITIES: ADVANCED TRANSPORTATION SYSTEMS DESIGN AND EVALUATION. Laboratory (3)
Ozawa
Software and hardware to design, test, and evaluate transportation systems; field studies, development and use of computer models, and instrumentation of small- and full-scale hardware models; geographic information systems, artificial intelligence, and computer graphics for design and evaluation; optimization software for vehicle scheduling and routing and traffic assignment; visual simulation development tools for rapid prototyping of selected transportation systems; simulation life-cycle analysis and validation techniques; data acquisition and control; advanced data visualization tools to test and evaluate developed models.

16:180:535. (F) MECHANISTIC PAVEMENT DESIGN (3)
Staff
Pavement design principles for new and rehabilitated pavements. Material characterization, flexible and rigid pavement design, laboratory and field data collection and analysis, pavement management practices. Deflection back calculation and pavement design software.

16:180:541. (F) ADVANCED REINFORCED CONCRETE I (3)
Nawy
Ultimate load theories in flexure, shear, diagonal tension, and torsion of symmetrical and non-symmetrical members; behavior of compression members in uniaxial and biaxial compression, stability of long columns; first order and second order solutions and the P-Δ effects; serviceability behavior and theories for deflection and cracking of one-dimensional and two-dimensional members; wind analysis and continuity in floor systems and frames; failure mechanisms in two-way slabs and plates, energy design solutions; seismic design of concrete structures.

16:180:542. (S) ADVANCED REINFORCED CONCRETE II (3)
Nawy
High-strength, high-performance concretes and composites; long-term effects; performance characteristics; biaxial and triaxial confinement; micro and macro mechanics of concrete; fracture mechanics theory; shear transfer in multilayered systems; limit theory at failure of indeterminate concrete frames and continuous beams; moment redistribution and ductility of joints; plastic hinging and rotational capacities of confined concrete members and structural systems; membrane and bending theories for the design and analysis of concrete shells and folded plates including buckling behavior.

16:180:544. (S) PRESTRESSED CONCRETE (3)
Nawy
Theory of prestressed concrete; partial load in prestressing and long-term effects due to creep, shrinkage, and relaxation; service load and ultimate load evaluation of pretensioned and post-tensioned elements in flexure, shear, and torsion; camber, deflection and crack control; two-way prestressed concrete floor systems; prestressed portal frames; post-tensioned liquid- and gas-retaining circular tanks; prestressed shells and dome roofs for circular tanks.

16:180:545. (F) ADVANCED CONSTRUCTION ENGINEERING MANAGEMENT I (3)
Williams, Balaguru. Prerequisites: 14:180:406,407, or equivalent.
Advanced techniques for financial and management control of construction projects; construction company financial control and accounting; project cost control; estimating and bid preparation; equipment management; computer and expert system applications to construction financial control.

16:180:546. (S) ADVANCED CONSTRUCTION ENGINEERING MANAGEMENT II (3)
Williams. Prerequisites: 14:180:406,407, or equivalent.
Analytical techniques for control of construction operations; network scheduling techniques (CPM and PERT); computerized scheduling; linear programming applied to construction; simulation of construction operations; decision and risk analysis.

16:180:553. (S) THEORY AND ANALYSIS OF PLATES AND SHELLS (3)
Yong. Prerequisite: 16:180:501.
Review of elastic equations; Kirchhoff-Love and Mindlin plate theories; classical and numerical solutions; theory and applications of shells; finite element analysis of plate and shell structures.

16:180:561. (F) ADVANCED WATER SUPPLY AND SEWERAGE (4)
Medlar
Development of sources of water supply; information analysis; design of collection, transmission, and distribution systems. Hydraulics and design of sewers.

16:180:562. (S) DESIGN OF WATER AND WASTEWATER TREATMENT (4)
Medlar
Functional study of plant loadings in relation to degree of treatment desired; layout, analysis, and design of treatment process units; mechanical and thermal energy requirements and equipment.

16:180:563. (F) ADVANCED HYDROLOGY (3)
Staff
Hydrologic processes and modeling—evapotranspiration, infiltration, precipitation and snow melt, overland flow, subsurface and surface flow relations, channel and watershed routing; hydraulic flood routing, numerical methods; watershed modeling; stochastic processes in hydrology; flood and drought risks, flood plain analysis and management.

16:180:564. (S) UNIT PROCESSES IN ENVIRONMENTAL ENGINEERING (3)
Theory and laboratory experiments demonstrating the design requirements associated with unit processes in water and sewage treatment. Advanced methods of analysis such as spectroscopy, potentiometry, polarography, conductivity, and chromatography.

16:180:566. (F) SEDIMENT TRANSPORT (3)
Gao
Erosion, transport, and deposition of sediment within a watershed and, especially, the fluvial network; flow resistance in natural channels; suspended load, bed load, and total load; noncohesive vs. cohesive sediment; sedimentation; sediment transport as an index of pollutant movement; numerical modeling and field sampling.

16:180:567. (S) ANALYSIS OF RECEIVING WATER QUALITY (3)
Liu
Introduction to mathematical modeling of water quality; well- versus partially-mixed water bodies; turbulent diffusion, velocity-induced dispersion; reaction kinetics; biological processes, growth kinetics, BOD, dissolved oxygen, photosynthesis; development of water quality models.

16:180:568. (S) THERMAL EFFECTS ON RECEIVING WATERS (3)
Modes of heat transfer, energy equation; heat balance in well-mixed water bodies; heat exchange between atmosphere and water body; temperature dynamics in well-mixed bodies; thermal stratification in streams and reservoirs; heat dispersion; thermal jets and plumes; cooling ponds; temperature effects on water-quality parameters.

16:180:571. (F) ADVANCED SOIL MECHANICS (3)
Gucunski
Elasticity and plasticity models; stress-strain relations for soils; failure criteria; elastic solutions for half-space and layered systems; one- and three-dimensional consolidation theory; computer applications.

16:180:572. (S) SOILS ENGINEERING (3)
Maher
Earth pressure theories; stability of natural slopes and open cuts; stability of built embankments, earthquake effects, rapid drawdown and seepage problems, slope stabilization techniques; retaining walls; computer application in slope stability.
16:180:574. (S) GROUNDWATER ENGINEERING (3)
Lee
Porous media; fundamental equations of groundwater flow; confined flow; unconfined flow; hydraulic of wells; numerical methods; groundwater contamination; investigation; remediation and cleanup; monitoring; computer applications.

16:180:575. (F) THEORETICAL SOIL MECHANICS (3)
Gucunski. Prerequisites: 16:180:501, 571.
Theory of semi-infinite elastic media; elastic equilibrium. Stress-strain behavior of soils, constitutive models for soils. Applications of plasticity models to compute soil behavior.

16:180:577. (F) ADVANCED FOUNDATION ENGINEERING (3)
Staff. Lec. 2 hrs., design lab. 3 hrs. Prerequisites: 16:180:571, 572.
Subsurface investigations; site preparation and improvement; flexible retaining structures; caissons; drilled shafts; underground structures; pile foundations; foundations subjected to dynamic loads; marine structures; environmental effects of structural interaction; earthquake engineering; computer applications.

16:180:578. (S) SOIL DYNAMICS (3)
Gucunski
Review of basic vibration theories as applied to soil dynamics; elastic wave propagation in soils; elements of seismic soil explorations; dynamic soil properties; laboratory evaluation of dynamic soil properties; liquefaction; machine foundations; fundamentals of soil-structure interaction; earthquake engineering; computer applications.

16:180:580. (S) ENGINEERING ROCK MECHANICS (3)
Maher
Methods of rock exploration, physical and mechanical properties of rocks; deformation; in-situ strength; hydrothermal effects on rocks; stability of rock masses; state of stress and strain around tunnels, shafts, and mines; stabilization of rocks.

16:180:581. (S) PHYSICOCHEMICAL PROPERTIES AND STABILIZATION OF SOILS (3)
Maher
Relationship between physical properties and selected chemical and mineralogical characteristics emphasizing fine-grained and colloidal fractions; problems affecting site use including weak, compressible soil; high shrink-swell potential; erodibility; stabilization techniques including compaction, earth reinforcement, drainage and erosion control, admixture stabilization, precompression, grouting.

16:180:582. (S) EARTHQUAKE ENGINEERING: DYNAMIC SOIL-STRUCTURE INTERACTION (3)
Gucunski
Seismicity; size of earthquakes; estimation of ground motion parameters; seismic hazard analysis; site response analysis; design ground-motion-building-code provisions; soil-structure interaction effects and formulation; simplified models; solutions in frequency and time domains.

16:180:586. (S) ADVANCED FLUID MECHANICS (3)
Gao
Basic laws and equations of fluid flows; exact and approximate solutions; potential flows; boundary layer flows; turbulent flows in pipes and open channels; free turbulent jets and wakes; turbulence and transport phenomena; transient flows.

16:180:588. (S) THEORY OF HYDRAULIC MODELS (3)
Geometric, kinematic, and dynamic similarity between prototypes and models. Similarity laws; model techniques; undistorted and distorted models; models for hydraulic structures, free-surface flows, flows over erodible beds, and hydraulic machinery. Environmental applications.

16:180:590. (S) COASTAL ENGINEERING (3)
Gao
Generation and propagation of tides; salinity intrusion, pollutant flushing, and sedimentation in estuaries; circulation in the coastal ocean; coastal water quality modeling; coastal wetlands; gravity waves; coastal erosion; coastal structure design.

16:180:601,602. ADVANCED TOPICS IN CIVIL ENGINEERING (BA,BA)
Selected topics of current interest in any specialized field of civil engineering.

16:180:611,612. ADVANCED TOPICS IN ENVIRONMENTAL ENGINEERING (BA,BA)
Selected topics of current interest in any specialized field of environmental engineering.

16:180:691,692. SEMINAR IN CIVIL AND ENVIRONMENTAL ENGINEERING (N 0,N 0)
Contemporary developments and special topics in research and engineering design in civil and environmental engineering presented and discussed by faculty, students, and invited speakers.

16:180:693,694. SPECIAL PROJECT (3,3)
Nonthesis study. Special project under the supervision of a professor. Requires a technical report.

16:180:701,702. RESEARCH IN CIVIL AND ENVIRONMENTAL ENGINEERING (BA,BA)
Thesis work for M.S. or Ph.D. degree.

CLASSICS 190

Degree Programs Offered: Master of Arts, Master of Arts for Teachers, Doctor of Philosophy
Director of Graduate Program: Professor Lowell Edmunds, 008 Ruth Adams Building, Douglass Campus (732/932-9797)
WebSite:http://classics.rutgers.edu

Members of the Graduate Faculty

John Bodell, Professor of Classics, FAS-NB; Ph.D., Michigan
Latin literature and epigraphy; Roman history

Robert H. Bolton, Professor of Philosophy, FAS-NB; Ph.D., Michigan
Ancient philosophy; philosophy of language; metaphysics

Jack L. Cargill, Professor of History, FAS-NB; Ph.D., California (Berkeley)
Greek history and epigraphy

Lowell Edmunds, Professor of Classics, FAS-NB; Ph.D., Harvard
Greek literature, mythology, intellectual history

Thomas J. Figueira, Professor of Classics, FAS-NB; Ph.D., Pennsylvania
Greek political history; the social history of classical antiquity; Greek prose

William W. Forthoum, Professor of Classics, FAS-NB; Ph.D., Princeton
Ancient philosophy

Pierre Pellegrein, Visiting Professor of Philosophy, FAS-NB; Professor of Philosophy, CREA (France); Ph.D., Paris I

Ancient philosophy

Pierre Pellegrein, Visiting Professor of Philosophy, FAS-NB; Professor of Philosophy, CREA (France); Ph.D., Paris I

Ancient philosophy

Robert H. Bolton, Professor of Philosophy, FAS-NB; Ph.D., Stanford
Ancient philosophy

Barbara A. Shailor, Professor of Classics, FAS-NB and Dean of Douglass College; Ph.D., Cincinnati
Medieval Latin; Latin paleography

Jocelyn P. Small, Professor of Art History, FAS-NB; Ph.D., Princeton
Ancient art and archaeology; iconography, Etruscan

John Bodel, Professor of Classics, FAS-NB; Ph.D., Michigan

Michael David Rohe, Associate Professor of Philosophy, FAS-N; Ph.D., Stanford

Ancient philosophy

Jocelyn P. Small, Professor of Art History, FAS-N; Ph.D., Princeton

Classical art and archaeology; iconography, Etruscan

Steven F. Walker, Professor of Comparative Literature, FAS-NB; Ph.D., Harvard

Hellenistic literature

Shirley Werner, Assistant Professor of Classics, FAS-NB; Ph.D., Yale

Roman poetry; Latin philology; textual transmission
Programs

Graduate training in classics, based in the Department of Classics, focuses on the interpretation of original texts in Latin and Greek in the light of modern literary criticism, archaeological data, and the theories and methodologies of the disciplines that deal with ancient Greece and Rome, e.g., ancient history, art history, philosophy, and epigraphy.

While the examination of the original texts is central, this program attempts to put the texts into a perspective that shows the relevance of classics to the present day and prepares students to apply their knowledge of classics in the general humanistic tradition. The Ph.D. candidate is expected to have knowledge of all major authors; to include work beyond the Greek fifth and fourth centuries B.C. and the Republican and Augustan periods of Rome; to have an acquaintance with the interdependence of Greek and Roman literature and culture; and to undertake research in a specific aspect of classics.

Study in the program may be supplemented by work in related programs, such as art history, comparative literature, history, or philosophy, according to individual interests.

The M.A. candidate must demonstrate a general knowledge of the principal ancient authors and may write a thesis (equivalent to 6 credits). The candidate may elect to emphasize either Greek or Latin, but must have a knowledge of both. The student also is expected to demonstrate a reading knowledge of French, German, or Italian. The M.A. examination tests the candidate’s knowledge of the Greek and Latin languages, the material included in course work, and the material on the general reading list. It consists of three hours of translation and three hours of general knowledge questions in history, literature, and philosophy. Students may take the M.A. examination after completing 30 credits of graduate work. General reading lists for both the M.A. and Ph.D. degrees are available to all graduate students at the department office. Reading lists for special fields and authors can be worked out with the graduate adviser.

The M.A. program in Latin for teachers is designed to assist Latin teachers in secondary schools. The candidate is expected to pass a competency examination in ancient Greek or, alternatively, to demonstrate a reading knowledge of German, French, or Italian. The student is expected to complete a total of 30 credits, of which 24 are graduate credits and 6 are outside the field of Latin literature (e.g., ancient history, ancient philosophy); to complete an expository or critical essay (normally in conjunction with the course work); and to pass a comprehensive examination based on course work and the reading list of Latin authors.

The Ph.D. candidate is expected to complete at least 48 credits of course work beyond the bachelor’s degree and to demonstrate a reading knowledge of German and either French or Italian. Course work includes Greek or Latin composition. This requirement may be waived upon successful completion of an equivalent examination. The qualifying examination covers the following four areas, with a three-hour examination in each: (1) a knowledge of the principal Greek and Latin authors as specified on the reading list; (2) a particular Greek or Latin author; (3) a special field, such as a period of ancient literature, a literary genre, ancient philosophy, or a period of Greek or Roman art and archaeology or history; and (4) translation from Latin and Greek. The Master of Philosophy degree is available to doctoral candidates.

An interdisciplinary Ph.D. in art history and classical archaeology may be worked out with advisers from both the art history and classics programs. Students in such a program would have to show proficiency in French, German, Greek, and Latin.

Graduate Courses

Two or three of the following courses are offered each term:

16:190:503. INTRODUCTION TO GRADUATE LITERARY STUDY: LATIN (3)
Close readings and basic critical techniques of interpreting Latin literature.

16:190:504. INTRODUCTION TO GRADUATE LITERARY STUDY: GREEK (3)
Close readings and basic critical techniques of interpreting Greek literature.

16:190:505. STUDIES IN CLASSICS (3)
Topics in the field of classics selected for special study.

16:190:507,508. READINGS IN CLASSICS (3,3)
Readings in areas of special interest in Latin and/or Greek authors.

16:190:509. PROSEMINAR: MATERIALS AND METHODS (3)
Prerequisite: Reading knowledge of Latin and Greek.
Introduction to the discipline of classical philology. Topics covered include bibliography, lexicography, linguistics, textual history and criticism, geography, paleography, epigraphy, and literary theory.

16:190:510. HELLENISTIC LITERATURE (3)
Extensive readings in the major authors of the Hellenistic Age (350-30 B.C.), especially those who influenced Roman literature and thought.

16:190:511. GREEK LITERATURE OF THE ROMAN PERIOD (3)
Greek authors of the Roman period (30 B.C.—A.D. 500) selected with a view to their influence on the literature and thought of the Roman Empire.

16:190:519,520,521,522. LATIN LITERATURE SEMINAR (3,3,3,3)
The work of a different Latin author (e.g., Catullus, Propertius/Tibullus, Virgil, Ovid/Petronius). Offered during Summer Session.

16:190:523. SEMINAR ON ROME AND POMPEII (3)
Research and instruction at Rutgers and in Italy on Rome and Pompeii. Includes oral presentations and a paper.

16:190:525. HISTORIANS OF REPUBLICAN ROME (3)
Critical reading of selected fragments from Roman annalist writers, and an intensive study of the historical writings of Caesar and Sallust.

16:190:526. HISTORIANS OF IMPERIAL ROME (3)
Selected major Greek and Latin texts for the history of the Roman Empire. The periods covered by Tacitus to Ammianus Marcellinus.

16:190:530. ARISTOTLE: CONSTITUTION OF THE ATHENIANS (3)
Analysis of Aristotle’s Athenai Onai Politeia and other documents pertaining to the development of Greek political institutions.

16:190:537. HOMER (3)
The Iliad and Odyssey in their historical, literary, and cultural background.

16:190:559,560. PLATO (3,3)
Several major dialogues of Plato studied with special emphasis on the philosophical problems they raise.

16:190:562. ATTIC HISTORIOGRAPHY (3)
Greek history of the sixth and fifth centuries B.C. in the Greek historiographic tradition. Emphasis on detailed study of the texts, especially Thucydides.

16:190:563,564. GREEK DRAMA (3,3)
Tragedies: Aeschylus, Sophocles, and Euripides; the comedies of Aristophanes.

16:190:565. HERODOTUS (3)
Study of the beginnings of the Greek historiographic tradition in the sixth and fifth centuries B.C., with primary emphasis on Herodotus.

16:190:566,567. ANCIENT NOVELS (3,3)
Greek and Roman prose fiction of the postclassical period in its literary and sociohistorical contexts.
16:190:569. ADVANCED GREEK PROSE COMPOSITION (3)
Study of the styles of Attic prose of the fifth and fourth centuries and composition in the manner of select authors of classical Attic Greek.

16:190:570. ADVANCED LATIN PROSE COMPOSITION (3)
Study of the stylistic development of Latin prose and composition in the manner of select classical authors.

16:190:571. ROMAN DRAMA (3)
Selected works from the dramatic literature of Rome.

16:190:573. ANCIENT COMEDY (3)
Study of the conventions of Greek and Roman comedy.

The Eclogues, Georgics, or Aeneid of Vergil, with attention to literary predecessors, cultural context, influence, and ancient and modern criticism.

16:190:579. PROBLEMS IN AUGUSTAN LITERATURE (3)
Individual topics for research and criticism involving relationships among the elegiac poets, Horace, and Vergil.

16:190:614. CLASSICAL EPIC (3)
A comparative study of Homer, Apollonius, Vergil, and Lucan as epic poets.

16:190:620. GREEK AND ROMAN BIOGRAPHY (3)
Study of the development of classical biography through selected works from major authors in Greek and Latin, including Xenophon, Plutarch, Nepos, and Suetonius.

16:190:642. TOPICS IN GREEK AND ROMAN ARCHAEOLOGY (3,3)
Intensive study of special Greek and Roman archaeological monuments and their significance for the literature, religion, and history of the classical civilizations.

16:190:662. LATIN EPIGRAPHY (3)
A practical introduction to the study of Latin inscriptions, with emphasis on the reading, interpretation, and editing of texts on stone.

16:190:663. LATIN PALEOGRAPHY (3)
A practical introduction to the study of Latin manuscripts from the Middle Ages and Renaissance, with emphasis on the reading, interpretation, editing, and transmission of Latin texts.

16:190:664. THE BOOK (3)
Study of the relationship between the media of publication and conventions of reading in antiquity and the literary forms of classical Greek and Latin literature.

16:190:665. ROME IN THE AGE OF AUGUSTUS (3)
An archaeological survey of urban planning, architectural and artistic achievements in Rome and the provinces seen in the broader perspective of Augustus's political and cultural program.

16:190:660. CLASSICAL GREEK SCULPTURE (3)
Stylistic and thematic discussion of the works of individual sculptors and of major monuments such as temple pediments and friezes from 480 B.C. to the end of the fourth century.

16:190:661. ROMAN SCULPTURE (3)
The major stylistic periods of Roman sculpture in historical reliefs, sarcophagi, and in portraiture from the late Republic to the age of Constantine the Great.

16:190:652. NEW COMEDY AND CHARACTER STUDY (3)
Theophrastus's Characters and at least two plays of Menander, with emphasis on the various kinds of characters recognized in Greek literature and their relationship to plot and dramatic action.

16:190:654. GREEK ORATORY (3)
Selected Greek public orations with emphasis on their significance in political history and their place in the development of Greek rhetoric.

16:190:655,656. ARISTOTLE (3,3)
Special philosophical problems studied in reference to Aristotle's work; emphasis on the variety of Aristotle's interests and the significance of his conceptual language.

16:190:671. LATIN SATIRE (3)
The continuity and development of satire in Greek and Latin literature. Major emphasis on the Roman satirists.

16:190:673. Hellenistic and Roman Philosophy (3)

16:190:674, 675. CICERO'S WORKS (3)
Selected orations, treatises, or letters of Cicero against the background of his private and public life, his sources in Greek and Roman thought, and his influence on later Western tradition.

16:190:677, 678. HISTORY OF LATIN LITERATURE I: THE REPUBLIC (3,3)
The origin and development of Latin literature from its birth in the third century B.C. down to the end of the Republic.

16:190:679, 680. HISTORY OF LATIN LITERATURE II: THE EMPIRE (3,3)
Extensive reading in the major authors of the first and second centuries of the Roman Empire, with emphasis on the continued development of poetry and prose.

16:190:682. ELEGIAC POETRY (3)
Historic, thematic, and stylistic consideration of the elegies of Catullus, Propertius, Tibullus, and Ovid, and their Greek antecedents.

16:190:701, 702. RESEARCH IN CLASSICS (BA,BA)

COGNITIVE SCIENCE 185

Program Offered: Certificate in Cognitive Science
Acting Director of the Certificate Program in Cognitive Science:
Professor Zenon Pylyshyn, Rutgers Center for Cognitive Science,
Psychology Building Addition, Busch Campus (732/445-0635)
Web Site: http://ruccs.rutgers.edu

Participating Faculty
The following members and associate members of the graduate faculty, identified more fully under the subject headings indicated, are among those who participate in the certificate program in cognitive science:

Saul Amarel, Computer Science
Mark Baker, Linguistics
Nicholas Belkin, Communication, Information and Library Studies
Ira Black, Physiology and Neurobiology
Alexander Borgida, Computer Science
Gretchen Chapman, Psychology
Veneeta Dayal, Linguistics
Douglas DeCarlo, Computer Science, RuCCS
Viviane Deprez, Linguistics
Sven Dickinson, Computer Science, RuCCS
Frances Egan, Philosophy
Jacob Feldman, Psychology, RuCCS
James Flanagan, Electrical and Computer Engineering
Jerry Fodor, Philosophy, RuCCS
Jane Grimshaw, Linguistics, RuCCS
Viviane Deprez, Linguistics
James Flanagan, Electrical and Computer Engineering
Jerry Fodor, Philosophy, RuCCS
Jane Grimshaw, Linguistics, RuCCS
Haim Hirsh, Computer Science
Judith Hudson, Psychology
Certificate Program

Cognitive science is an interdisciplinary area of scholarship concerned with understanding the nature and development of such intelligent capacities as perception, language, reasoning, planning, and problem solving in both biological and artificial systems. This area of study is well represented in various departments at Rutgers—New Brunswick, and the Rutgers Center for Cognitive Science (RuCCS) at the Busch campus helps foster and coordinate such studies. Members of the center may have joint appointments with such participating academic departments as biomedical engineering, computer science, linguistics, philosophy, and psychology, as well as with such other research centers as the Laboratory of Vision Research and the Center for Computer Aids for Industrial Productivity.

The goal of the cognitive science certificate program is to provide a structured way for students enrolled in various graduate programs to study and carry out research in cognitive science with guidance from relevant faculty advisers and to bring interested students from different disciplines together into a common intellectual community and research environment.

Students with an interest in any aspect of cognitive science may pursue, in the course of their regular program of studies toward the degree of doctor of philosophy, a special concentration in cognitive science. Admission to the certificate program and subsequent selection of courses and research project are subject to the approval of the Cognitive Science Certificate Committee. Admission is based on academic performance and interests and requires the approval of the graduate program in which the student is enrolled.

Program Requirements

To receive the Certificate in Cognitive Science, the student must successfully complete the requirements for a Ph.D. in the department in which the student is registered and also must meet the following additional requirements:

2. Completion of a research project under the direction of a participating faculty member, normally outside the program in which the student is registered. Project proposals must be approved by the Cognitive Science Certificate Committee.
3. A minimum of 9 additional credits from approved courses in biomedical engineering, cognitive science, computer science, linguistics, philosophy, and psychology. At least 9 credits must be taken from outside the graduate program in which the student is registered. Courses in other related fields may be submitted by petition.
Brent D. Ruben, Professor of Communication, SCILS; Ph.D., Iowa
Communication theory; communication and information systems; health and medical communication
Tefko Saracevic, Professor of Library and Information Science, SCILS; Ph.D., Case Western Reserve
Information science; information education; management; information seeking and retrieving
William S. Solomon, Associate Professor of Journalism and Mass Media, SCILS; Ph.D., California (Berkeley)
Sociology of mass media; historical sociology; laboratory studies
Linda C. Steinert, Associate Professor of Journalism and Mass Media, SCILS; Ph.D., Pennsylvania State
Organizational communication; communication and gender; communication ethics
Betty J. Turock, Professor of Library and Information Science, SCILS; Ph.D., Rutgers
Management; information services
Kay E. Vandergrift, Professor of Library and Information Science, SCILS; Ed.D., Columbia
Library services for children and young adults; educational media services; distance education
Jana Varlejs, Associate Professor of Library and Information Science, SCILS; Ph.D., Wisconsin (Madison)
Continuing professional education; library education

Associate Members of the Graduate Faculty
Mark Aakhus, Assistant Professor of Communication, SCILS; Ph.D., Arizona
Organizational communication; decision-making and disputing processes; new communication technology
Elizabeth Boyd, Assistant Professor of Communication, SCILS; Ph.D., California (Los Angeles)
Interaction in medical and other institutional settings
Nelson L. Chou, Librarian II, Head, East Asian Library; Ph.D., Chicago
Library and information science
Mark Frank, Assistant Professor of Communication, SCILS; Ph.D., Cornell
Expression of emotion and interpersonal deception
Stephen Haas, Assistant Professor of Communication, SCILS; Ph.D., Ohio State
Health communication; interpersonal/relational communication
Jori L. Oliver, Assistant Dean for Network and Information Technology, SCILS; M.S., Rutgers
Information retrieval and dissemination in distance education
Laurie Ouellette, Assistant Professor of Journalism and Mass Media, SCILS; Ph.D., Massachusetts (Amherst)
Media theory; media history; cultural studies; feminist criticism
Jose Perez-Carballo, Assistant Professor of Library and Information Science, SCILS; Ph.D., New York
Text processing; networked information; information retrieval
Barbara S. Reed, Associate Professor of Journalism and Mass Media, SCILS; Ph.D., Ohio
History and contemporary studies of ethnic press and magazines
Patricia C. Reeling, Associate Professor of Library and Information Science, SCILS; D.L.S., Columbia
Library education; government information policy
L.J. Shrum, Associate Professor of Marketing, SB–NB; Ph.D., Illinois (Urbana)
Cognitive processes underlying media effects
Jeffrey K. Smith, Professor of Educational Statistics and Measurement, GSE; Ph.D., Chicago
Statistics and measurement
Maureen Taylor, Assistant Professor of Communication, SCILS; Ph.D., Purdue
Public relations; international communication and development communication
Chris Vaughan, Assistant Professor of Journalism and Mass Media, SCILS; Ph.D., California (Berkeley)
International communication and history; popular culture; alternative media
Silvio Wasbord, Assistant Professor of Communication, SCILS; Ph.D., California (San Diego)
International communication; broadcasting; journalism; Latin American media and culture
Mark Winston, Assistant Professor of Library and Information Science, SCILS; Ph.D., Pittsburgh
Management; information services

Programs

The Ph.D. program provides doctoral-level course work and a degree program for students seeking theoretical and research skills for scholarly activity and/or professional leadership in communication and information fields.

The focus of the program is on the nature and functions of communication and information processes, systems, institutions, and policies, and their impact on individuals, and on social, organizational, national, and international affairs. Students may elect to focus their study in any of the following areas: communication processes, information science, institutions and policy, library studies, or media studies.

Course work in communication processes focuses on the study of face-to-face and mediated communication in interpersonal, organizational, scientific, societal, and global settings.

Information science is concerned with information behavior and systematic responses to it. As such, it seeks to develop understanding of, and research capability in, human information-seeking activity, information retrieval systems, and information structures. Institutions and policy focuses on the study of communication and information institutions, and the process of policy development in organizational, national, and international contexts.

Library studies emphasizes library user behavior and the role of libraries and library education in society. Attention is devoted to the library environment, organization, collection development, special services, automation, and the evaluation thereof.

Media studies is concerned with the social, psychological, political, and economic impact of mediated communication, as well as with cultural and historical conditions that give rise to contemporary media.

The Ph.D. degree requires the completion of a minimum of 36 credit hours of doctoral-level course work and 24 credit hours of dissertation research in addition to the completion of a minimum of 24 credits of masters-level course work.

As a part of the 36-credit course work requirement, students must take 16:194:602 Research Foundations, 16:194:603 Qualitative Research Methods, and 16:194:604 Quantitative Research Methods.

There is no language or residency requirement, and students may pursue the Ph.D. on either a full- or part-time basis. Students are required to enroll for a minimum of 6 credits during each of the first two terms in the program. Teaching and research assistantships that include tuition remission and various fellowships are available for highly qualified full-time students.

The Master of Philosophy degree is also available to doctoral candidates. The School of Communication, Information and Library Studies (SCILS) offers an M.L.S. degree in library and information studies and a Master of Communication and Information Studies. These programs are described in the SCILS catalog.

Graduate Courses

16:194:600. PH.D. COLLOQUIUM (0)
N. Belkin. Required each term in course work. Forum for the presentation of research by guest speakers, faculty, and students.

16:194:601. INFORMATION AND COMMUNICATION PROCESSES (3)
Nature of information and communication processes, and the role of information and communication in individual, social, and institutional behavior. Particular emphasis on the conceptual linkages between information and communication processes.

16:194:602. RESEARCH FOUNDATIONS (3)
Concepts, method, and practices of social science research in relation to communication, information science, and library studies.

16:194:603. QUALITATIVE RESEARCH METHODS (3)
Qualitative approaches for examining information processes, including information definition, acquisition, evaluation, and use.

16:194:604. QUANTITATIVE RESEARCH METHODS (3)
Prerequisite: 16:960:532 or 16:610:572.
Facets of research; problem areas; research techniques and experiments.
16:194:605. CURRENT RESEARCH ISSUES (3)
Integrative treatment of fundamental assumptions, paradigms, and directions in contemporary research on information, communication, and information systems in various fields, particularly information science and communication.

16:194:610. SEMINAR IN INFORMATION STUDIES (3)
Major problems, trends, and developments in information science and technology. Critical survey of current research and findings.

16:194:612. HUMAN INFORMATION BEHAVIOR (3)
Prerequisite: 16:194:610 or permission of instructor.
Precursors to, and characteristics of, human information-seeking behavior, individual and social, both within and outside of institutional information systems. Relations between such behavior and information system design and relevant technologies.

16:194:614. INFORMATION RETRIEVAL THEORY (3)
Prerequisites: 16:194:610 and 612, or permission of instructor.
Examines the basic problems of information retrieval from theoretical and experimental points of view. Develops a basis for the specification of design principles for IR systems.

16:194:617. KNOWLEDGE REPRESENTATION FOR INFORMATION RETRIEVAL (3)
Concurrent consideration of options for knowledge representation, methods for evaluating the effect of these options on costs and effectiveness, and research relating to knowledge representation for information retrieval.

16:194:619. EXPERIMENT AND EVALUATION IN INFORMATION SYSTEMS (3)
Prerequisites: 16:194:612, 614, or permission of instructor.
Measures, models, and methods for macroevaluation of impact of information systems within their environment and for microevaluation of performance of system components.

16:194:620. INTERPERSONAL COMMUNICATION (3)
Contemporary theories and major lines of classic and current research concerning interpersonal communication.

16:194:621. ORGANIZATIONAL COMMUNICATION RESEARCH (3)
Survey of major principles and research and analytic techniques relative to organizational communication.

16:194:631. MASS COMMUNICATION THEORY AND RESEARCH (3)
Current mass communication theories and approaches analyzed from a research perspective. Topics include audiences, uses and gratifications, socialization processes and effects, and agenda setting.

16:194:632. SCHOLARLY AND SCIENTIFIC COMMUNICATION (3)
Study of the processes through which scholarly, scientific, and technical ideas are communicated: mentoring; professional, national, and international information networks; scholarly and scientific publishing; and other aspects of specialized information transfer.

16:194:633. RESEARCH IN SCHOLARLY AND SCIENTIFIC COMMUNICATION (3)
An interdisciplinary review and exploration of current research in the communication, structure, processes, and products of research and scholarship.

16:194:641. INFORMATION POLICY AND TECHNOLOGY (3)
Impact of modern revolution in information technology; related challenges of contemporary problems in information policies at individual, organizational, national, and international levels. Use of information indicators.

16:194:642. INFORMATION REGULATION AND LAW (3)
Historical and contemporary legal and regulatory issues stemming from the application of information technology.

16:194:643. INFORMATION INDICATORS (3)
Integrated treatment of measures, indicators, and methods for quantitative description of information and communication systems, resources, and activities. Emphasis on drawing relations among different measures and application to information policy studies.

16:194:645. ADVANCED CONCEPTS IN THE MANAGEMENT OF INFORMATION ORGANIZATIONS (3)
Prerequisite: 17:610:570 or equivalent.
Systematic consideration of the evolution of management theory leading to an evaluation of contemporary theoretical and research issues in planning, organizing, staffing, leading, and controlling the information organization.

16:194:648. ORGANIZATIONAL ASSESSMENT AND CHANGE (3)
Offered in alternate years.
Systematic consideration of the theories and strategies of assessment, planning, development, and change at the organizational and programmatic level in nonprofit and profit-seeking information organizations.

16:194:655. (S) MEASUREMENT AND EVALUATION OF LIBRARY SERVICES (3)
Major issues, obstacles, and developments in approaches to measurement and evaluation of information services. Emphasis on methodology and strategies for implementation.

16:194:656. THEORIES AND ISSUES IN LIBRARY STUDIES (3)
Examination of the intellectual foundations for librarianship as a discipline, the development of a broadened understanding of pervasive theories and research issues, and the identification and exploration of research literature in librarianship and pertinent allied fields.

16:194:695. TEACHING APPRENTICESHIP (0)
Prerequisite: 9 credits in Ph.D. program.
A noncredit teaching apprenticeship to provide doctoral candidates with classroom experience.

16:194:696, 697. SPECIAL TOPICS (3,3)
Possible topics include communication technology and policy, naturalistic inquiry, human/computer interaction, history of U.S. mass media, intercultural communication, and race, gender, and the media.

16:194:698. INDEPENDENT STUDY (3)
16:194:699. INDEPENDENT STUDY (3)
16:194:701, 702. DISSERTATION RESEARCH (BA, BA)

COMMUNICATION STUDIES
(See the catalog of the School of Communication, Information and Library Studies for information about programs leading to the Master of Communication and Information Studies.)
COMPARATIVE LITERATURE 195

Degree Programs Offered: Master of Arts, Doctor of Philosophy
Director of Graduate Program: Professor Josephine Diamond,
205 Ruth Adams Building, Douglass Campus (732/932-7606)

Members of the Graduate Faculty

Derek Attridge, Distinguished Visiting Professor of English, FAS-NB; Ph.D., Cambridge

Literary theory; literary language; poetic form; James Joyce

Louise K. Barnett, Professor of English, FAS-NB; Ph.D., Bryn Mawr

English and American literature

Stephen Bronner, Professor of Political Science, FAS-NB; Ph.D., California (Berkeley)

Critical theory; political theory

Abena P. A. Busia, Associate Professor of English, FAS-NB; D.Phil., Oxford

African women in British and American fiction

Ed Cohen, Associate Professor of English, FAS-NB; Ph.D., Stanford

Cultural studies; gender studies

Drucilla Cornell, Professor of Law and Women’s Studies, School of Law–Newark and FAS-NB; J.D., California Law School (Los Angeles)

Feminist theory; aesthetics

Harriet A. Davidson, Associate Professor of English, FAS-NB; Ph.D., Vanderbilt

Modern and contemporary poetry; modern British and American literature; critical theory

Marianne De Koven, Professor of English, FAS-NB; Ph.D., Stanford

Modemism; women’s studies

Elin F. Diamond, Professor of English, FAS-NB; Ph.D., California (Davis)

Drama and dramatic theory; feminist and literary theory

Josephine Diamond, Professor of French, FAS-NB; Ph.D., Cornell

Nineteenth- and twentieth-century literature; critical theory; women’s studies and feminist theory

Lowell Edmonds, Professor of Classics, FAS-NB; Ph.D., Harvard

Greek literature; mythology; intellectual history

Uri A. Eisenzweig, Professor of French, FAS-NB; Ph.D., Paris

French literature; literary theory; Western literature of the nineteenth and twentieth centuries

Franco Ferrucci, Professor of Italian, FAS-NB; Ph.D., Pavia

Renaissance studies; critical theory

Jerry Aline Flieger, Professor of French, FAS-NB; Ph.D., California (Berkeley)

Twentieth-century literature; critical theory; women’s studies and feminist theory

Sandy Fliterman-Levis, Associate Professor of English, FAS-NB; Ph.D., California (Berkeley)

Feminist cultural analysis with an emphasis on film and literature

William Galperin, Professor of English, FAS-NB; Ph.D., Brown

Romantic literature; literary theory; media studies

Mary S. Gossy, Associate Professor of Spanish, FAS-NB; Ph.D., Harvard

Spanish and Latin American literature; feminist and critical theory; lesbian and gay studies

Peter Li, Associate Professor of Chinese, FAS-NB; Ph.D., Chicago

Chinese studies

Jorge Marcone, Associate Professor of Spanish, FAS-NB; Ph.D., Texas

Contemporary Spanish-American literature; literary and orality; regionalism; critical theory

Michael McKeon, Professor of English, FAS-NB; Ph.D., Columbia

Seventeenth- and eighteenth-century literature; critical theory; historical criticism

Alicia Ostriker, Professor of English, FAS-NB; Ph.D., Wisconsin

Romantic and modern literature; contemporary poetry

Gerald Pirog, Associate Professor of Slavic Languages and Literature, FAS-NB; Ph.D., Yale

Slavic languages and literatures; critical theory; poetry

Bruce Robbins, Professor of English, FAS-NB; Ph.D., Harvard

Critical theory; modern fiction

Susana R. Rosker-Martinez, Associate Professor of Spanish, FAS-NB; Ph.D., Maryland (College Park)

Nineteenth- and twentieth-century Spanish-American literature and culture; literary theory

Louis Sass, Professor of Clinical Psychology, GSAPP; Ph.D., California (Berkeley)

Literature and psychology; hermeneutics

Paul Schalow, Associate Professor of Japanese, FAS-NB; Ph.D., Harvard

Japanese literature (Edo period); gender and sexuality in Japanese literature; Japanese women’s writing

Serge Sobolevitch, Associate Professor of Comparative Literature, FAS-NB; Ph.D., Princeton

Theater arts; symbolism; neoclassicism; theater history

Mary Speer, Professor of French, FAS-NB; Ph.D., Princeton

Medieval language and literature; theory and practice of editing

Antonia Tripolitis, Associate Professor of Religion, FAS-NB; Ph.D., Pennsylvania

Hellenistic Greek literature and thought; patriarchy; Neo-Platonism

Ching-Yu Ts, Professor of Chinese, FAS-NB; Ph.D., Washington

Chinese studies; poetry and literary criticism

Janet A. Walker, Professor of Comparative Literature, FAS-NB; Ph.D., Harvard

The novel; comparative East-West poetics

Steven F. Walker, Professor of Comparative Literature, FAS-NB; Ph.D., Harvard

Renaissance, literature and mythology; Jungian criticism

Andrew Welsh, Associate Professor of English, FAS-NB; Ph.D., Pittsburgh

Old English and medieval studies; poetry

Alan Williams, Professor of French, FAS-NB; Ph.D., SUNY (Buffalo)

Film history and theory; literary theory; contemporary French literature

Yael Zerubavel, Professor of History, FAS-NB, and Director of the Center for the Study of Jewish Life; Ph.D., Pennsylvania

Jewish studies; folklore

Associate Member of the Graduate Faculty

Louisa Schein, Assistant Professor of Anthropology, FAS-NB; Ph.D., California (Berkeley)

China; cultural studies

Programs

The graduate program in comparative literature provides the student with an opportunity to pursue literary studies across national, linguistic, cultural, and disciplinary boundaries. Areas of study include genres, periods, movements, East-West poetics, colonial and postcolonial literatures, minority and marginalized literatures, and the interaction of literature with other fields. Students may take 50 percent of their courses in other departments. Drawing on a distinguished and diverse faculty from many disciplines, the program seeks to combine rigor and flexibility by providing a carefully structured curriculum that takes into account students’ specific needs and interests. Each student’s program of study is arranged individually in consultation with the graduate director and an adviser.

Candidates for the M.A. degree must complete 30 credits of course work, pass two foreign language examinations, and two written examinations, one on theory and one on a genre studied within a century or a limited period.

Candidates for the Ph.D. degree must complete 45 credits of course work and 24 research credits. After completing 12 credits at Rutgers and with permission of the graduate director and the graduate dean, students entering the program with an M.A. from another university may apply to transfer up to 24 credits. Ph.D. candidates must pass three foreign language examinations, two written examinations (as above), and three oral examinations. The oral examinations are on a second genre studied over at least three centuries, a literary movement, and a special topic examination related to the dissertation. The degree will be conferred after successful defense of the dissertation.

Applications requesting consideration for fellowship grants should be submitted prior to February 1. A Guide for Graduate Students in Comparative Literature is available in the program office.

Graduate Courses

16:195:501. HISTORY OF LITERARY CRITICISM (3)

Required of all graduate students in comparative literature.

Readings in the major theoretical statements of literary critics and aestheticians from Plato to the end of the nineteenth century.

16:195:502. WOMEN AND WRITING (3)

Social, aesthetic, and theoretical issues of women and writing through representative writers, movements, texts, and contexts.

16:195:503. POETRY IN TRANSLATION (3)

Study of translation as creative interpretation, with emphasis on Greco-Roman classics. Readings may include works by the following: Euripides, Homer, Aristophanes, and others.

16:195:505,506. STUDIES IN MEDIEVAL LITERATURE (3,3)

Basic English and continental texts, with emphasis on relationships with modern literature.

16:195:507,508. PROVENÇAL LANGUAGE AND LITERATURE (3,3)

Introduction to Old Provençal, with readings in major troubadours, and tracing of troubadour influences on the early lyrics of Western Europe.

79
16:195:509. STUDIES IN THE RENAISSANCE (3)
Survey of intellectual currents and study of representative works, including epic, lyric, prose fiction, and drama; analysis of stylistic changes from the early to the late Renaissance.

16:195:511. STUDIES IN THE NEOCLASSICAL PERIOD (3)
The late sixteenth- and seventeenth-century development of neoclassical intellectual, artistic, and literary doctrines, stressing the Italian baroque origins of the movement, its French development, and its English repercussions.

16:195:512. THE ENLIGHTENMENT (3)
Major authors studied with emphasis on literary and aesthetic concerns and their link to the philosophical.

16:195:513. ROMANTICISM (3)
European romanticism as a literary movement, emphasizing the genres of the lyric, the novel, and the drama.

16:195:514. SYMBOLISM (3)
English, German, and American roots of French symbolism; its influence on such figures as Ruben Dario and A. Blok.

16:195:515. STUDIES IN CONTEMPORARY LITERATURE (3)
Assessment of major trends in today's literary production, with equal attention paid to the traditions they question and the evolving society they illustrate.

16:195:516. TOPICS IN COMPARATIVE LITERATURE (3)

16:195:517,518. INDIVIDUAL STUDIES IN COMPARATIVE LITERATURE (3,3)
Directed readings and frequent written analyses.

16:195:519. TOPICS IN COMPARATIVE LITERATURE AND OTHER FIELDS (3)

16:195:521. TOPICS IN NON-WESTERN LITERATURE (3)

16:195:601. THE NOVEL (3)
Generic and thematic study of the novel as it evolved in Europe and the Western world in general. Some attention to the non-Western novel.

16:195:602. POETRY (3)
Studies in poetic genres.

16:195:603. DRAMA (3)
Studies in dramatic genres.

16:195:604. STUDIES IN NARRATIVE (3)
Studies in narrative genres.

16:195:605. MAJOR AUTHORS (3)
Close study, in a comparative context, of the works of one or more major authors.

16:195:606. THEORY AND PRACTICE OF TRANSLATION (3)
Consideration of various approaches to a common text, with attempts at creative practice.

16:195:607. STUDIES IN NONFICTIONAL PROSE (3)
From historical to scientific, to legal texts; from biography to autobiography, to private correspondence. The rhetoric and form of nonfictional prose and its relation to literature.

16:195:608. ADVANCED TOPICS IN COMPARATIVE LITERATURE (3)

16:195:609. COMPARATIVE LITERATURE AND OTHER FIELDS (3)
Relationships between literature and such fields as art, history, anthropology, philosophy, and music.

16:195:611. PSYCHOANALYTIC APPROACHES TO LITERATURE (3)
Function of literature viewed from a psychoanalytic perspective; the (psycho)analysis of the literary text; approaches to the biography of the artist; literary responses to modern psychoanalysis.

16:195:612. LITERATURE AND THE SOCIAL ORDER (3)
Society in the text; literary texts in society. Political and ideological aspects of a complex interaction.

16:195:613. MINORITY LITERATURES (3)
Literary texts written and read by minority groups in various contexts. The social, philosophical, and aesthetic implications of the very notion of minority literature.

16:195:614. COMPARATIVE EAST-WEST POETICS (3)
Comparison of the literary systems of the Eastern and Western worlds, including conceptions of literature, literary genres, and critical terminology.

16:195:615. EAST-WEST LITERARY RELATIONS (3)
Literary works of Eastern and Western worlds studied in the comparative context of actual historical meetings.

16:195:617. TOPICS IN ADVANCED LITERARY THEORY (3)
Prerequisite: 16:617:510 or its equivalent.

16:195:621. ADVANCED TOPICS IN NON-WESTERN LITERATURE (3)

16:195:701,702. RESEARCH IN COMPARATIVE LITERATURE (BA,BA)

Interdisciplinary Graduate Course

15:617:510. INTRODUCTION TO LITERARY THEORY (3)
Open to second-term graduate students; priority given to students from programs participating in the Council of Languages and Literature.

15:617:520. TOPICS IN LITERARY THEORY (3)
Prerequisite: 16:617:510 or its equivalent.

Computer science: digital computer systems; computer architecture; image processing and graphics

16:195:509. STUDIES IN THE RENAISSANCE (3)
Survey of intellectual currents and study of representative works, including epic, lyric, prose fiction, and drama; analysis of stylistic changes from the early to the late Renaissance.

16:195:511. STUDIES IN THE NEOCLASSICAL PERIOD (3)
The late sixteenth- and seventeenth-century development of neo-classical intellectual, artistic, and literary doctrines, stressing the Italian baroque origins of the movement, its French development, and its English repercussions.

16:195:512. THE ENLIGHTENMENT (3)
Major authors studied with emphasis on literary and aesthetic concerns and their link to the philosophical.

16:195:513. ROMANTICISM (3)
European romanticism as a literary movement, emphasizing the genres of the lyric, the novel, and the drama.

16:195:514. SYMBOLISM (3)
English, German, and American roots of French symbolism; its influence on such figures as Ruben Dario and A. Blok.

16:195:515. STUDIES IN CONTEMPORARY LITERATURE (3)
Assessment of major trends in today's literary production, with equal attention paid to the traditions they question and the evolving society they illustrate.

16:195:516. TOPICS IN COMPARATIVE LITERATURE (3)

16:195:517,518. INDIVIDUAL STUDIES IN COMPARATIVE LITERATURE (3,3)
Directed readings and frequent written analyses.

16:195:519. TOPICS IN COMPARATIVE LITERATURE AND OTHER FIELDS (3)

16:195:521. TOPICS IN NON-WESTERN LITERATURE (3)

16:195:601. THE NOVEL (3)
Generic and thematic study of the novel as it evolved in Europe and the Western world in general. Some attention to the non-Western novel.

16:195:602. POETRY (3)
Studies in poetic genres.

16:195:603. DRAMA (3)
Studies in dramatic genres.

16:195:604. STUDIES IN NARRATIVE (3)
Studies in narrative genres.

16:195:605. MAJOR AUTHORS (3)
Close study, in a comparative context, of the works of one or more major authors.

16:195:606. THEORY AND PRACTICE OF TRANSLATION (3)
Consideration of various approaches to a common text, with attempts at creative practice.

16:195:607. STUDIES IN NONFICTIONAL PROSE (3)
From historical to scientific, to legal texts; from biography to autobiography, to private correspondence. The rhetoric and form of nonfictional prose and its relation to literature.

16:195:608. ADVANCED TOPICS IN COMPARATIVE LITERATURE (3)

16:195:609. COMPARATIVE LITERATURE AND OTHER FIELDS (3)
Relationships between literature and such fields as art, history, anthropology, philosophy, and music.

16:195:611. PSYCHOANALYTIC APPROACHES TO LITERATURE (3)
Function of literature viewed from a psychoanalytic perspective; the (psycho)analysis of the literary text; approaches to the biography of the artist; literary responses to modern psychoanalysis.

16:195:612. LITERATURE AND THE SOCIAL ORDER (3)
Society in the text; literary texts in society. Political and ideological aspects of a complex interaction.

16:195:613. MINORITY LITERATURES (3)
Literary texts written and read by minority groups in various contexts. The social, philosophical, and aesthetic implications of the very notion of minority literature.

16:195:614. COMPARATIVE EAST-WEST POETICS (3)
Comparison of the literary systems of the Eastern and Western worlds, including conceptions of literature, literary genres, and critical terminology.

16:195:615. EAST-WEST LITERARY RELATIONS (3)
Literary works of Eastern and Western worlds studied in the comparative context of actual historical meetings.

16:195:617. TOPICS IN ADVANCED LITERARY THEORY (3)
Prerequisite: 16:617:510 or its equivalent.

16:195:621. ADVANCED TOPICS IN NON-WESTERN LITERATURE (3)

16:195:701,702. RESEARCH IN COMPARATIVE LITERATURE (BA,BA)

Interdisciplinary Graduate Course

15:617:510. INTRODUCTION TO LITERARY THEORY (3)
Open to second-term graduate students; priority given to students from programs participating in the Council of Languages and Literature.

15:617:520. TOPICS IN LITERARY THEORY (3)
Prerequisite: 16:617:510 or its equivalent.
Apostolos Gerasoulis, Professor of Computer Science, FAS-NB; Ph.D., SUNY (Stony Brook)
Parallel processing; algorithms; numerical analysis
Michael D. Grigoriadis, Professor of Computer Science, FAS-NB;
Ph.D., Wisconsin
Mathematical programming; algorithms; structured and network optimization
Peter Hammer, Professor of Mathematics and Operations Research, FAS-NB;
Ph.D., Bucharest
Boolean methods in operations research; discrete optimization
Haym Hirsh, Associate Professor of Computer Science, FAS-NB; Ph.D., Stanford
Artificial intelligence; machine learning
Liviu Ilode, Assistant Professor of Computer Science, FAS-NB; Ph.D., Princeton
Distributed and parallel systems; operating systems
Tomasz Imielinski, Chairperson and Professor of Computer Science, FAS-NB;
Ph.D., Polish Academy of Sciences
Logical foundations of databases; mobile wireless computing
Jeffrey Kahn, Professor of Mathematics, FAS-NB; Ph.D., Ohio State
Combinatorics
Bahman Kalantari, Associate Professor of Computer Science, FAS-NB;
Ph.D., Minnesota
Mathematical programming; global and discrete optimization
Kenneth R. Kaplan, Associate Professor of Computer Science, FAS-NB; Ph.D.,
Polytechnic Institute of New York
Algorithms; queueing theory; modeling; discrete simulation
Leonid Khachiyan, Professor of Computer Science, FAS-NB; Ph.D., D.Sc., USSR
Academy of Sciences
Mathematical programming; complexity; discrete optimization
Janos Komlos, Professor of Mathematics, FAS-NB; Ph.D. Eotvos
Combinatorics; probability; theoretical computer science
Ulrich Kremmer, Assistant Professor of Computer Science, FAS-NB; Ph.D., Rice
Computation techniques and interactive programming environments for
distributed memory and shared memory multiprocessor
Casmir Kulikowski, Board of Governors Professor of Computer Science, FAS-NB;
Ph.D., Hawaii
Artificial intelligence; pattern recognition; imaging; biomedical applications
Saul Y. Levy, Associate Professor of Computer Science, FAS-NB; Ph.D., Yeshiva
Massively parallel architectures; algorithms; environments
L. Thorne McCarty, Professor of Computer Science and Law, FAS-NB/SL-N;
J.D., Harvard
Artificial intelligence; logic programming; legal reasoning
Evangelia Micheli-Tzanakou, Professor of Biomedical Engineering, SE;
Ph.D., Syracuse
Visual pattern recognition; neural networks; neural computing
Nafaty H. Minsky, Professor of Computer Science, FAS-NB; Ph.D., Hebrew
Software engineering; programming; languages; systems; distributed computing
Marvin C. Paull, Professor of Computer Science, FAS-NB; B.S., Clarkson
Design and analysis of algorithms; principles and practice
Gerard R. Richter, Professor of Computer Science, FAS-NB; Ph.D., Harvard
Numerical solutions of differential and integral equations
Barbara Ryder, Professor of Computer Science, FAS-NB; Ph.D., Rutgers
Programming languages; software engineering; parallel computing
Michael Saks, Professor of Mathematics, FAS-NB; Ph.D., Massachusetts Institute
of Technology
Combinatorics; complexity theory; algorithms
Charles F. Schmidt, Professor of Psychology, FAS-NB; Ph.D., Iowa
Artificial intelligence; belief systems; inference; cognition
Eduardo Sonntag, Professor of Mathematics, FAS-NB; Ph.D., Florida
Nonlinear control theory; neural networks
Diane L. Souvaine, Associate Professor of Computer Science, FAS-NB;
Ph.D., Princeton
Design and analysis of geometric and graph-theoretic algorithms
William L. Steiger, Professor of Computer Science, FAS-NB; Ph.D.,
Australian National University
Algorithms; parallel computations; computational geometry
Louise Steinberg, Associate Professor of Computer Science, FAS-NB;
Ph.D., Stanford
Artificial intelligence; knowledge-based design; VLSI; machine learning
Suzanne Stevenson, Assistant Professor of Computer Science, FAS-NB/CCS;
Ph.D., Maryland
Computational linguistics; cognitive modeling
Endre Szemeredi, State of New Jersey Professor of Computer Science, FAS-NB;
Sc.D., Moscow
Number theory; extremal graphs; theoretical computer science
Robert Vichnevetsky, Professor of Computer Science, FAS-NB; Ph.D., Brussels
Numerical analysis; simulation of systems; computational fluid dynamics
Associate Members of the Graduate Faculty
Douglas DeCarlo, Assistant Professor of Computer Science, FAS-NB/CCS;
Ph.D., Pennsylvania
Computer graphics; computer vision; human-computer interaction
Charles L. Hedrick, Assistant Professor of Computer Science, FAS-NB; Ph.D.,
Carnegie-Mellon
Artificial intelligence; distributed computing environments
Richard Martin, Assistant Professor of Computer Science, FAS-NB; Ph.D.,
California (Berkeley)
High-performance network design and evaluation; parallel architecture and languages; high throughput/OS systems
Miles Murdocca, Assistant Professor of Computer Science, FAS-NB;
Ph.D., Rutgers
Optical computing; adaptive architectures; parallel processing
Craig Nevill-Manning, Assistant Professor of Computer Science, FAS-NB;
Ph.D., Washington
Distributed and parallel systems; networking; security
Donald E. Smith, Research Associate Professor of Computer Science, FAS-NB;
Ph.D., Pennsylvania
Natural language generation; conversational dialogue agents; knowledge representation and logic programming
Brett Vickers, Assistant Professor of Computer Science, FAS-NB; Ph.D.,
California (Irvine)
High-speed networks and traffic control; multimedia systems

Programs
The program in computer science offers a comprehensive program of study in most areas of this field and provides a set of flexible options for advanced study and research.
In addition to the general admission criteria of the Graduate School–New Brunswick, the program requires that applicants have completed an accredited undergraduate program in computer science, or at least have taken the core courses required for an undergraduate degree in computer science. This includes a substantial background in mathematics, especially calculus, linear algebra, discrete mathematics, and probability/combinatorics, including at least one term in each of these areas with a second term of calculus; high-level languages, data structures, assembly language and machine organization, and algorithm design and analysis, as well as an advanced undergraduate elective course. All applicants are required to take the Graduate Record Examination’s general and computer science subject examinations.
A candidate for the M.S. degree must complete 30 credits of course work and an expository essay, or 24 credits of course work and a master’s thesis (6 credits). The candidate also must pass the program’s master examination, which is designed to ensure breadth of knowledge. Courses are offered to help students prepare for the examination.
A candidate for the Ph.D. degree must complete 48 credits of course work beyond the bachelor’s degree, including the courses required for the M.S. degree. A student who enters the program after earning a master’s degree may apply to transfer up to 24 of the required 48 credits. Normally, a one-year residence in the program is required of Ph.D. students, but, in special cases, alternatives to full-time residence are considered. The student must pass a qualifying examination before beginning thesis research. Thesis research is a major part of the Ph.D. program (24 credits); the thesis should cover original investigations in one or more problems in computer science. A Master of Philosophy degree is available to doctoral candidates.
Current research by the graduate faculty is expected to stimulate doctoral research. Faculty research interests include: algorithms, artificial intelligence, combinatorics, complexity theory, computational biology, computational geometry, computational linguistics, data structures, distributed systems, graphics, human-computer interaction, information systems, knowledge representation, machine learning, mathematical programming, mobile computing. Also, numerical analysis, networking, optimization, parallel computing and systems, programming languages and compilers, software engineering, and vision. All qualified graduate students are eligible to be considered for teaching assistantships and fellowships. Also, a number of grant-supported research projects have research assistantships for advanced graduate students.
Three coupled computing environments supporting faculty, graduate students, and undergraduates are accessible from a variety of desktop workstations (e.g., Sun, Digital, NCR, Dell, Apple, etc.). Those environments support shared printers, modems, and Internet connections, and provide cycle and file service using multiuser servers (e.g., Sun and SGI) over high-speed networks. All faculty and graduate student offices are equipped with networked workstations connected to servers that support large-memory and massively-parallel computing. Dedicated research and instructional laboratories composed of multiprocessors connected over a low latency/high bandwidth network also are available. The department’s computing facilities are run by the staff of the Laboratory for Computer Science Research (LCSR).

All facilities are located in the CoRE (Computer Research and Engineering) Building, which also houses the Center for Discrete Mathematics and Theoretical Computer Science (DIMACS), and the Hill Center for the Mathematical Sciences, which also houses the Library of Mathematical Sciences.

Further information about these and related matters may be found in The Graduate Program in Computer Science, a brochure available from the program and on the web at http://www.cs.rutgers.edu.

Graduate Courses

16:198:503. (F) DATA STRUCTURES AND ALGORITHMS (3)
Kaplan. Intended for students who have not had undergraduate preparation in the subject. May not be taken for credit toward a graduate degree in computer science. Models of computation and complexity. Sorting, stacks, queues, linked lists, trees, search trees, hashing, heaps, graphs, and graph algorithms.

16:198:505. COMPUTER STRUCTURES (3)
Levy, Paul. Prerequisite: Admission requirements. Brief review of combinational and sequential switching circuits. Computer organization, memory systems, arithmetic, I/O, control, data communications, parallel processors, RISC architectures, and other topics of current interest.

16:198:509. (F) FOUNDATIONS OF COMPUTER SCIENCE (3)
Allender. Prerequisite: Admission requirements. Introduction to first-order logic, emphasizing methods used in computer science. Introduction to mathematical models of computation, especially deterministic and nondeterministic Turing machines, computability theory, and space and time complexity theory. P and NP.

16:198:510. NUMERICAL ANALYSIS (3)
Gerasoulis, Richter, Vichnevetsky. Prerequisites: Ability to use a high-level language such as FL/I or FORTRAN IV; a minimum of four terms of calculus, including calculus and linear algebra. Derivation, analysis, and application of methods used to solve numerical problems with computers; solution of equations by iteration, approximation of functions, differentiation and quadrature, differential equations, linear equations and matrices, least squares.

16:198:513. DESIGN AND ANALYSIS OF DATA STRUCTURES AND ALGORITHMS I (3)

16:198:514. (S) DESIGN AND ANALYSIS OF DATA STRUCTURES AND ALGORITHMS II (3)

16:198:515. (F) PROGRAMMING LANGUAGES AND COMPILERS I (3)
Ryder. Prerequisite: Admission requirements. Language paradigms: logic, functional, object-oriented; data abstraction; formal semantics; axiomatic calculus; denotational.

16:198:516. (S) PROGRAMMING LANGUAGES AND COMPILERS II (3)
Ryder. Prerequisite: 16:198:515. Advanced topics in compiler design and modern programming language paradigms. Current trends in compiler design, especially register allocation methods; data flow analysis techniques including interprocedural analysis; parallelization of sequential programs; incremental compilation.

16:198:519. (F) OPERATING SYSTEMS THEORY (3)

16:198:520. INTRODUCTION TO ARTIFICIAL INTELLIGENCE (3)
Dickinson, Hinsh, McCarty, Stevenson. Prerequisite: Admission requirements. Overview of artificial intelligence. Basic problems and methods; heuristic search, game playing, problem solving; deductive inference, theorem proving; simple planning. Basic LIS and Prolog programming.

16:198:521. (F) LINEAR PROGRAMMING (3)

16:198:522. (S) NETWORK AND COMBINATORIAL OPTIMIZATION ALGORITHMS (3)

16:198:523. (F) COMPUTER GRAPHICS (3)
DeCarlo. Prerequisites: 16:198:323, 344, 510, or 513; fluency in C or C++. Introduction to computer image synthesis: modeling, animation, rendering, and geometric techniques. Topics include geometric transformations, modeling hierarchies, viewing and visibility, animation techniques, curve and surface design, lighting, shading, and ray tracing.

16:198:524. (S) NONLINEAR PROGRAMMING ALGORITHMS (3)
parametric and nonparametric methods, adaptive methods, error
Pattern recognition as an inductive process, statistical classification,
recognition topics include constrained search, alignment,
issues include object-centered vs. viewer-centered models, physical
Explores the problem of high-level computer vision (image
of existing systems.
Knowledge representation problem in AI, with an emphasis on
Programming tools needed to write or understand AI systems.
Programming languages, and AI.
Implementation of computer-based natural language understanding
problems; split and Fourier approximation.
(3) Richter, Vichnevetsky. Prerequisites: Background in numerical analysis,
computer programming, and elementary theory of partial differential equations.
(3) Gerasoulis. Prerequisites: Numerical algorithms (01:198:323 or 16:198:510) and nonnumerical algorithms (01:198:344 or 16:198:503); basics of Unix, Fortran, or C.
Analysis of numerical algorithms for a variety of parallel architectures. Parallelization of existing algorithms. Mapping of algorithms onto various architectures. Techniques for developing fast parallel numerical algorithms. Algorithms implemented on existing simulators or actual parallel machines.
(3) Steinberg. Prerequisite: 16:198:520.
Search, pattern matching, LISP, logic programming, objects and frames, rules.
(3) Borgida, McCarty. Prerequisites: 16:198:509, 520.
Knowledge representation and reasoning in AI, with an emphasis on the use of logical techniques. Computational logic. Modal logics of time, action, knowledge, belief. Formal analysis of reasoning that is not strictly deductive (e.g., nonmonotonic reasoning, abductive reasoning). Approaches to tractable reasoning.
(3) Stevenson. Prerequisites: Either 16:198:520 or 513, or permission of instructor.
Implementation of computer-based natural language understanding systems. Algorithmic approaches to natural language syntax, semantics, inferencing, use of world knowledge. Analysis of existing systems.
(3) Dickinson. Prerequisite: 16:198:520 or permission of the instructor.
Explores the problem of high-level computer vision (image understanding), focusing on the tightly coupled issues of three-dimensional object representation and recognition. Object modeling issues include object-centered vs. viewer-centered models, physical vs. geometrical vs. functional models, and deformable vs. rigid models. Recognition topics include constrained search, alignment, graph matching, and geometric hashing.
(3) Kulikowski. Prerequisites: Linear algebra, probability, random variables, statistics. Pattern recognition as an inductive process, statistical classification, parametric and nonparametric methods, adaptive methods, error estimation, applications in image processing, character, speech recognition, and diagnostic decision making.
(3) Hirsh. Prerequisite: 16:198:520 or permission of instructor.
Survey of machine learning, including decision-tree and rule learning systems, neural networks, Bayesian approaches, nearest neighbor methods, PAC-learning, genetic algorithms, reinforcement learning, and inductive logic programming.
(3) Allender. Prerequisites: 16:198:509, 513.
Complexity classes, reducibilities, and complete sets. Relationships between time and space complexity, between serial and parallel computation, and among deterministic, probabilistic, and nondeterministic computation. Complexity theoretic notions of randomness.
(3) Allender. Prerequisite: 16:198:509 or equivalent.
Mathematical theory of computing machines. Computable functions, recursive and recursively enumerable sets, recursion and fixed-point theorems, abstract complexity and complexity theoretic analogues of aspects of recursive function theory, algorithmic (Kolmogoroff) complexity theory.
(3) Farach-Colton, Kulikowski, Nevill-Manning. Prerequisite: 16:198:513 or 520, depending on the term, or permission of instructor.
A survey of computational methods in biology or medicine; topics vary from instructor to instructor. Consultation systems, neural networks, Bayesian approaches, nearest neighbor methods, PAC-learning, genetic algorithms, reinforcement learning, and inductive logic programming.
(3) Ryder. Prerequisite: 16:198:515.
Advanced topics in the design and implementation of programming languages, e.g., compiling for parallel architectures, data flow analysis and its applications, very high-level program optimization, automatic programming, theory of programming languages.
16:198:596. (S) TOPICS IN THE FOUNDATIONS OF COMPUTER SCIENCE (3)
Allender, Friedman, Steiger, Szemeredi, Yasufuku. Prerequisites: 16:198:509 and, depending on the topic, 16:198:538 and/or 539 and/or 540.
Careful study of topics on the topic selected for the given term. Examples include parallelism and zero-knowledge proofs, randomness and information theory, probabilistic aspects of computation, topics in complexity theory.

16:198:598. (S) TOPICS IN PROBLEM-SOLVING METHODS (3)
Amaral. Prerequisite: Permission of instructor.
Concepts, methods, and techniques in artificial intelligence research, with emphasis on computer problem solving. Study of recent research in representations.

16:198:601,602,603,604,605,606. SELECTED PROBLEMS IN COMPUTER SCIENCE (BA,BA,BA,BA,BA,BA)
Prerequisite: 6 graduate credits in computer science with grades of B+ or better.
In-depth study of a topic chosen by the student and professor.

16:198:607,608. PROBLEMS IN NUMERICAL METHODS (BA,BA)
Vichnevetsky, Gerasoulis. Prerequisites: 16:198:525 or 526 or 527 or equivalent experience, and permission of instructor.
Formal lectures and individual projects under the guidance of the instructor. Topics follow the material covered in 16:198:525, 526, and/or 527. Final project may include the implementation and evaluation of computer programs.

16:198:671,672,673,674,675,676. SEMINAR IN COMPUTER SCIENCE (3,3,3,3,3,3)
For advanced graduate students who have at least 18 graduate credits in computer science.
Current research. Several seminars are given each term.

16:198:701,702. RESEARCH IN COMPUTER SCIENCE (BA,BA)
Prerequisite: Permission of thesis adviser. For students working on their master’s theses or doctoral dissertations.

ECOLOGY AND EVOLUTION 215
Degree Programs Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Professor Michael Sukhdeo, Bartlett Hall, Cook Campus (732/932-2971)
Members of the Graduate Faculty:
Kenneth W. Able, Professor and Director of the Marine Field Station, CC; FAS-NB; Ph.D., William and Mary
Ecology and behavior of fishes, marine and estuarine ecology
James E. Applegate, Professor of Ecology, Evolution, and Natural Resources, CC; Ph.D., Pennsylvania
Wildlife management
Joanna Burger, Professor of Biology, FAS-NB, and of Ecology, Evolution, and Natural Resources, CC; Ph.D., Minnesota
Avian behavior and ecology, salt marsh ecology, ecological risk, reptile behavior
Timothy M. Casey, Professor of Entomology, and of Ecology, Evolution, and Natural Resources, CC; Ph.D., California (Los Angeles)
Physiological ecology, energetics, thermoregulation, biodiversity
Jonathan Cole, Associate Scientist, Institute of Ecosystem Studies; Ph.D., Cornell
Aquatic ecology, biogeochemistry, microbiology
John Dighton, Professor of Biology, FAS-C; Ph.D., London
Role of fungi in nutrient dynamics in forest soils and impacts of pollution
David W. Ehrenfeld, Professor of Biology, and of Ecology, Evolution, and Natural Resources, CC; M.D., Harvard; Ph.D., Florida
Ecological genomics, biology of marine turtles
Joan G. Ehrenfeld, Professor of Ecology, Evolution, and Natural Resources, CC; Ph.D., CUNY
Plant community ecology
Douglas E. Eveleigh, Professor of Biochemistry and Microbiology, and of Ecology, Evolution, and Natural Resources, CC; Ph.D., Exeter
Microbial ecology, cellulose recycling, endomycorrhizae
Stuart E.G. Findlay, Assistant Scientist, Institute of Ecosystem Studies; Ph.D., Georgia
Marine ecology, invertebrate ecology
Durne Fong, Associate Professor of Biological Sciences, FAS-NB; Ph.D., Princeton
Biodiversity, free-living parasitic protozoa
Susan E. Ford, Associate Research Professor of Marine and Coastal Sciences, CC; Ph.D., Duke
Marine ecology, host-parasite environment interactions
Randy Gaugler, Professor of Entomology, CC; Ph.D., Wisconsin
Invertebrate pathology, insect-cultivating systems, vector biology
Michael Gochfeld, Professor of Environmental and Community Medicine, UMDNJ-RWJMS; M.D., Albert Einstein; Ph.D., CUNY (Queens)
Avian behavior ecology, environmental toxicology
J. Frederick Grasse, Director and Professor, Institute of Marine and Coastal Sciences, CC; Ph.D., Duke
Marine ecology, oceanography
Judith P. Grasse, Professor of Marine and Coastal Sciences, IMCS/CC; Ph.D., Duke
Marine invertebrate ecology, population genetics
Edwin J. Green, Professor of Ecology, Evolution, and Natural Resources, CC; Ph.D., Virginia Polytechnic Institute
Forest ecology, quantitative methods
Peter M. Grafton, Associate Scientist, Institute of Ecosystem Studies; Ph.D., Georgia
Terrestrial microbial ecology
Steven N. Handel, Professor of Ecology, Evolution, and Natural Resources, CC; Ph.D., Cornell
Plant population ecology, pollination biology, ecological genetics
Jean M. Hartman, Associate Professor of Landscape Architecture, CC; Ph.D., Connectict
Plant community ecology, natural disturbance processes, wetlands
Colleen Hatfield, Associate Professor of Ecology, Evolution, and Natural Resources, CC; Ph.D., New Mexico
Spatial distribution of resources, ecosystems
Geoff Henley, Assistant Professor of Biological Sciences, FAS-NB; Ph.D., Texas (Dallas)
Landscape ecology, remote sensing, ecological modeling
Emanuel B. Hey, Associate Professor of Ecology, Evolution, and Natural Resources, CC; Ph.D., SUNY (Stony Brook)
Molecular evolution, population genetics
Henry B. John-Alder, Associate Professor of Animal Sciences, CC; Ph.D., California (Irvine)
Ecological physiology and endocrinology, herpetology
Karl Kjer, Assistant Professor of Entomology, CC; Ph.D., Minnesota
Phylogeny of the trichoptera, molecular phylogenetics
Eric Knox, Assistant Professor of Biological Sciences, FAS-NB; Ph.D., Michigan Systematics, biogeography, and specialization, adaptation in plants
John Kuser, Associate Professor of Ecology, Evolution, and Natural Resources, CC; Ph.D., Oregon State
Genecology of trees, tree improvement
Richard C. Latrope, Jr., Associate Professor of Ecology, Evolution, and Natural Resources, CC; Ph.D., Cornell
Remote sensing, landscape ecology
Charles F. Leck, Associate Professor of Ecology, Evolution, and Natural Resources, CC; Ph.D., Cornell
Avian ecology, remote sensing, tropical biology
Gene E. Likens, Senior Scientist and Director, Institute of Ecosystems Studies; Ph.D., Wisconsin
Limnology, biogeochemistry of streams and lakes, analysis of ecosystems
Robert E. Loveland, Associate Professor of Ecology, Evolution, and Natural Resources, CC; Ph.D., Harvard
Physiological ecology, growth and modeling, salt marsh ecology
Gary M. Lovett, Associate Scientist, Institute of Ecosystem Studies; Ph.D., Dartmouth
Terrestrial ecosystem ecology, biogeochemistry, air pollution
Richard A. Lutz, Professor of Marine and Coastal Sciences, CC; Ph.D., Maine Marine ecology and paleoecology, shellfish ecology, deep-sea ecology
Michael L. May, Professor of Entomology, CC; Ph.D., Florida
Physiological and behavioral ecology, insect ecology
Charles J. McCoy, Professor of Anthropology and Human Ecology, CC; Ph.D., Columbia
Human ecology, fisheries ecology
George E. McGhee, Jr., Professor of Geology, FAS-NB; Ph.D., Rochester
Community paleoecology, ecosystem evolution
Terry R. McGuire, Associate Professor of Biological Sciences, FAS-NB; Ph.D., Illinois
Behavioral and neural genetics, behavioral ecology
Mark D. Morgan, Associate Professor of Biology, FAS-C; Ph.D., California (Davis)
Limnology, biogeochemistry, freshwater and wetland communities
Peter J. Morin, Professor of Ecology, Evolution, and Natural Resources, CC; Ph.D., Duke
Community ecology, herpetology, aquatic ecology
George E.B. Morren, Jr., Professor of Human Ecology, CC; Ph.D., Columbia
Human ecology, tropical ecosystems, agriculture, people-animal interactions, remote sensing
Bertram C. Murray, Jr, Professor of Ecology, Evolution, and Natural Resources, CC; Ph.D., Michigan
Theoretical population ecology and evolution
Richard S. Ostfeld, Assistant Scientist, Institute of Ecosystem Studies; Ph.D., California (Berkeley)
Population and behavioral ecology; small mammals; herbivore-plant interactions
Michael L. Pace, Associate Scientist, Institute of Ecosystem Studies; Ph.D., Georgia
Aquatic ecosystems; plankton; microbial ecology
Steward F.A. Pickett, Scientist, Institute of Ecosystem Studies; Ph.D., Illinois
Plant populations and community organization; vegetation dynamics
Harry W. Power, Associate Professor of Ecology, Evolution, and Natural Resources, CC; Ph.D., Michigan
Evolution of social behavior; avian ecology
James A. Quinn Jr., Professor of Ecology, Evolution, and Natural Resources, CC; Ph.D., Colorado State
Plant ecology; evolutionary biology
Emily W. B. Russell, Associate Research Professor of Geological Sciences, FAS-N; Ph.D., Rutgers
Paleoecology; long-term plant succession; plant migration
Kathleen M. Scott, Associate Professor of Biological Sciences, FAS-NB; Ph.D., Yale
Mammalogy; functional morphology; paleoecology; artiodactyl systematics
Peter E. Smouse, Professor of Theoretical and Applied Genetics, and of Ecology, Evolution, and Natural Resources, CC; Ph.D., North Carolina State
Mathematical ecology; ecological genetics
Edmund W. Stiles, Professor of Ecology, Evolution, and Natural Resources, CC; Ph.D., Washington
Plant-animal interactions; evolutionary ecology; vertebrate ecology
David L. Strayer, Assistant Scientist, Institute of Ecosystem Studies; Ph.D., Cornell
Freshwater ecology; energy flow; ecology of freshwater invertebrates
Michael V. K. Sukhdeo, Associate Professor of Ecology, Evolution, and Natural Resources, CC; Ph.D., McGill
Habitat selection behavior of parasitic helminths; parasite ecology
Gary L. Taghon, Associate Professor of Marine and Coastal Sciences, CC; Ph.D., Washington
Marine benthic ecology; feeding energetics
Richard Triemer, Professor of Biological Sciences, FAS-NB; Ph.D., North Carolina (Chapel Hill)
Evolution of algae and protozoa
Robert Trivers, Professor of Anthropology, FAS-NB; Ph.D., Harvard
Natural selection and social theory; evolutionary genetics
Andrew P. Vayda, Professor of Anthropology and Human Ecology, CC; Ph.D., Columbia
Human ecology; tropical ecosystems
Robert C. Vrijenhoek, Professor of Theoretical and Applied Genetics, CC; Ph.D., Connecticut
Evolutionary genetics; population biology of fish and host-parasite systems
Sam Wainright, Assistant Professor of Marine and Coastal Sciences, CC; Ph.D., Georgia
Aquatic ecology; ecosystems ecology
Daniel Wartenberg, Associate Professor of Environmental and Community Medicine, UMDNJ-RWJMS; Ph.D., SUNY (Stony Brook)
Ordination; spatial pattern; epidemiology
Judith S. Wein, Professor of Biology, FAS-N; Ph.D., New York
Effects of environmental factors on the development of aquatic animals
Daniel C. Wilhoft, Professor of Biology, FAS-N; Ph.D., California (Berkeley)
Physiological ecology of eutherms
Adjunct Members of the Graduate Faculty
Vlatcheslav Douchenchov, Research Scientist, Phytex, Inc., CC; Ph.D., Moscow
Pedagogical Plant response to heavy metal-contaminated soils
Brian L. Howes, Assistant Scientist, Woods Hole Oceanographic Institution; Ph.D., Boston
Biogeography of coastal wetlands
Michael J. Kennish, Research Marine Scientist in Marine and Coastal Sciences, CC; Ph.D., Rutgers
Marine pollution, marine ecology, marine geology
C. Lavett Smith, Curator, American Museum of Natural History; Ph.D., Michigan
Fish ecology

Programs
The graduate program in ecology and evolution, concerned with the relations between organisms and the environment and with interactions among organisms, is conducted under sponsorship of participating faculties in the biological sciences. Normally, a one-year residence of two full-time, consecutive terms following the qualifying examination is required for the Ph.D. candidate. A minimum of 72 credits (30 in course work, 42 in research) is required. Two M.S. options are available—with a thesis or without. Both M.S. programs require 30 credits, 18 of which must be at the graduate level.

The program provides a broad spectrum of courses and research opportunities to qualified students who seek careers in university teaching and research or opportunities in governmental agencies or private institutions.

Areas of specialization encompass the various aspects of ecology and evolution, including: behavior, conservation biology, ecosystem ecology, evolutionary biology, marine biology, population and community ecology, population genetics, molecular evolution, restoration ecology, and behavior.

Graduate Courses
16:215:506. (F) ESTUARINE ECOLOGY (4)
Able, Loveland. Sem. 2 hrs., lab. 3 hrs.
Fundamental study of aquatic organisms in the estuarine waters of coastal New Jersey; life cycles, food chains, and the relationships of organisms to one another.
16:215:510. CONSERVATION ECOLOGY (3)
D. Ehrenfeld
Major threats to ecosystems and species; the differential responses of different ecosystems to external perturbations; techniques of ameliorating environmental damage and preserving species; the role of the ecologist in conservation.
16:215:513. POPULATION GENETICS (3)
Vrijenhoek, Smouse. Prerequisite: Genetics.
Factors affecting gene frequencies in populations and leading to the origin of new species. An introduction to the analysis of continuously distributed polygenic traits.
16:215:514. CONSERVATION GENETICS (3)
Vrijenhoek
Focus on applications of population genetic and quantitative genetic approaches to captive breeding and in situ conservation of endangered species. Genetic considerations intertwined with demographic problems facing species in decline resulting from habitat loss or fragmentation.
16:215:515. (F) NATURAL HISTORY OF NEW JERSEY (3)
Leck. Lec. 2 hrs., lab. 3 hrs. Prerequisite: General biology.
Ecological aspects of the natural history of New Jersey. Field and laboratory studies of special use and interest to biology teachers.
16:215:525. (F) ECOLOGY OF FRESHWATER ORGANISMS (4)
Leck. 3 hrs., lab. 3 hrs. Prerequisite: Limnology or aquatic biology.
Detailed consideration of distribution, abundance, and metabolism of organisms in lakes and streams. An introduction to the theory and techniques of systems ecology.
16:215:528. (S) BEHAVIORAL ECOLOGY OF FISH (3)
Able. Prerequisite: 01:119:420.
An investigation into fish behavior, with emphasis on the ecological significance of migrations, reproduction, feeding, habitat selection, and antipredator strategies. Student research topics.
16:215:531. (F) ADVANCED ORNITHOLOGY (3)
Leck
A study of avian biology, including taxonomy, population dynamics, and distribution of birds, and a critical review of current ornithological research. The laboratory consists of field and museum experience and independent research.
16:215:533. (S) THE BEHAVIOR OF ANIMAL POPULATIONS (3)
Burger, Leck. Prerequisite: Animal behavior or ecology.
Topics in ecological adaptations of behavior; emphasis on the population level. Student research topics.
16:215:546. BEHAVIORAL GENETICS (4)
McGuire. Prerequisites: Background in genetics, behavior. Recommended: Statistics.

16:215:550. ADVANCED EVOLUTION (4)
Hey, Handel. Prerequisite: Genetics.
Examination of the major elements and controversies of evolutionary theory. Emphasis on genetic variation, natural selection, adaptation, and speciation.

16:215:555. ECOLOGY AND ECOLOGICAL RISK (3)
Burger
Principles of ecology and risk analysis, environmental hazards and resultant risk analysis.

16:215:565. COMMUNITY DYNAMICS (4)
Morin
Patterns and processes involving sets of two or more coexisting species. Theoretical and empirical studies.

16:215:570. MOLECULAR EVOLUTION (3)
Hey
Analysis of actual data sets estimating historical process.

16:215:575. (F) QUANTITATIVE ECOLOGY AND EVOLUTION (3)
Morin. Prerequisite: Calculus. Recommended: FORTRAN programming. The application of differential equations and linear algebra to specific ecological phenomena, e.g., growth, competition, predator-prey. Dynamic modeling of simple (three- and four-component) ecosystems; students develop their own models.

16:215:582. TOPICS IN SOCIOBIOLOGY (3)
Power. Prerequisites: Genetics, ecology, and permission of instructor. The application of Darwinian reasoning and the comparative method to the study of the evolution and expression of social behavior. Rigorous formation and testing of disprovable hypotheses emphasized.

16:215:588. TOPICS IN ADVANCED ECOLOGY (3)
Quinn, Stiles. Lec./sem. 3 hrs., lab./field 3 hrs. Prerequisite: Ecology.
Literature review and synthesis of a selected current topic in applied or theoretical ecology.

16:215:590. (S) POPULATION ECOLOGY (4)
Quinn, Stiles. Lec./sem. 3 hrs., lab./field 3 hrs. Prerequisite: Ecology. Population dynamics and demography, natural selection and evolution, life history strategies, population regulatory mechanisms, species interactions and coevolution, variability among populations and ecological differentiation, and island biogeography.

16:215:595. (F) COADAPTATION OF PLANTS AND ANIMALS (3)
Stiles. Prerequisite: Botany; or ecology; or evolutionary biology. Introduction to coevolution, plant-herbivore interaction, pollination biology, seed predation, and dispersal.

16:215:601. SEMINAR IN ECOLOGY (1)
Sukhdeo
Introductory seminar required for all first year ecology and evolution students.

16:215:603,604. SPECIAL TOPICS IN ECOLOGY (BA,BA)

16:215:605,606. ADVANCED PROBLEMS IN ECOLOGY (BA,BA)
Individual study in an area of expertise of the faculty.

16:215:650. FUNDAMENTALS OF ECOSYSTEM ECOLOGY (4)
A critical review of ecosystem ecology, including biogeochemical cycles and budgets, ecosystem energetics, the theory and history of ecosystem ecology, and the response of ecosystems to disturbance.

16:215:701,702. RESEARCH IN ECOLOGY (BA,BA)

Graduate Courses in Other Programs
Descriptions for the courses listed below can be found elsewhere in this catalog and in the graduate catalogs for Camden and Newark. In addition to these courses taught by members and associates of the ecology program, there are many other courses of interest to ecology graduate students offered by the programs in entomology, environmental sciences, geography, geological sciences, meteorology, and plant science and technology.

16:070:599. EVOLUTION OF BEHAVIOR (3)

16:070:567. HUMAN VARIATION (3)

56:120:503. ESTUARINE BIOLOGY (3)

56:120:505. MARINE BIOLOGY (4)

56:120:507. PLANT GEOGRAPHY (4)

56:120:590. POPULATION ECOLOGY (3)

16:370:507. BIOLOGICAL CONTROL OF INSECT PESTS (3)

16:370:525. INSECT ECOLOGY (3)

16:450:617. SEMINAR IN REMOTE SENSING OF THE BIOSPHERE (3)

16:460:538. EVOLUTIONARY PALEOECOLOGY (3)

16:681:502. MICROBIAL AND MOLECULAR GENETICS (3)

16:681:572. MICROBIAL ECOLOGY (4)

16:681:580. FUNDAMENTALS OF MOLECULAR GENETICS (3)

16:761:520. ENVIRONMENTAL PHYSIOLOGY (3)

16:765:522. APPLIED PLANT SCIENCE (3)

16:960:582. INTRODUCTION TO METHODS AND THEORY OF PROBABILITY (3)

16:960:590. DESIGN OF EXPERIMENTS (3)

ECONOMICS 220

Degree Programs Offered: Master of Arts, Doctor of Philosophy
Director of Graduate Program: Professor Barry Sopher, New Jersey Hall, College Avenue Campus (732/932-7451)

Members of the Graduate Faculty
Robert J. Alexander, Professor Emeritus of Economics, FAS-NB; Ph.D., Columbia
Latin American economic development and politics; history of radical movement

Rosanne Altschuler, Associate Professor of Economics, FAS-NB; Ph.D., Pennsylvania
Tax policy analysis

Monroe Berkowitz, Professor Emeritus of Economics, FAS-NB; Ph.D., Columbia
Economics of disability programs

Douglas H. Blair, Professor of Economics, FAS-NB; Ph.D., Yale
Microeconomic theory; social choice theory

Michael D. Bordo, Professor of Economics, FAS-NB; Ph.D., Chicago
Monetary history and theory

John F. Burton, Jr., Dean of the School of Management and Labor Relations and Professor of Industrial Relations and Human Resources, SMLR; Ph.D., Michigan
Social insurance; employment law; collective bargaining

Manoranjan Dutta, Professor of Economics, FAS-NB; Ph.D., Pennsylvania
U.S.-Asia economics; econometric models; macroeconomics—new perspectives

Ira N. Gang, Professor of Economics, FAS-NB; Ph.D., Cornell
Economic development

Gary A. Gagliotti, Professor of Economics, FAS-NB; Ph.D., Yale
Microeconomic theory; social choice theory

Norman Glickman, Director, Center for Urban Policy Research and State of New Jersey Professor of Urban Planning and Policy Research, EJBSPPP; Ph.D., Pennsylvania
Urban and regional economics

H. Peter Gray, Professor Emeritus of Economics; Ph.D., California
International trade; business and finance

Mark R. Killingsworth, Professor of Economics, FAS-NB; Ph.D., Oxford
Labor economics

Roger W. Klein, Professor of Economics, FAS-NB; Ph.D., Yale
Econometrics

Cheng-few Lee, Professor of Finance, SB-NB; Ph.D., SUNY (Buffalo)
Applying econometrics and economic theory in finance and accounting research
Peter D. Loeb, Professor of Economics, FAS-N; Ph.D., Rutgers
Applied microeconomics and transportation economics

Richard P. McLean, Professor of Economics, FAS-NB; Ph.D., SUNY (Stony Brook)
Game theory and its applications

Mattihahu Marcus, Professor of Economics, FAS-NB; Ph.D., Brown
Competition in regulated industries; cost of capital of public utilities

Bruce Muzzach, Associate Professor of Economics, FAS-NB; Ph.D., Pennsylvania
Macroeconomics; international finance; time series econometrics

Peter J. Parks, Associate Professor of Agricultural Economics, CC; Ph.D., California (Berkeley)
Environmental and resource economics; policy analysis; applied econometrics

Martin K. Perry, Chair and Professor of Economics, FAS-NB; Ph.D., Stanford
Vertical integration and controls; monopolistic competition

Carl E. Pry, Professor of Agricultural Economics, CC; Ph.D., Pennsylvania
Technical change in LDC agriculture; science and technology policy

Thomas J. Prusa, Associate Professor of Economics, FAS-NB; Ph.D., Stanford
International trade; trade policy

Hugh T. Rockoff, Professor of Economics, FAS-NB; Ph.D., Chicago
American economic history

Jeffrey Rubin, Professor of Economics, FAS-NB; Ph.D., Duke
Health economics

Louise B. Russell, Professor of Economics, FAS-NB; Ph.D., Harvard
Economics of medical care; cost-effectiveness and cost-benefit analysis

Kazuo Sato, Professor of Economics, FAS-NB; Ph.D., Yale
Macroeconomics and international economics

Joseph J. Sene, Professor of Economics, FAS-NB; University Vice President for Academic Affairs; Ph.D., Pennsylvania
Environmental economics; state and local economic policy

Neil Sheflin, Associate Professor of Economics, FAS-NB; Ph.D., Rutgers
Applied econometrics; financial economics

Leslie E. Small, Professor of Agricultural Economics, CC; Ph.D., Cornell
Irrigation management and agricultural development in Asia

Barry Sopher, Associate Professor of Economics, FAS-NB; Ph.D., Iowa
Experimental economics

Robert C. Stuart, Professor of Economics, FAS-NB; Ph.D., Wisconsin
Comparative economic systems

Shanti S. Tangri, Professor Emeritus of Economics, FAS-NB; Ph.D., California (Berkeley)
Population development; environmental economics

Michael K. Taussig, Professor Emeritus of Economics, FAS-NB; Ph.D., Massachusetts Institute of Technology
Income and wealth distributions

Hiroki Tsurumi, Professor of Economics, FAS-NB; Ph.D., Pennsylvania
Bayesian econometrics and statistical inference

Francis G.M. Vella, Associate Professor of Economics, FAS-NB; Ph.D., Rochester
Applied econometrics

Eugene N. White, Professor of Economics, FAS-NB; Ph.D., Illinois
Monetary and financial history

John D. Worrall, Professor of Economics, FAS-C; Ph.D., Rutgers
Labor markets; Workers’ Compensation; Insurance; economics of disability

Associate Members of the Graduate Faculty

Adesoji O. Adelaja, Professor of Agricultural Economics, CC; Ph.D., West Virginia
Production economics; econometrics; economics of food firms; agricultural policy at the urban fringe

Colin Campbell, Assistant Professor of Economics, FAS-NB; Ph.D., Northwestern University
Industrial organization

Sewin Chan, Assistant Professor of Economics, FAS-NB; Ph.D., Columbia
Public economics; household behavior

Simon J. Evnett, Assistant Professor of Economics, FAS-NB; Ph.D., Yale
International trade

Eric Friedman, Assistant Professor of Economics, FAS-NB; Ph.D., California (Berkeley)
Microeconomics; game theory; cost allocation learning

Jessie C. Hartline, Associate Professor of Economics, FAS-NB; Ph.D., Rutgers
Finance; international finance development; service sector productivity

Joseph P. Hughes, Associate Professor of Economics, FAS-NB; Ph.D., North Carolina
Production economics; efficiency measurement; banking

Douglas L. Kruse, Associate Professor of Human Resource Management, SMLR; Ph.D., Harvard
Profit sharing; employee ownership; worker displacement; wage differentials; disability

Jinheng Ma, Assistant Professor of Economics, FAS-C; Ph.D., SUNY (Stony Brook)
Econometric theory

Oded Palmon, Assistant Professor of Finance, SB-NB; Ph.D., Chicago
Public finance; applied microeconomics; corporate finance

Argia M. Sberdine, Assistant Professor of Economics, FAS-NB; Ph.D., Chicago
Macroeconomics; business cycle analysis; monetary economics

Stephanie Schmitt-Grohe, Assistant Professor of Economics, FAS-NB; Ph.D., Chicago
Macroeconomics

Hilary Sigman, Assistant Professor of Economics, FAS-NB; Ph.D., Massachusetts Institute of Technology
Environmental economics

Yann Tournas, Assistant Professor of Economics, FAS-N; Ph.D., Northwestern University
Theory of the firm; information economics; industrial organization; bargaining theory

Programs

The M.A. and Ph.D. are full-time day programs. Entering M.A. and Ph.D. students are expected to have a basic knowledge of calculus (differential and integral) and linear algebra, which are used in the basic microeconomics and statistics courses. 16:220:500 Advanced Economic Statistics is a required course, but entering students may satisfy the requirement by passing a proficiency examination. Courses 16:220:500, 501, 502, 503, 504, 505, 506, and 507 are prerequisites for each elective field course.

The M.A. program can be completed by fulfilling one of the following options: (1) 27 credits of course work and 3 credits of directed research leading to a master’s essay. The oral examination in defense of the essay includes tests of economic theory and quantitative methods and serves as the comprehensive examination for the master’s degree. Students in the M.A. program are required to take one term course each in microeconomic theory and macroeconomic theory and one course in statistical methods and two courses in econometrics. (2) Students who complete 30 credits and pass the theory portions of the Ph.D. qualifying examinations are eligible for the M.A degree without writing a master’s essay.

The Ph.D. program consists of course work, qualifying examinations, and the dissertation. The Ph.D. requires 45 credits of course work (sixteen courses). Students are not permitted to take more than four courses a term; thus, course work for the Ph.D. requires at least two academic years to complete. Graduate and teaching assistants normally are not permitted to take more than three courses a term. The Master of Philosophy degree is available to doctoral candidates. Ph.D. students take one course in mathematical methods, two courses in microeconomic theory, two courses in macroeconomic theory, 6 credits in statistical methods and econometrics, one course in economic history, and one course in either applied microeconometrics or macroeconometrics. The balance of the course of study is chosen with regard to the student’s individual requirements. To ensure breadth of coverage, each Ph.D. student is required to take at least two courses in two elective fields offered in the program.

There are nine elective fields: economic theory, econometrics, economic history, monetary theory, public finance, development economics and economic systems, international economics, labor and human resources, and industrial organization.

The first part of the Ph.D. qualifying examination is a written test in microeconomic theory and macroeconomic theory. Students are expected to take this part after one year of course work. The second part of the qualifying exam, consisting of exams in two elective fields, must be taken within 18 months of successful completion of the microeconomic and macroeconomic theory examinations. A student who fails any written examination must retake it at the next examination period. (Examinations are given twice yearly.)

Doctoral students also are required to complete a second-year research paper over the summer of their second year and write a dissertation proposal in the summer of their third year. The dissertation is written under the supervision of a faculty committee and must be defended in a final examination before the student’s committee.

Graduate Courses

16:220:500. MATHEMATICAL METHODS FOR MICROECONOMICS (3)
Prerequisites: Background in calculus and linear algebra.
Basic mathematical tools for consumer and producer theory.
Compact sets; differentiability; convex sets; separation theorems; constrained optimization and the Kuhn-Tucker theorem;
applications in consumer and producer theory.
16:220:501. MICROECONOMIC THEORY I (3)
Prerequisite: 16:220:500 or permission of instructor.
General equilibrium theory; the Arrow-Debreu model, decision making under uncertainty; the von Neumann-Morgenstern theory, risk aversion, applications to insurance problems and portfolio choice, applications to competitive equilibrium with uncertainty.

16:220:502. MICROECONOMIC THEORY II (3)
Prerequisite: 16:220:501.
Introduction to the theory of games and related economic models with informational asymmetries. Topics include noncooperative games and models of moral hazard and adverse selection.

16:220:503. MATHEMATICAL METHODS FOR MACROECONOMICS (3)
Prerequisites: Background in calculus and linear algebra.
Basic mathematical tools for dynamic economic models. Linear algebra from echelon form to projection operators; quadratic forms; linear difference and differential equations; dynamic programming and control theory; applications to dynamic models of macroeconomics; growth and human capital.

16:220:504. MACROECONOMIC THEORY I (3)
Prerequisite: 16:220:503 or permission of instructor.
Introduction to economic dynamics, economic growth, business cycles, and the role of macroeconomic policy.

16:220:505. MACROECONOMIC THEORY II (3)
Prerequisite: 16:220:504.
General equilibrium modeling of the macroeconomy. Topics include the stochastic growth model and multiple equilibrium. Empirical validation is stressed.

16:220:506. ADVANCED ECONOMIC STATISTICS (3)
Prerequisites: Background in calculus and linear algebra.
Background in statistical inferential procedures used in economic data analyses. Sampling theory and Bayesian viewpoints. Probability, random variables and distributions, estimation, testing hypotheses, and sampling distribution of estimators.

16:220:507. ECONOMETRICS I (3)
Prerequisite: 16:220:506 or equivalent.
Focus on measurement of economic parameters. Statistical estimation and inference of regression equation models. Properties of OLS, GLS, IGLS, 2SLS, 3SLS, and Maximum Likelihood Estimators. Introduction to time-series analysis and quantitative response models. Use of linear algebra and statistical packages. Emphasis is on theory.

16:220:508. ECONOMETRICS II (3)
Prerequisite: 16:220:507.
Estimation and testing in simultaneous equation systems. Multivariate methods and time series analysis. Bayesian inference in econometrics.

16:220:509. APPLIED ECONOMETRICS FOR MICROECONOMICS (3)
Prerequisite: 16:220:507 or permission of instructor.
Econometric tools for empirical microeconomic models. Parametric and nonparametric qualitative choice models; survival analysis. Recent papers discussed.

16:220:510. APPLIED ECONOMETRICS FOR MACROECONOMICS (3)
Prerequisite: 16:220:507 or permission of instructor.
Econometric tools for empirical macroeconomic time-series models. Exogeneity tests; spectral analysis; non-stationarity; state-space models; structural shifts and prediction. Recent papers discussed.

16:220:513. MONETARY THEORY (3)
Theories of the role of money in relation to the volume of economic activity and the price level.

16:220:514. STRUCTURE OF THE FINANCIAL SYSTEM (3)
The financial system and its relationship to the real sector, including portfolio theory, the term structure of interest rates, and other theoretical and empirical issues in finance.
16:220:541. AMERICAN ECONOMIC HISTORY (3)
The colonial economy; economics of slavery and race; industrialization; development of agriculture; banking and financial markets; the Great Depression; the role of government, and long-term economic growth.

16:220:545. UNCERTAINTY AND IMPERFECT INFORMATION (3)
Theory of choice under risk and uncertainty, risk aversion, stochastic dominance. Selected applications include contingent claims, rational expectations, screening, search, adverse selection, moral hazard, agency, common knowledge, and games of incomplete information.

16:220:546. TOPICS IN GAME THEORY (3)
Introduction to topics in noncooperative and cooperative game theory that are of relevance to economic problems.

16:220:547. THEORY OF SOCIAL CHOICE AND VOTING (3)
Selected problems in the design and economic analysis of voting systems. Emphasis on the role of voting institutions in various applied contexts in micro- and macroeconomics.

16:220:548. ADVANCED TOPICS IN MICROECONOMICS (3)
Topics chosen by instructor may include theory of optimal control, general equilibrium, natural resources, incomplete markets.

16:220:549. EXPERIMENTAL ECONOMICS (3)
Introduction to analysis by experimental methods of selected problems in economic theory, focusing on theory of individual choice under uncertainty and game theory, as well as bargaining theory, industrial organization, social choice theory, and financial markets.

16:220:602. SEMINAR IN ECONOMETRICS (3)
Statistical inference in econometrics from Bayesian and non-Bayesian points of view. Special topics may include inference on structural shifts, model selection, Kalman-filter models, and qualitative choice models.

16:220:603. SEMINAR IN MONETARY THEORY (3)

16:220:604. SEMINAR IN PUBLIC ECONOMICS (3)
Advanced topics with emphasis on the main current controversies in the field.

16:220:605. SEMINAR IN LABOR AND HUMAN RESOURCES (3)
Special topics. Topics have included economics of transfer programs, economics of health, economics of fertility.

16:220:606. SEMINAR IN INTERNATIONAL ECONOMICS (3)

16:220:607. SEMINAR IN ECONOMICS OF LATIN AMERICA (3)

16:220:608. SEMINAR IN ECONOMIC SYSTEMS (3)
Analysis of selected topics relating to the comparison of planned and market economic systems and related issues of transition.

16:220:609. SEMINAR IN ECONOMIC DEVELOPMENT (3)
Advanced topics in development economics emphasizing skills of modeling and estimation.

16:220:610. SEMINAR IN MICROECONOMICS (3)
Papers by students, faculty, and visiting scholars on topics selected by the seminar participants.

16:220:612. SEMINAR IN MACROECONOMICS (3)
Topics and controversies at the frontier of macroeconomics. Emphasis on development of analytical skills and use of empirical and theoretical tools.

16:220:613. SEMINAR IN APPLIED ECONOMETRICS (3)
Applied work in macroeconometrics and microeconometrics; use of data and standard statistical packages.
Programs

The Ph.D. in Education prepares individuals to assume faculty and research positions in academia, government, and the private sector. Students may choose from among these four areas of focus: Educational policy, mathematics education, literacy education, and educational psychology.

The educational policy focus prepares scholars to assume faculty and research positions in academic and governmental settings, as well as within private organizations. Students conduct research on educational policies in specific areas, the processes by which those policies are formulated and implemented, and the intended and unintended outcomes of educational policies.

The mathematics education focus prepares individuals to conduct basic research on understanding students’ thinking, grounded in mathematics, at all age levels. Students conduct fundamental research in the psychology of learning mathematics and problem solving. A strong background in the study of mathematics (or statistics or computer science) is required for admission. The program is designed to attract a select pool of students who intend to follow an academic career, as compared with the Ed.D. program, which prepares school leaders in mathematics education.

The literacy focus prepares scholars to discover, create, and interpret knowledge relating to the development of students’ literacy competencies. Students investigate the range of literacies in a global, multicultural society; the curricular choices and instructional strategies that foster learning from a variety of texts and authoritative uses of language in a wide variety of settings; and the history and politics of literacy education, with attention to the effects of culture, social class, and status on the ways that language is used, valued, and understood. The Ph.D. program is centered on basic research, in contrast to the Ed.D., which emphasizes the application and interpretation of new knowledge.

The educational psychology focus prepares students to conduct research to advance psychological theory through empirical inquiry and to apply the results for the improvement of educational practice. Scientific research is used both to advance theory, such as explaining how people learn, teach, and differ from one another, and to improve practice, such as determining how to improve learning. Students are prepared to conduct research concerned with the discovery and validation of psychological processes and principles that have the potential to optimize human development and learning. A strong background in research methodology is critical to theory building and testing, and to the application of new knowledge to practice.

The first Ph.D. students in education are to be admitted to the program in September 2000. Only students who have demonstrated the potential for outstanding research are selected for the program. Among the experiences and credentials to be considered are a baccalaureate degree in a relevant area; undergraduate cumulative grade-point average of at least a 3.0; a cumulative graduate grade-point average of at least a 3.5 (if applicable); strong performance on the Graduate Record Examination Test; a personal statement reflecting prior experience or an interest in independent scholarship; three letters of recommendation from former professors or employers; and, for foreign applicants, a TOEFL score indicative of proficiency. Current Ed.D. students who meet the admission criteria are eligible to apply to the Ph.D. program in education. Additional criteria may be set by each focus track.

Students must complete at least 48 credits of course work, to be distributed as follows: 6 credits in prethesis research in the education concentration (policy, mathematics, literacy, educational psychology); 6 credits in the education core (educational theory, research, and practice); at least 12 credits in research methods, including courses in both quantitative and qualitative methodologies; at least 18 credits in the education concentration; and at least 6 credits in the appropriate cognate disciplines. An additional 24 credits of dissertation research is required. Students must maintain a cumulative GPA of at least 3.25 in their doctoral course work. Students may petition the faculty of the Ph.D. in Education to transfer up to 18 graduate credits from course work taken elsewhere toward these requirements.
Each Ph.D. student is assigned a research adviser. Students must complete at least two research projects prior to admission to dissertation candidacy, and must pass a qualifying examination written and evaluated by a faculty committee in the area of concentration. Students are admitted to dissertation candidacy by the faculty after they have successfully completed the above requirements. In addition, students must provide evidence of successful teaching experience, which is documented by a portfolio for evaluation by the faculty.

Graduate Courses *

16:300:501. PROSEMINAR IN EDUCATIONAL THEORIES AND PRACTICE (3)
Examines fundamental issues in education through the reading of major theoretical texts. Explores how those issues inform current research.

16:300:503. PROSEMINAR IN EDUCATIONAL RESEARCH (3)
Explores selected contemporary educational issues through reading and research conducted from a variety of methodological perspectives. Explores assumptions through commentaries on the conduct of educational research.

16:300:509. QUALITATIVE RESEARCH METHODS IN EDUCATION I: INTRODUCTION (3)
Introduction to qualitative research techniques, examining their potential and limitations for investigating educational questions and issues. Topics include interviews, field notes, and observations.

16:300:511. QUALITATIVE RESEARCH METHODS IN EDUCATION I: INTRODUCTION (3)
Introduction to qualitative research techniques, examining their potential and limitations for investigating educational questions and issues. Topics include one- and two-sample tests of hypotheses, analysis of variance, multiple comparison procedures, regression, and effect size.

16:300:513. QUALITATIVE RESEARCH METHODS IN EDUCATION II: DESIGN AND ANALYSIS (3)
Critical examination of the philosophy and techniques of qualitative methods; design of studies and analysis of qualitative data.

16:300:515. QUALITATIVE RESEARCH METHODS IN EDUCATION II: DESIGN OF EXPERIMENTS (3)
Critical examination of sampling distributions, analysis of variance models, planned and posthoc comparisons, trend analysis, randomized block designs, within-subject designs, and higher-order factorials.

16:300:517. QUALITATIVE RESEARCH METHODS IN EDUCATION III: EDUCATIONAL ETHNOGRAPHY (3)
Intensive survey and application of methods and strategies in ethnography available to educational researchers; emphasis on field work employing ethnographic data-gathering techniques that involve participant observation and interview.

16:300:519. QUANTITATIVE RESEARCH METHODS IN EDUCATION III: ANALYSIS OF NONEXPERIMENTAL DATA (3)
Techniques for analyzing data gathered in nonexperimental studies, including matrix algebra, multiple regression, partial and semipartial correlations, variance partitioning, dummy and effect coding, and analysis of covariance.

16:300:600,601. THESIS RESEARCH (BA,BA)
Students engage in educational research under the supervision of faculty mentors.

16:300:701,702. RESEARCH IN EDUCATION (BA,BA)

* The Ph.D. program in education was approved during the Spring 1999 term. A complete course list was still in preparation as this catalog went to press. For a more complete list of courses, please contact the director of the graduate program.

EDUCATIONAL PSYCHOLOGY; EDUCATIONAL THEORY, POLICY, AND ADMINISTRATION; LEARNING AND TEACHING
(See the catalog of the Graduate School of Education for information on the Ed.M., Ed.D., and Ed.S. degrees.)

ELECTRICAL AND COMPUTER ENGINEERING 332

Degree Programs Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Professor David Daut, 134 Electrical Engineering Building, Busch Campus (732/445-5393)
Email: daut@ece.rutgers.edu

Members of the Graduate Faculty

Grigore C. Burdea, Associate Professor of Electrical and Computer Engineering, SE; Ph.D., New York

Andrew T. Ogielski, Research Professor, DIMACS; Ph.D., Wroclaw

Evangelia Micheli-Tzanakou, Professor of Biomedical Engineering, SE; Ph.D., Imperial College (London)

Peter Meer, Associate Professor of Electrical and Computer Engineering, SE; Ph.D., Colorado

Richard Mammone, Professor of Electrical and Computer Engineering, SE; Ph.D., Michigan State

John K.-J. Li, Professor of Biomedical Engineering, SE; Ph.D., Imperial College (London)

Richard Freeman, State of New Jersey Professor of Computer Engineering, SE; Eng Sc.D., Columbia

Yicheng Lu, Associate Professor of Electrical and Computer Engineering, SE; Ph.D., Colorado

Herbert Freeman, State of New Jersey Professor of Computer Engineering, SE; Eng Sc.D., Columbia

Computer engineering: digital computer systems; computer architecture; image processing and graphics

Zoran R. Gajic, Associate Professor of Electrical and Computer Engineering, SE; Ph.D., Michigan State

Systems and control

David J. Goodman, Professor of Electrical and Computer Engineering, SE; Ph.D., University of California (Los Angeles)

Joseph Yu-Ngai Hui, Professor of Electrical and Computer Engineering, SE; Ph.D., Massachusetts Institute of Technology

Digital signal processing; image restoration; speech recognition; medical imaging

Thomas G. Marshall, Professor of Electrical and Computer Engineering, SE; Ph.D., Computer Engineering: digital computer systems; computer architecture; image processing and graphics

Digital signal processing; algorithms and specialized signal processing computers

Sigurd R. McAffee, Associate Professor of Electrical and Computer Engineering, SE; Ph.D., Polytechnic Institute of New York

Solid-state electronics: deep levels in semiconductors; molecular beam epitaxy and MO-CVD Gallium Arsenide, AlGaAs, and GaAs on silicon

Evangelia Micheli-Tzanakou, Professor of Biomedical Engineering, SE; Ph.D., Technion (Israel)

Computer vision; image processing; pattern recognition

Andrew T. Ogielski, Research Professor, DIMACS; Ph.D., Wrocław

Communication networks and protocols; Internet protocols; packet radio networks; network modeling and parallel simulations

Sophocles J. Orfanidis, Associate Professor of Electrical and Computer Engineering, SE; Ph.D., Yale

Adaptive signal processing; spectrum estimation; neural networks
Paul Panayotatos, Professor of Electrical and Computer Engineering, SE; Eng.Sc.D., Columbia University
Solid state electronics: organic semiconductor p-n heterojunction solar cells
Narinder N. Puri, Professor of Electrical and Computer Engineering, SE; Ph.D., Pennsylvania State University
Systems and controls: optimal adaptive control systems
Christopher Rose, Associate Professor of Electrical and Computer Engineering, SE; Ph.D., Massachusetts Institute of Technology
Dynamic behavior of multi-element networks: communications, neural, etc.
Peddapalali V. Sannuti, Professor of Electrical and Computer Engineering, SE; Ph.D., Illinois Institute of Technology
Communication and control systems: singular perturbation analysis of Kalman filter with weak measurement noise
George K. Sheare, Professor of Biomedical Engineering, SE; Ph.D., California (Berkeley)
Biocellular vision: vergence: accommodation models; amblyopia
Deborah E. Silver, Associate Professor of Electrical and Computer Engineering, SE; Ph.D., Princeton University
Visualization: computer graphics; computational geometry; numerical analysis
Edward J. Sontag, Professor of Mathematics, FAS-NB; Ph.D., Florida State University
Linear and nonlinear control; neural networks; feedback design
Joseph Wilder, Research Professor of Electrical and Computer Engineering, SE; Ph.D., Pennsylvania State University
Image processing; pattern recognition; machine vision
Roy D. Yates, Associate Professor of Electrical and Computer Engineering, SE; Ph.D., Maryland Institute of Technology
Computer engineering: image processing; pattern recognition; machine vision; software engineering
Michael F. Caggiano, Assistant Professor of Electrical and Computer Engineering, SE; Ph.D., California (Los Angeles)
High performance and microwave device packaging
Stanley M. Dunn, Professor of Biomedical Engineering, SE; Ph.D., Maryland Institute of Technology
Computer engineering: image processing; pattern recognition; machine vision; software engineering
Michael Hsiao, Assistant Professor of Electrical and Computer Engineering, SE; Ph.D., Illinois Institute of Technology
Very large scale integrated circuit design and analysis; computer architecture
Vijay M. Bhandarkar, Assistant Professor of Electrical and Computer Engineering, SE; Ph.D., Rice University
Communication theory: spread spectrum; wireless systems; multi-access protocols
Ivan Marsic, Assistant Professor of Electrical and Computer Engineering, SE; Ph.D., Rutgers University
Computer engineering: image processing; pattern recognition; machine vision
Juang-Parshar, Assistant Professor of Electrical and Computer Engineering, SE; Ph.D., University of California (Los Angeles)
Parallel and distributed computing; software engineering
Steve Petrucci, Professor of Biomedical Engineering, SE; Ph.D., Rutgers University
Electronics: pulse circuits design and analysis; analytical instrumentation

Courses
Graduate Courses
16:332:501. (F) SYSTEM ANALYSIS (3)

Examinations
Students with a B.S. degree from an accredited electrical engineering school may apply for direct admission to the graduate program. Students with backgrounds in other concentrations, such as physics, mathematics, and computer science, or in engineering programs other than electrical engineering, are required to pass certain prerequisite undergraduate courses in electrical engineering. Students from electrical technology programs may be required to take a number of graduate courses in addition to the graduate program requirements. The Graduate Record Examination general test is required for admission to the program.

Master's of Science degree candidates may elect either a thesis or nonthesis option. The thesis option consists of 24 credits of course work, 6 credits of research in a specialized area, and a final thesis presentation. In the nonthesis option, a candidate must complete 30 credits of course work, pass a written comprehensive examination, and submit a satisfactory tutorial paper. The M.S. comprehensive examination is given twice a year.

Requirements for the M.S. degree may be satisfied for all options in a part-time evening program designed specifically for students employed in industry and other students whose obligations preclude full-time study. Admission and academic standards for part-time students are the same as for full-time students. This arrangement makes it possible for students to combine day and evening schedules simultaneously or at different periods in their academic careers. Students completing the requirements for the M.S. degree or the Ph.D. degree also are eligible for the Certificate in Wireless Communications; see the Wireless Communications subject heading for further information and requirements for this certificate.

Administration into the Ph.D. program requires an M.S. degree in electrical engineering. Applicants having an M.S. degree in a closely related discipline may be admitted into the doctoral program provided their preparation has no significant deficiencies. Students are considered to be Ph.D. candidates after satisfactory completion of the qualifying examination and presentation of their dissertation topic. The Ph.D. qualifying examination normally consists of four preliminary oral exams, a major oral exam, and a dissertation proposal presentation. The oral qualifying examination is generally given twice a year. A Ph.D. candidate, in conjunction with an adviser, is required to select a dissertation committee, submit a plan of study, and orally present a dissertation proposal. Minimum requirements for the Ph.D. degree include 48 credits beyond the baccalaureate degree in courses approved by the dissertation adviser, in addition to 24 credits of dissertation research beyond the M.S. degree. A public defense serves as the final Ph.D. dissertation examination. There is no foreign language requirement. The residence requirement depends upon the area of specialization. The Master of Philosophy degree is available to doctoral candidates.

16:332:503, 504. ELECTRIC NETWORK THEORY I, II (3,3)

Prerequisite: 16:332:501.
Network synthesis of driving point and transfer impedances using Foster, Bott-Duffin, Brune, and Darlington techniques; topological methods for analysis of active and passive networks; flow-graph techniques; state-space formulation of general networks; computer-aided network design.
16:332:505. (S) CONTROL SYSTEM THEORY I (3)
Prerequisite: 16:332:501.

16:332:506. (F) CONTROL SYSTEM THEORY II (3)
Prerequisite: 16:332:505.
Review of state-space techniques; transfer function matrices; concepts of controllability, observability, and identifiability. Identification algorithms for multivariable systems; minimal realization of a system and its construction from experimental data. State-space theory of digital systems. Design of a three-mode controller via spectral factorization.

16:332:508. (S) SAMPLED DATA CONTROL SYSTEMS (3)
Prerequisite: 16:332:505.
Methods of analysis and synthesis of discrete time systems; various transformations and semigraphical techniques applied to both digital and digitally controlled continuous processes with deterministic and/or random signals.

16:332:510. (S) SYNTHESIS OF OPTIMUM CONTROL SYSTEMS (3)
Prerequisites: 16:332:505,506.
Formulation of both deterministic and stochastic optimal control problems. Various performance indices; calculus of variations; derivation of Euler-Lagrange and Hamilton-Jacobi equations and their connection to two-point boundary value problems, linear regulator and the Riccati equations. Pontryagin’s maximum principle, its application to minimum time, minimum fuel, and bang-bang control. Numerical techniques for Hamiltonian minimization. Bellman dynamic programming; maximum principle and invariant imbedding.

16:332:512. (S) NONLINEAR AND ADAPTIVE CONTROL THEORY (3)
Prerequisite: 16:332:505.
Nonlinear servo systems; general nonlinearities; describing function and other linearization methods; phase plane analysis and Poincare theorems. Liapunov’s method of stability; Popov criterion; circle criterion for stability. Adaptive and learning systems; identification algorithms and observer theory; input adaptive, model reference adaptive, and self-optimizing systems. Estimation and adaptive algorithms via stochastic approximation. Multivariable systems under uncertain environment.

16:332:514. (S) STATISTICAL DESIGN OF AUTOMATIC CONTROL SYSTEMS (3)
Prerequisite: 16:332:505.

16:332:519. ADVANCED TOPICS IN SYSTEMS ENGINEERING (3)
Prerequisite: Permission of instructor.
Advanced study of various aspects of automatic control systems. Possible topics include identification, filtering, optimal and adaptive control, learning systems, digital and sampled data implementations, singular perturbation theory, large-scale systems, game theory, geometric control theory, and control of large flexible structures. Topics vary from year to year.

16:332:521. (F) DIGITAL SIGNALS AND FILTERS (3)
Prerequisite: 16:332:501.
Sampling and quantization of analog signals; z-transforms; digital filter structures and hardware realizations; digital filter design methods; DFT and FFT methods and their application to fast convolution and spectrum estimation; introduction to discrete-time random signals.

16:332:525. (F) OPTIMUM SIGNAL PROCESSING (3)
Prerequisite: 16:332:521; or permission of instructor.
Block processing and adaptive signal processing techniques for optimum filtering, linear prediction, signal modeling, and high-resolution spectral analysis. Lattice filters for linear prediction and Wiener filtering. Levinson and Schur algorithms and their split versions. Fast Cholesky factorizations. Periodogram and parametric spectrum estimation and superresolution array processing. LMS, RLS, and lattice adaptive filters and their applications. Adaptation algorithms for multilayer neural nets.

16:332:526. (S) ROBOTIC SYSTEMS ENGINEERING (3)

16:332:527. (S) DIGITAL SPEECH PROCESSING (3)
Prerequisite: 16:332:521.
Acoustics of speech generation; perceptual criteria for digital representation of audio signals; signal processing methods for speech analysis; waveform coders; vocoders; linear prediction; differential coders (DPCM, delta modulation); speech synthesis; automatic speech recognition; voice-interactive information systems.

16:332:529. (S) IMAGE CODING AND PROCESSING (3)
Visual information, image restoration, coding for compression and error control, motion compensation, advanced television.

16:332:533. (S) COMPUTATIONAL METHODS FOR SIGNAL RECOVERY (3)
Prerequisites: 16:332:521, 541.
Linear shift varying systems; discrete constrained estimation techniques; applications in image restoration; image reconstruction; spectral estimation and channel equalization using decision feedback.

16:332:535. (F) MULTiresolution SIGNAL PROCESSING ALGORITHMS (3)
Algebraic models and algorithms, sampling lattices, multiresolution transforms, filters, rate conversion, deconvolution and projection.

16:332:539. ADVANCED TOPICS IN DIGITAL SIGNAL PROCESSING (3)
Prerequisite: Permission of instructor.
Emphasis on current research areas. Advanced treatment of such topics as digital filter design, digital filtering of random signals, discrete spectral analysis methods, and digital signal processor architectures.

16:332:541. (F) STOCHASTIC SIGNALS AND SYSTEMS (3)
Axioms of probability; conditional probability and independence; random variables and functions thereof; mathematical expectation; characteristic functions; conditional expectation; Gaussian random vectors; mean square estimation; convergence of a sequence of random variables; laws of large numbers and Central Limit Theorem; stochastic processes, stationarity, autocorrelation, and power spectral density; linear systems with stochastic inputs; linear estimation; independent increment, Markov, Wiener, and Poisson processes.
16:332:542. (S) INFORMATION THEORY AND CODING (3)
Prerequisite: 16:332:541.
Noiseless channels and channel capacity; entropy, mutual information, Kullback-Leibler distance, and other measures of information; typical sequences, asymptotic equipartition theorem; prefix codes, block codes, data compression, optimal codes, Huffman, Shannon-Fano-Elias, arithmetic coding; memoryless channel capacity, coding theorem and converse; Hamming, BCH, cyclic codes; Gaussian channels and capacity; coding for channels with input constraint; introduction to source coding with a fidelity criterion.

16:332:543. (F) COMMUNICATION NETWORKS I (3)
Prerequisite: 16:332:549 or equivalent.

16:332:544. (S) COMMUNICATION NETWORKS II (3)
Prerequisite: 16:332:543.
Network and protocol architectures. Layered connection management, including network design, path dimensioning, dynamic routing, flow control, and random access algorithms. Protocols for error control, signaling, addressing, fault management, and security control.

16:332:545. (S) COMMUNICATION THEORY (3)
Prerequisite: 16:332:541.
Orthonormal expansions, effect of additive noise in electrical communications, vector channels, waveform channels, matched filters, band width, and dimensionality. Optimum receiver structures, probability of error, bit and block signaling, introduction to coding techniques.

16:332:546. (F) DIGITAL COMMUNICATIONS I (3)
Prerequisite: 16:332:545.
The functional characterization of digital signals and transmission facilities, band-limited and time-limited signals, modulation and demodulation techniques for digital signals, error probability, intersymbol interference and its effects, equalization and optimization of baseband binary and M-ary signaling schemes. Application to satellite and space communication systems emphasized.

16:332:547. (F) DIGITAL COMMUNICATIONS II (3)
Continuation of 16:332:547. Application of information-theoretic principles to communication system analysis and design. Source and channel coding considerations, rudiments of rate-distortion theory. Probabilistic error control coding impact on system performance. Introduction to various channel models of practical interest, spread spectrum communication fundamentals. Current practices in modern digital communication system design and operation.

16:332:548. (S) DETECTION AND ESTIMATION THEORY (3)
Prerequisite: 16:332:541.
Statistical decision theory, hypothesis testing, detection of known signals and signals with unknown parameters in noise, receiver performance and error probability, applications to radar and communications. Statistical estimation theory, performance measures and bounds, efficient estimators. Estimation of unknown signal parameters, optimum demodulation, applications. Linear estimation, Wiener filtering, Kalman filtering.

16:332:549. (F) FADEING COMMUNICATION CHANNELS (3)
Prerequisite: 16:332:548.
The characterization and modeling of fading and/or dispersive channels, analog and digital communication system performance, diversity reception, optimum demodulators for channel memory effects. Applications include troposcatter, HF, atmospheric scattering, and optical channels. Emphasis on analysis of space communication and optical communication system performance.

16:332:550. (F) MICROWAVE CIRCUITS: DESIGN AND ENGINEERING (3)
Prerequisite: 16:332:580 or equivalent.
Overview of modern microwave engineering including transmission line, network analysis, integrated circuits, diodes, amplifier and oscillator design.

16:332:556. (S) MICROWAVE SYSTEMS (3)
Prerequisite: 16:332:580 or equivalent.
Microwave subsystems including front-end and transmitter components, antennas, radar, terrestrial communications, and satellites.

16:332:559. ADVANCED TOPICS IN COMMUNICATIONS ENGINEERING (3)
Prerequisite: Permission of instructor.
Topics such as source and channel coding, modern modulation techniques, telecommunication networks, and information processing.

16:332:560. (F) COMPUTER GRAPHICS (3)
Prerequisite: 16:332:549.

16:332:561. (F) MACHINE VISION (3)
Prerequisite: 16:332:501.

16:332:562. (S) VISUALIZATION AND ADVANCED COMPUTER GRAPHICS (3)
Prerequisite: 16:332:546.
Advanced visualization techniques, including volume representation, volume rendering, ray tracing, composition, surface representation, advanced data structures. User interface design, parallel and object-oriented graphic techniques, advanced modeling techniques.

16:332:563. (F) COMPUTER ARCHITECTURE I (3)
Prerequisite: 16:332:546.
Fundamentals of computer architecture using quantitative and qualitative principles. Instruction set design with examples and measurements of use, basic processor implementation: hardwired logic and microcode, pipelining; hazards and dynamic scheduling, vector processors, memory hierarchy; caching, main memory and virtual memory, input/output, and introduction to parallel processors, SIMD and MIMD organizations.

16:332:564. (S) COMPUTER ARCHITECTURE II (3)
Prerequisite: 16:332:546.
Advanced hardware and software issues in mainstream computer architecture design and evaluation. Register architecture and design, instruction sequencing and fetching, cross-branch fetching, advanced software pipelining, acyclic scheduling, execution efficiency, predication analysis, speculative execution, memory access ordering, prefetch and preloading, cache efficiency, low-power architecture, and issues in multiprocessors.

16:332:565. (F) NEUROCOMPUTER SYSTEM DESIGN (3)
Prerequisite: 16:332:546.
Principles of neural-based computers, data acquisition, hardware architectures for multilayer, tree, and competitive learning neural networks, applications in speech recognition, machine vision, target identification, and robotics.

16:332:566. (S) PARALLEL AND DISTRIBUTED COMPUTING (3)
Prerequisites: 16:332:563, 564.
Supercomputer architectures; pipelined and vector processors; parallel processors; structures and algorithms for vector and parallel computers; shared and distributed memory architectures; data flow architectures; application-oriented architectures.
16:332:567. (F) SOFTWARE ENGINEERING I (3)
Overview of software development process. Formal techniques for requirements analysis, system specification, and system testing. Distributed systems, system security, and system reliability. Software models and metrics. Case studies.

16:332:568. (S) SOFTWARE ENGINEERING II (3)
Prerequisite: 16:332:567.
Program development and software design methodologies. Abstract data types, information hiding, program documentation. Program testing and reusability. Axiomatic and functional models. Case studies.

16:332:569. (F) DATABASE SYSTEM ENGINEERING (3)
Relational data model, relational database management system, relational query languages, parallel database systems, database computers, and distributed database systems.

16:332:570. (S) ROBUST COMPUTER VISION (3)
Prerequisite: 16:332:561.
A toolbox of advanced methods for computer vision, using robust estimation, clustering, probabilistic techniques, invariance. Applications include feature extraction, image segmentation, object recognition, and 3-D recovery.

16:332:571. (S) VIRTUAL REALITY TECHNOLOGY (3)
Prerequisite: 16:332:560.

16:332:574. (F) COMPUTER-AIDED DIGITAL VLSI DESIGN (3)
Prerequisite: 16:332:574.
Advanced computer-aided digital VLSI chip design, CMOS technology, domino logic, precharged busses, case studies of chips, floor planning, layout synthesis, routing, compaction circuit extraction, multilevel circuit simulation, circuit modeling, fabrication processes and other computer-aided design tools.

16:332:575. (S) VLSI ARRAY PROCESSORS (3)
Prerequisite: 16:332:574.
VLSI technology and algorithms; systolic and wavefront array architecture; bit-serial pipelined architecture; DSP architecture; transputer; interconnection networks; wafer-scale integration; neural networks.

16:332:576. (S) TESTING OF ULTRA LARGE SCALE CIRCUITS (3)
Prerequisite: 16:332:563.

16:332:579. ADVANCED TOPICS IN COMPUTER ENGINEERING (3)
Prerequisite: Permission of instructor.
In-depth study of topics pertaining to computer engineering, such as microprocessor system design; fault-tolerant computing; real-time system design. Subject areas vary from year to year.

16:332:580. (F) ELECTRIC WAVES AND RADIATION (3)
Prerequisite: Elementary electromagnetics.
Static boundary value problems, dielectrics, wave equations, propagation in lossless and lossy media, boundary problems, waveguides and resonators, radiation fields, antenna patterns and parameters, arrays, transmit-receive systems, antenna types.

16:332:581. (F) INTRODUCTION TO SOLID-STATE ELECTRONICS (3)
Introduction to quantum mechanics; WKB method; perturbation theory; hydrogen atom; identical particles; chemical bonding; crystal structures; statistical mechanics; free-electron model; quantum theory of electrons in periodic lattices.

16:332:583. (F) SEMICONDUCTOR DEVICES I (3)
Charge transport, diffusion and drift current, injection, lifetime, recombination, and generation processes, p-n junction devices, transient behavior, FET's, I-V, and frequency characteristics, MOS devices C-V, C-f, and I-V characteristics, operation of bipolar transistors.

16:332:584. (S) SEMICONDUCTOR DEVICES II (3)
Prerequisite: 16:332:583.
Review of microwave devices, O- and M-type devices, microwave diodes, Gunn, IMPATT, TRAPATT, etc., scattering parameters and microwave amplifiers, heterostructures and III-V compound-based BJTs and FETs.

16:332:587. (F) TRANSISTOR CIRCUIT DESIGN (3)
Design of discrete transistor circuits; amplifiers for L.F., H.F., tuned, and power applications biasing; computer-aided design; noise; switching applications; operational amplifiers; linear circuits.

16:332:588. (S) INTEGRATED TRANSISTOR CIRCUIT DESIGN (3)
Prerequisite: 16:332:587.
Design of digital integrated circuits based on NMOS, CMOS, bipolar, BiCMOS and GaAs FETs; fabrication and modeling; analysis of saturating and nonsaturating digital circuits, sequential logic circuits, semiconductor memories, gate arrays, PLA and GaAs LSI circuits.

16:332:590. (S) INTEGRATED CIRCUITS (3)
Prerequisite: 16:332:583.
Basic processing of IC's, diffusion, and ion implantation; isolation methods; integrated resistors and inductors; junction capacitors; diodes, FET, MOS and bipolar transistors; thermal effects and basic linear integrated circuits.

16:332:591. (F) OPTOELECTRONICS I (3)
Prerequisites: 16:332:580, and 581 or 583.
Principles of laser action, efficiency, CW and pulse operation, mode locking, output coupling, equivalent circuits, gaseous and molecular lasers, solid-state lasers, single and double heterojunction lasers, different geometries, fabrication, degradation, and application to holography, communication, medicine, and fusion.

16:332:592. (S) OPTOELECTRONICS II (3)
Prerequisite: 16:332:591.
Photodetectors including avalanche, Schottky, p-i-n, and multi-element detectors; display devices including semiconductor, liquid crystals, electrochromics, electroluminescent panels; optoisolaters; fiber optics communication and optoelectronics in information systems.

16:332:594. (F) SOLAR CELLS (3)
Prerequisite: 16:332:583 or equivalent.
Photovoltaic material and devices, efficiency criteria, Schottky barrier, p-n diode, heterojunction and MOS devices, processing technology, concentrator systems, power system designs, and storage.

16:332:596. (S) SEMICONDUCTOR SURFACES (3)
Surface composition and structure of semiconductor, ultra-high vacuum technology, Auger electron spectroscopy, low-energy electron diffraction, photoemission spectroscopy, secondary ion mass-spectroscopy.

16:332:597. (S) MATERIAL ASPECTS OF SEMICONDUCTORS (3)
Prerequisite: 16:332:581.
Preparation of elemental and compound semiconductors. Bulk crystal growth techniques. Epitaxial growth techniques. Impurities and defects and their incorporation. Characterization techniques to study the structural, electrical, and optical properties.

16:332:599. ADVANCED TOPICS IN SOLID-STATE ELECTRONICS (3)
Prerequisite: Permission of instructor.
Topics vary and include semiconductor materials, surfaces, and devices; optoelectronic devices; sensors; photovoltaics; fiber optics; and analog/digital circuit design.
16:332:601,602. SPECIAL PROBLEMS (BA,BA)
Prerequisite: Permission of instructor.
Investigation in selected areas of electrical engineering.

16:332:618. SEMINAR IN SYSTEMS ENGINEERING (1)
Presentation involving current research given by advanced students and invited speakers. Term papers required.

16:332:638. SEMINAR IN DIGITAL SIGNAL PROCESSING (1)
Presentation involving current research given by advanced students and invited speakers. Term papers required.

16:332:658. SEMINAR IN COMMUNICATIONS ENGINEERING (1)
Presentation involving current research given by advanced students and invited speakers. Term papers required.

16:332:678. SEMINAR IN COMPUTER ENGINEERING (1)
Presentation involving current research given by advanced students and invited speakers. Term papers required.

16:332:698. SEMINAR IN SOLID-STATE ELECTRONICS (1)
Presentation involving current research given by advanced students and invited speakers. Term papers required.

16:332:701,702. RESEARCH IN ELECTRICAL ENGINEERING (3,3)

ENGLISH, LITERATURSES IN
(English 350, American Literature 352)

Degree Programs Offered: Master of Arts, Doctor of Philosophy
Director of Graduate Program: Professor Carol Smith,
Murray Hall, College Avenue Campus (732/932-7674)

Members of the Graduate Faculty
Derek Attridge, Distinguished Visiting Professor of English, FAS-NB;
Ph.D., Cambridge

Literary theory; modernism; poetics

Louise K. Barnett, Professor of English, FAS-NB; Ph.D., Bryn Mawr

Nineteenth- and twentieth-century American literature; women's studies

Emily Bartels, Associate Professor of English, FAS-NB; Ph.D., Harvard

Renaissance drama; colonial discourse

John H. Belton, Professor of English, FAS-NB; Ph.D., Harvard

Cinema studies; cultural studies

Wesley C. Brown, Professor of English, FAS-NB; M.A., CUNY

Nineteenth- and twentieth-century American literature; modern drama

Abena P. A. Busia, Associate Professor of English, FAS-NB; Ph.D., Oxford

African-American and African diaspora literature

Elaine Chung, Assistant Professor of English, FAS-NB; Ph.D., Stanford

Twentieth-century African-American literature; postcolonial studies; women's studies

Maurice Charney, Professor of English, FAS-NB; Ph.D., Princeton

Renaissance drama; comedy

Christine Chium, Assistant Professor of English, FAS-NB; Ph.D., Duke

Medieval literature; medieval drama; women's studies; cultural studies; historiography

Ed Cohen, Associate Professor of English, FAS-NB; Ph.D., Stanford

Literary and social theory; gay and gender studies; late Victorian culture

Ann Baynes Cline, Associate Professor of English, FAS-NB; Ph.D., Maryland

Renaissance and seventeenth-century literature; women's studies

Anne Cotterill, Assistant Professor of English, FAS-NB; Ph.D., Washington

Early modern English literature; Renaissance women writers; poetics

Susan Crane, Professor of English, FAS-NB; Ph.D., California (Berkeley)

Medieval studies; cultural studies; women's studies

Alice C. Crozier, Associate Professor of English, FAS-NB; Ph.D., Harvard

American literature

Harriet A. Davidson, Associate Professor of English, FAS-NB; Ph.D., Vanderbilt

Modern and contemporary poetry; critical theory

Marianne DeKoven, Professor of English, FAS-NB; Ph.D., Stanford

Modernism; women's studies

Elin Diamond, Professor of English, FAS-NB; Ph.D., California (Davis)

Drama and dramatic theory; feminist and literary theory

William C. Dowling, Professor of English, FAS-NB; Ph.D., Harvard

Twentieth-century literature; colonial American literature and literature of the early American republic; critical theory

Brent Edwards, Assistant Professor of English, FAS-NB; Ph.D., Columbia

African-American literature; Francophone literature; twentieth-century poetry of the Americas; music and literature; cultural studies

Katherine Ellis, Associate Professor of English, FAS-NB; Ph.D., Columbia

Women's studies; eighteenth-century fiction

Sandy Flitterman-Lewis, Associate Professor of English, FAS-NB; Ph.D., California (Berkeley)

Cinema studies; feminist critical analysis

William H. Galperin, Professor of English, FAS-NB; Ph.D., Brown

Romantic literature; literary theory; media studies

Donald Gibson, Professor of English, FAS-NB; Ph.D., Brown

American and African-American literature

James Guetti, Professor of English, FAS-NB; Ph.D., Cornell

American literature; language, philosophy, and literary theory

Daniel Harris, Professor of English, FAS-NB; Ph.D., Yale

Victorian and modern literature; Jewish studies

Mortimer H. Hovey, Associate Professor of English, FAS-NB; Ph.D., Princeton

Anglo-Irish and modern British literature; critical theory

Marcia Ian, Associate Professor of English, FAS-NB; Ph.D., Virginia

Modern British and American literature; critical theory; the novel

Virginia Jackson, Assistant Professor of English, FAS-NB; Ph.D., Princeton

Theory and history of lyric; nineteenth-century American poetry and culture; history of literary criticism; feminist theory

Myra Jehlen, Board of Governors Professor of Literature and Culture, FAS-NB;
Ph.D., California (Berkeley)

American literature; feminist criticism; cultural history

Samira Kawash, Assistant Professor of English, FAS-NB; Ph.D., Duke

Nineteenth- and twentieth-century minority and African-American literature; literary and cultural theory; race and ethnicity

George Keams, Professor of English, FAS-NB; Ph.D., Boston

Modernism

Stacey Klein, Assistant Professor of English, FAS-NB; Ph.D., Ohio State

Old English and medieval studies; gender and sexuality

Richard Koszarski, Assistant Professor of English, FAS-NB; Ph.D., New York

Cinematography

Jonathan Brody Kramnick, Assistant Professor of English, FAS-NB; Ph.D., Johns Hopkins

Renaissance and eighteenth-century literature and culture; history of criticism; Marxist and post-Marxist cultural theory

Daphne Lamothe, Assistant Professor of English, FAS-NB; Ph.D., California (Berkeley)

African-American fiction; Black Atlantic culture and theories of migration; ethnography; folklore

Ronald Leavy, Associate Professor of English, FAS-NB; Ph.D., California (Berkeley)

English Renaissance literature and intellectual history

George Levine, Kenneth Burke Professor of English, FAS-NB; CCACC;
Ph.D., Minnesota

Victorian literature; literature and science

Bridget Gellert Lyons, Professor of English, FAS-NB; Ph.D., Columbia

Renaissance literature

Marc K. Manganaro, Associate Professor of English, FAS-NB; Ph.D., North Carolina (Chapel Hill)

Modern literature; literary theory and anthropology; folklore and myth

John A. McClure, Professor of English, FAS-NB; Ph.D., Stanford

Contemporary American fiction; colonial and postcolonial discourse

Meredith L. McGill, Assistant Professor of English, FAS-NB; Ph.D., Johns Hopkins

Nineteenth-century American literature, the history of the book, American poetry

Michael McKearin, Board of Governors Professor of English, FAS-NB;
Ph.D., Columbia

Seventeenth- and eighteenth-century literature

Jacqueline T. Miller, Associate Professor of English, FAS-NB; Ph.D., Johns Hopkins

Renaissance literature

Richard Miller, Associate Professor of English, FAS-NB; Ph.D., Pittsburgh

Composition; pedagogy; cultural studies

Alicia Ostriker, Professor of English, FAS-NB; Ph.D., Wisconsin

Romantic, modern, and contemporary poetry; women's studies

Barry V. Qualls, Professor of English, FAS-NB; Ph.D., Northwestern

Victorian literature

Bruce Robbins, Professor of English, FAS-NB; Ph.D., Harvard

Literary theory; Marxism; cultural theory

Larry Scanlon, Associate Professor of English, FAS-NB; Ph.D., Johns Hopkins

Medieval studies; cultural studies; literary theory

Carol H. Smith, Professor of English, FAS-NB; Ph.D., Michigan

Modern literature; women's studies

Kurt Spellmeyer, Associate Professor of English, FAS-NB; Ph.D., Washington

Composition and rhetoric; seventeenth-century literature

Patricia L. Tobin, Associate Professor of English, FAS-NB; Ph.D., Pittsburgh

Contemporary American literature; colonial and postcolonial discourse

Marcia Thomas, Associate Professor of English, FAS-NB; Ph.D., Johns Hopkins

American and African-American literature; women's studies

Michael Waller, Professor of English, FAS-NB; Ph.D., New York

English romantics

96
Michael D. Warner, Professor of English, FAS-NB; Ph.D., Johns Hopkins
Colonial and nineteenth-century American literature; queer theory; social theory
Andrew Welsh, Associate Professor of English, FAS-NB; Ph.D., Pittsburgh
Old English and medieval studies; poetry
Carolyn S. Williams, Associate Professor of English, FAS-NB; Ph.D., Virginia
Victorian literature; women's studies; cultural studies
Associate Member of the Graduate Faculty
Robert Barton, Associate Professor of English, FAS-NB; Ph.D., Stanford
Medieval studies

Programs
The M.A. and Ph.D. programs are open to students with outstanding academic records and other evidence of critical and scholarly talents. Applications for September admission to the New Brunswick programs must be completed by January 20. Students who have already earned an M.A. degree at another institution are welcome to apply for admission to the Ph.D. program.

The principal aim of the master’s program is to ensure that students have a historically, culturally, and intellectually broad foundation in literary studies as a basis for more concentrated work in the Ph.D. program. Because the two programs are integrally related, only students intending to proceed to the doctoral program are eligible for admission to the master’s program. For students continuing on to the Ph.D., attainment of the M.A. degree comes with the completion of 30 credits of graduate study and the foreign language requirement. For the minority of students who do not proceed to the doctoral program, the M.A. degree is attained by successfully completing 30 credits including the distribution requirements, 16:350:517 Critical Reading, the foreign language requirement, and a written master’s examination.

Eight 3-credit courses are required specifically for the M.A. degree, in addition to two 1.5-credit courses (16:350:517 Critical Reading and 16:350:518 Introduction to Advanced Research) and the expository writing requirement (16:352:552 Teaching Writing: Theory and Practice). Six of the eight courses must be taken to satisfy the M.A. distribution requirements. The remaining two courses are electives. The distribution requirements fall into three general types. First, students must choose at least one course in each of the following five categories: (1) medieval studies, (2) Renaissance studies, (3) Restoration and Enlightenment studies (British) or Puritan and colonial studies (American), (4) nineteenth-century studies, and (5) twentieth-century studies. Second, students must choose at least one course in theory, defined for these purposes as courses whose central study is of texts in literary and critical theory and philosophy, rather than of literary texts. Third, students must choose at least one course whose central study is of a significant body of literature traditionally neglected in academic curricula. This category would include courses in African-American/African diaspora literature, writing by women, ethnic studies, gay and lesbian writing, popular culture, and working-class literature. In addition, all students are required to take, among their courses at the M.A. level, at least one course in American literature. In all cases, students’ selections of courses are made in close consultation with their advisers.

The Ph.D. requires 48 credits of course work (at least fourteen courses) including the course work done for the M.A. degree and 6 credits of supervised reading and study in preparation for the qualifying examination. The normal full-time course load is three courses per term. Part-time study also is permitted. Three specific courses are required. All students are required to take 16:352:552 Teaching Writing: Theory and Practice for credit if they intend to teach at any stage of their tenure in the graduate program or as an audit if they do not teach. In addition, all students are required to take two 1.5-credit courses that together equal one full course of the required fourteen: 16:350:517 Critical Reading in their first term of graduate work and 16:350:518 Introduction to Advanced Research, which may be taken as early as their second or as late as their sixth term of study. Each 1.5-credit course may be taken on a top of the normal three-course per term course load.

Graduate courses in the 500 series are designed to treat subjects that are important to graduate English literary studies, in a way that makes the material accessible to sophisticated students who may have had no college experience of it. The 600-level concentration seminars allow more advanced and concentrated work in more particularized areas of study.

The foreign language requirement for either the M.A. or Ph.D. degree is formulated so as to emphasize the relationship between the knowledge of foreign languages and the study of literature. Students are asked to apply to take a written exam on a language of their choice (subject to approval by the Graduate Foreign Language Committee). As far as possible, students should choose a language they anticipate will be relevant to their eventual areas of concentration. Students will be urged to take the exam as soon as possible, but in any case before the conclusion of their course work.

The Ph.D. qualifying examination consists of two hours of oral questioning in four concentration categories: (1) a chronological period or periods, (2) a form or discursive tradition, (3) a methodological procedure(s) or theoretical framework(s), (4) an author or authors. A central purpose of the exam, that it provide an occasion for specialized and concentrated study, is served by the coextensive or overlapping nature of the four chosen concentration categories. However, the exam also aims to test the student’s knowledge of the broader terrain of the four categories (the other productions of the period(s) and author(s), the larger history of the form or discourse, the wider implications and applications of the method or theory). Within three months of the Ph.D. qualifying exam, the student submits a dissertation prospectus to the prospective dissertation director. Once students fulfill the language and course requirements, pass the qualifying examination, and submit a dissertation proposal approved by the students’ dissertation committee, which consists of three members of the program’s faculty and one outside reader, they are admitted to candidacy for the Ph.D. degree. After the completed dissertation has been approved by the dissertation committee for submission to defense, the student participates in a one- to two-hour defense with the committee.

All applicants are strongly urged to contact the Graduate Program in Literatures in English for further information, including information about financial assistance and fuller details of the program structure (given in the booklet The Graduate Program in Literatures in English), by calling or writing to the Graduate Program in Literatures in English, Rutgers, The State University of New Jersey, 510 George Street, New Brunswick, NJ 08901-1167 (732/932-7674).

Graduate Courses (350)
16:350:501, 502. INDIVIDUAL STUDIES IN BRITISH AND AMERICAN LITERATURE (3,3)
An independent study course in directed readings available only by special arrangement.
16:350:507. STUDIES IN FICTION (3)
Types of narrative—the tale, legend, romance, epic—and their relation to the novel.
16:350:508. CRITICAL THEORY (3)
Study of twentieth-century critical debates in America and Europe: new criticism, Marxist theory, structuralism, and deconstruction.
16:350:510. STUDIES IN DRAMATIC FORM (3)
Studies in types of comedy, tragedy, and history, with emphasis on English dramatists.
16:350:511. TECHNIQUE IN ENGLISH POETRY (3)
A study of expressive conventions in poetry from the Renaissance to modern times. Prosody, diction, metaphor, structure.
16:350:512. THE CRITICISM OF POETRY (3)
Problems in the reading and interpretation of poetry. Introduces students to critical theory by testing various approaches against the practice of particular poets or groups of poets.
16:350:513. HISTORY OF THE ENGLISH LANGUAGE (3)
The nature of language; the course of phonemic change; history of English syntax; grammatical approaches, semantic processes.
16:350:514. LITERATURE AND POLITICS (3)
A study of literary texts directly connected to political debate and of critical theories, especially Marxist criticism, generated by the intersection of politics and literary form.

16:350:515. MYTH AND LITERATURE (3)
Recurrences and transformation of mythic motifs in selected works of British and American literature; some attention to theories of myth.

16:350:516. TEXTS AND CRITICAL ISSUES IN MODERNISM (3)
Technical innovation, critical positions, and concerns of writers such as Eliot, Joyce, Yeats, Woolf, Stein, and Pound, with some attention to nineteenth-century influences.

16:350:517. CRITICAL READING (1.5)
Various ways of reading texts, with attention to the history and theory of modes of reading from “new criticism” to poststructuralism.

16:350:518. INTRODUCTION TO ADVANCED RESEARCH (1.5)
Methods and resources for research in literary criticism, textual criticism, and related historical and cultural topics.

16:350:526. LITERARY CRITICISM: THE MAJOR TEXTS (3)
A study of conventions and recurrent problems in critical discourse from Aristotle to the present. Emphasis on generic theory and on criticism as a unique form of rhetoric.

16:350:527. PSYCHOANALYTIC CRITICISM (3)
The uses of Freudian and other psychoanalytical vocabularies for describing literary responses; emphasis on critical analysis of selected nineteenth- and twentieth-century literary works.

16:350:529, 530. OLD ENGLISH (3,3)
First term: introduction to Old English grammar, with readings from selected texts. Second term: Beowulf.

16:350:532. CHAUCER (3)
Major works of Geoffrey Chaucer, including Troilus and Criseyde and the Canterbury Tales, in relation to late medieval culture.

16:350:535. TEXTS AND CRITICAL ISSUES IN MEDIEVAL LITERATURE (3)
Introduction to medieval studies through major Old and Middle English works, with attention to medieval and contemporary critical approaches.

16:350:536. STUDIES IN MEDIEVAL LITERATURE (3)
Relations between English medieval literature and other literatures, such as classical and continental; literary relations with other disciplines such as folklore, history, and anthropology.

16:350:539. TEXTS AND CRITICAL ISSUES IN RENAISSANCE LITERATURE (3)
Major writers of the sixteenth and early seventeenth centuries approached through modern critical ideas of form, genre, convention, theme, and style.

16:350:540. RENAISSANCE LITERATURE: TEXTS AND CONTEXTS (3)
Major texts read against the social, cultural, philosophical, and literary history of the Renaissance period. Studies, for example, of Paradise Lost, or The Faerie Queene, or selected plays of Shakespeare in conjunction with a range of related documents, literary and otherwise.

16:350:541, 542. FORMS OF RENAISSANCE LITERATURE (3,3)
Studies in literary forms that gave expression to major themes in the sixteenth and early seventeenth centuries; heroic, pastoral, satirical, tragic, comic.

16:350:543. DRAMA IN THE AGE OF SHAKESPEARE (3)
Readings from selected Tudor and Stuart playwrights.

16:350:545. SHAKESPEARE (3)
General study of Shakespeare's works.

16:350:551, 552. WRITERS OF THE ENGLISH RENAISSANCE (3,3)
Intensive study of one or two major writers of the period.

16:350:554. MILTON (3)
Milton's poetry and selected prose.

16:350:556. AGE OF DRYDEN (3)
A study of the poetry and drama that marks the reestablishment of the Stuart court: Dryden, Rochester, Marvell, Butler, Etherege, Farquhar, Wycherley, Congreve, and others.

16:350:557. RESTORATION AND EIGHTEENTH-CENTURY DRAMA (3)
Restoration comedy, tragedy, heroic play, and dramatic criticism; eighteenth-century survivals and transformations.

16:350:559. TEXTS AND CRITICAL ISSUES IN EIGHTEENTH-CENTURY LITERATURE (3)
The main modes, actions, and styles in eighteenth-century writing.

16:350:562. EIGHTEENTH-CENTURY LITERATURE: TEXTS AND CONTEXTS (3)
The relation of major works by a single author to the literary, social, and cultural terms of the period. A different author studied each year.

16:350:565. TEXTS AND CRITICAL ISSUES IN ENGLISH FICTION 1700–1820 (3)
The emergence of prose fiction as a literary genre and its evolution into a complex and self-conscious form: Defoe, Richardson, Fielding, Sterne, Smollett, Scott, Jane Austen.

16:350:566. TEXTS AND CRITICAL ISSUES IN ENGLISH FICTION 1800–1900 (3)
Readings in selected novels and novelists from about 1800 to 1900, drawing especially on the works of Scott, Dickens, Thackeray, the Brontës, George Eliot, and James.

16:350:568. THE FRENCH REVOLUTION AND ENGLISH ROMANTICISM (3)
English literature from late Burke to early Carlyle, studied from the perspective of the French Revolution. Emphasis on the major English poets of the period.

16:350:569. TEXTS AND CRITICAL ISSUES IN ENGLISH ROMANTICISM (3)
The revolt against tradition and the redefinition of poetry and the poet.

16:350:570. THE ENGLISH ROMANTICS: TEXT AND CONTEXT (3)
The development and diversity of new poetic methods and identities, considered in their historical and cultural context.

16:350:571. TEXTS AND CRITICAL ISSUES IN VICTORIAN LITERATURE (3)
A study of the major preoccupations and styles of the period in nonfiction, poetry, and the novel. Larger emphasis on nonfiction, poetry, and the effects of external historical and social developments on the literature.

16:350:572. VICTORIAN LITERATURE: TEXTS AND CONTEXTS (3)
Studies in major Victorian essays, novels, and poems in the context of religious, scientific, and social developments of the time, and of the journalism, nonfiction, biographical, and autobiographical works that may help illuminate their modes and meanings.

16:350:574. TEXTS AND CRITICAL ISSUES IN VICTORIAN POETRY (3)
Emphasis on major figures and topics. Tennyson, Barrett Browning, Browning, Arnold; the principal Pre-Raphaelites; Thomas Hardy and early Yeats. Toward a Victorian poetics; the persistence and permutations of romanticism; poetry versus science; the poet's role in culture and society.
16:350:576. TEXTS AND CRITICAL ISSUES IN VICTORIAN PROSE (3)
Nonfictional prose of major Victorian and early modern writers, including Carlyle, Mill, Macaulay, Ruskin, Arnold, Pater, Morris, and Wilde.

16:350:578. IDEAS OF COMMUNITY IN BRITISH LITERATURE (3)
Nineteenth- and early twentieth-century works from Wordsworth and Austen to Orwell and Shaw that create or redefine the character of the British social and cultural community.

16:350:579. LATE VICTORIAN AND EDWARDIAN LITERATURE (3)
A study of aesthetic and philosophical developments: Pater, Meredith, Hardy, Conrad, Wells, Beerbohm, and others.

16:350:581. THE MINORITY PLACE IN LITERATURE (3)
The study of central texts of English and American literature from the perspective of minorities and non-Western people.

16:350:583. MAJOR BRITISH FICTION OF THE TWENTIETH CENTURY (3)

16:350:584. GENDER AND POWER IN VICTORIAN ENGLAND (3)
Study of the relationships between gender representations in political and literary writing and female experience in Victorian England.

16:350:585. TEXTS AND CRITICAL ISSUES IN MODERN DRAMA (3)
Major works in the modern dramatic tradition, concentrating on Ibsen, Strindberg, Chekhov, Shaw, and O'Neil.

16:350:586. EARLY TWENTIETH-CENTURY POETRY (3)
Hardy, Yeats, Pound, Eliot, Stevens, and others.

16:350:588. LATER TWENTIETH-CENTURY POETRY (3)
A study of continuity and change in the poetry of the mid-twentieth century. Focus on the interpretation of work by several pivotal figures. Contextual readings in biography, social history, and the poet's other writings.

16:350:601, 602. READINGS IN BRITISH AND AMERICAN LITERATURE (BA, BA)
Intensive reading in any period of English and American literature in preparation for the Ph.D. qualifying examination.

16:350:605. SEMINAR: NINETEENTH-CENTURY AUTOBIOGRAPHY (3)
The aesthetic and generic characteristics of autobiography, its relation to other genres, and its illumination of the psychology of literary creation.

16:350:620. SEMINAR: CHAUCER (3)
Chaucer's works and issues for research: history of criticism, theoretical frameworks, relations between Chaucer and his late medieval milieu.

16:350:625. SEMINAR: MEDIEVAL LITERATURE (3)
Works of writers other than Chaucer; topics such as advanced Old English language and literature, the Arthurian tradition, Middle English dialects, women mystics, lyric poetry, medieval literary theory.

16:350:626. SEMINAR: MEDIEVAL ROMANCE (3)
English and continental works, such as Sir Gawain and the Green Knight, Malory's Le Morte d'Arthur, and the Romance of the Rose considered in generic terms as well as from other perspectives such as historicist, feminist, and poststructuralist.

16:350:629. SEMINAR: SPENSER AND HIS CONTEMPORARIES (3)
Study of the poetry and related criticism.

16:350:634. SEMINAR: ELIZABETHAN DRAMATIC CONVENTIONS (3)
Aspects of form in Elizabethan drama, with some attention to Shakespeare. Staging, dramatic structure, conventions of character, the interplay of verbal and nonverbal symbolism.

16:350:636. SEMINAR: SHAKESPEARE (3)
Selected poems and plays; readings in related materials.

16:350:642. SEMINAR: JONSON AND DONNE (3)
Poems of Donne; poems and comedies of Jonson.

16:350:651. SEMINAR: EIGHTEENTH-CENTURY PROSE (3)
A study of motives, conventions, styles, and cultural contexts with emphasis on politics and rhetoric—Swift, Pope, Johnson, and their contemporaries.

16:350:652. SEMINAR: EIGHTEENTH-CENTURY FICTION (3)
Studies in Defoe, Fielding, Richardson, Sterne, Austen, and their contemporaries.

16:350:653. SEMINAR: BLAKE (3)
A study of Blake's styles, aesthetics, ideas, myths, and symbols; some attention to his influence.

16:350:654. SEMINAR: EIGHTEENTH-CENTURY LITERARY CRITICISM AND THEORY (3)
The major critical writings of Dryden, Addison, Johnson, and Reynolds; classical and continental backgrounds; the emergence of post-Augustan theories of imagination.

16:350:656. SEMINAR: DRAMATIC MONOLOGUE: HISTORY AND THEORY (3)
The evolution of the genre, from Coleridge, Tennyson, and Browning through Yeats and Woolf; the social and poetic theory that informs its operation.

16:350:661. SEMINAR: ENGLISH ROMANTIC POETS (3)
Critical study of two or more romantic poets in the context of the British and continental romantic movement.

16:350:663. SEMINAR: WORDSWORTH AND COLLIERDGE (3)
Critical study of the major works, with some significant attention devoted to the relationship of Wordsworth and Coleridge to each other as well as to their differing critical concepts.

16:350:664. SEMINAR: WORDSWORTH (3)
An extended exploration of the poetry and prose of William Wordsworth, with particular attention to the major lyrics, the literary criticism, and the differing versions of The Prelude.

16:350:665. SEMINAR: JANE AUSTEN (3)
The novels of Jane Austen considered in the contexts of eighteenth-century literature and social history, and of Victorian and modern criticism of fiction.

16:350:666. SEMINAR: BYRON AND SHELLEY (3)
The most important expressive achievements and problems in the major poetry of Byron and Shelley; consideration of the biographical and critical works of their personal and literary relationship.

16:350:667. STUDIES IN VICTORIAN NONFICTION PROSE (3)
Examines in depth the work of one or more nineteenth-century prose writers: Carlyle, Mill, Newman, Darwin, Arnold, Ruskin, Pater; or focuses on the relation of nonfiction prose writing to the historical and cultural situations of the period; or examines the ways Victorian prose participates in—articulates, challenges, is complicit with—ideologies that dominate the work of the period. Examination of this prose in the context of critical and theoretical discussions of prose writing by such critics as Bakhtin, LaCapra, Fish, Levine, and others.

16:350:678. STUDIES IN VICTORIAN POETRY (3)
Study of one or more of the major Victorian poets—Tennyson, Barrett Browning, Browning, Arnold, Christina Rossetti, the Pre-Raphaelites, Hardy, Hopkins; or of significant issues of genre and form: the dramatic monologue, the novel in verse, the attempts at elegy and epic; or of the relation of selected poetry or poets to the historical and cultural situations that produced it.
16:350:681. SEMINAR: THE AESTHETIC TRADITION; 1850–1914 (3)
Aestheticism as a reaction against Victorianism and an outgrowth of it; its transmutations in fin de siecle and symbolist art; its influence both thematically and stylistically on some twentieth-century novelists.

16:350:684. STUDIES IN VICTORIAN FICTION (3)
A study of one or more of the major writers—Scott, Dickens, Thackeray, the Brontës, George Eliot, Hardy; or of major movements in Victorian fiction: the historical novel, the writers and the novel, popular fiction; or of the novel in conjunction with other significantly related genres in the period: the long poem, history, biography; or of the Victorian novel in relation to current theoretical work on narrative.

16:350:685. SEMINAR: YEATS AND THE IRISH RENAISSANCE (3)
Study of the poetry, prose, and plays.

16:350:686. SEMINAR: THE IRISH LITERARY COMMUNITY (3)
Yeats, Synge, Joyce, and others, considered in their cultural, social, and artistic contexts.

16:350:687. SEMINAR: MODERN ENGLISH FICTION (3)
The development of modern English fiction in relation to the developments within the novel form that were moving it from nineteenth-century realism to modernism.

16:350:688. SEMINAR: VIRGINIA WOOLF AND THE BLOOMSBURY GROUP (3)
The major works of Virginia Woolf and E.M. Forster in the intellectual and political contexts of the Bloomsbury group.

16:350:691. SEMINAR: JAMES JOYCE (3)
Joyce’s fiction; related materials in classical and English literature.

16:350:693. SEMINAR: FICTION AND NARRATIVE THEORY (3)
The novel as genre considered in its relations both to other narrative forms, e.g., biography, psychological case history, ethnography, and to the interdisciplinary theory of narrative.

16:350:697. LITERARY CRITICISM AND SOCIAL CRITIQUE (3)

16:350:698. SEMINAR: CONTEMPORARY CRITICISM AND ITS FORERUNNERS (3)
Emerson, Nietzsche, the Jameses, Stevens, Leavis, Lukacs, Frye, Bachelard, Poulet, Barthes, Kermode, Bloom, Hartman, Derrida, and others.

16:350:701,702. RESEARCH IN LITERATURE (BA,BA)

Graduate Courses in American Literature, Women’s Studies, Film Studies, Composition (352)

16:352:509. TEXTS AND CRITICAL ISSUES IN AMERICAN LITERATURE (3)
A limited number of major American writers of common historical background and intellectual temper.

16:352:511. AMERICAN LITERATURE TO 1855 (3)
Selected colonial and early nineteenth-century writers, with special emphasis on modern scholarship, criticism, and intellectual history.

16:352:512. AMERICAN LITERATURE: 1855–1900 (3)
Writings of the last half of the nineteenth century, with some extension into the twentieth.

16:352:515. ANGLO-AMERICAN LITERARY RELATIONS (3)
Exploration of the similarities between British and American literature in order to discover reasons for the comparative uniqueness of each. Close comparisons of specific texts.

16:352:522. MAJOR FICTION OF TWENTIETH-CENTURY AMERICA (3)

16:352:527. HISTORY AND CRITICISM OF FILM (3)
The development of film as an art form; film technique; theoretical and practical criticism.

16:352:528. SPECIAL STUDIES IN FILM (3)
Examination of a selected topic in film studies such as women and film, literature and film, or film and society.

16:352:529. AFRICAN-AMERICAN WRITERS AND AMERICAN LITERATURE (3)
The work of various black American writers read in conjunction with other examples of American literature of the twentieth century.

16:352:551. THEORY OF COMPOSITION (3)
Recent theories of the composition process, with attention to invention, arrangement, and style; theories of syntax and error analysis. Emphasis on application in teaching composition.

16:352:552. TEACHING WRITING: THEORY AND PRACTICE (3)
The teaching of writing in English courses and in other academic disciplines. New theories of rhetoric and their relevance to the development of curriculum and the improvement of pedagogy. The relationship between critical reading and effective writing.

16:352:553. READINGS IN CLASSICAL AND MODERN THEORIES OF RHETORIC (3)
See also courses offered by the Graduate School of Education: 15:252:515 Language in Education and 15:252:518 Topics in English Education.

Basic texts in the rhetorical tradition from Aristotle to the twentieth century; the use of these theories in the teaching of literature.

16:352:583. INTRODUCTION TO THE STUDY OF WOMEN WRITERS (3)
The feminine experience as recorded in works by Brontë, Eliot, Woolf, Lessing, Morrison, Plath, and others.

16:352:584. GENDER AND POWER IN VICTORIAN ENGLAND (3)
Study of the relationships between gender representations in political and literary writing and female experience in Victorian England.

16:352:613. EMERSON AND AMERICAN LITERATURE (3)
Studies of the recurrence in American literature of Emerson’s theories, images, and problems of expression.

16:352:667. SEMINAR: COLONIAL AND EARLY NINETEENTH-CENTURY AMERICAN LITERATURE (3)
Study of selected works and related scholarship.

16:352:670. SEMINAR: MELVILLE (3)
The rhetoric of self and culture in the writings of Melville; chronological reading of the works.

16:352:672. SEMINAR: NINETEENTH-CENTURY AMERICAN FICTION (3)

16:352:677. SEMINAR: WHITMAN AND DICKINSON (3)
Form and vision in “Leaves of Grass”; Whitman’s influence on modern poets of the “open form.” Technical brilliance and eccentricity in Dickinson’s poems; conflicts between self and culture.

16:352:681. AMERICAN LITERARY WOMEN: CATHER, GLASGOW, WHARTON, STEIN (3)
A study of the achievement of four women writers in the context of the literary and social environment in which they worked.

16:352:689. SEMINAR: HENRY JAMES (3)
A study of the novels and criticism.
16:356:690. SEMINAR: T.S. ELIOT (3)
A study of the poetry, prose, and plays.

16:356:692. SEMINAR: AMERICAN WRITERS (3)
Intensive study of selected American author(s) with attention to primary texts, literary contexts, biography.

16:356:695. SEMINAR: MODERN AMERICAN POETRY (3)
Study of poets who have particularly influenced contemporary American poets; readings of poets since 1945.

16:356:699. SEMINAR: WALLACE STEVENS (3)
A thorough examination of Stevens’s poetry, with some attention to his prose and letters.

ENGLISH AS A SECOND LANGUAGE 356

Director of the English as a Second Language Program: Dr. Kathleen Lynch-Cutchin, 107 Tillett Hall, Livingston Campus (732/445-7422)

Members of the Full-time Faculty
Gwendolyn Cooper, M.A.
Ajunta Dutt, Ed.D.
Marian Eberly, M.A.
Kathleen Lynch-Cutchin, Ph.D.
Eva-Maria Morin, M.A.
Gaill Rothweiller, Ed.D.
Virginia Schirripa, M.A.
Paul Sprachman, Ph.D.
Michael Wherity, M.A.

Program
The English as a Second Language program provides instruction in English as a Second Language (ESL) to graduate students who are in need of improving their English language proficiency. Placement in all courses is by proficiency test or by subsequent assessment. All courses carry institutional credit toward full-time status for visa and financial aid requirements; however, these course credits cannot be applied toward degree requirements.

Graduate Courses
16:356:512. ESL INDEPENDENT STUDY (EBA)
16:356:531. ESL ACADEMIC WRITING I (E3)
Writing course emphasizing the composing and revising process and addressing selected grammatical problems through error analysis.
16:356:532. ESL ACADEMIC WRITING II (E3)
Advanced writing course culminating in coherent and cohesive research paper.
16:356:539. ESL WRITING CENTER (EBA)
Weekly writing tutorial focusing on improving academic writing and addressing grammatical errors.
16:356:541. ESL SPEECH CENTER (EBA)
Weekly listening/speaking tutorial focusing on improving listening, pronunciation, and speaking skills.
16:356:551. ESL SPEECH WORKSHOP I (IN)
Focuses on improving listening, pronunciation, and speaking skills through classroom and language laboratory practice.
16:356:552. ESL SPEECH WORKSHOP II (IN)
Concentrates on refining listening, speaking, and pronunciation skills through classroom and language laboratory practice.
16:356:557. ESL EFFECTIVE ORAL COMMUNICATION (E3)
Develops verbal and nonverbal communication knowledge and skills.
16:356:558. ESL EFFECTIVE PRESENTATION (E3)
Develops communicative competence through the experience of presenting before a group.
16:356:560. ESL INTERNATIONAL TA PHONOLOGY (E3)
Focuses on distinguishing essential sounds, developing appropriate stress and intonation patterns, and improving listening skills.
16:356:561. ESL INTERNATIONAL TA LANGUAGE SKILLS (E3)
Introduces international teaching assistants to teaching methodology, as well as the linguistic, discourse, and cultural components of effective communication; provides practice by teaching to peers.

ENTOMOLOGY 370

Degree Programs Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Professor George C. Hamilton, Blake Hall, 93 Lipman Drive, Cook Campus (732/932-9774)

Members of the Graduate Faculty
Lena B. Beattie, Professor of Entomology, CC; Ph.D., Illinois
Insect biochemistry and toxicology; molecular aspects of insect-plant associations
Timothy M. Casey, Professor of Ecology and Evolution, CC; Ph.D., California (Los Angeles)
Physiological ecology; energetics and thermoregulation
Wayne J. Crans, Professor of Entomology, CC; Ph.D., Rutgers
Mosquito biology; medical and veterinary entomology; epidemiology of disease transmission
Randy Gaugler, Professor of Entomology, CC; Ph.D., Wisconsin
Invertebrate pathology; parasitology; biological control
Gerald M. Ghidie, Extension Entomologist, CC; Ph.D., Iowa State
Vegetable insect pests
Aydohiya P. Gupta, Professor of Entomology, CC; Ph.D., Idaho
Hemocytic and humoral immunity; morphology; physiology
George C. Hamilton, Associate Extension Specialist, CC; Ph.D., Rutgers
Integrated pest management; biological control
Karl Kjer, Assistant Professor of Entomology, CC; Ph.D., Minnesota
Taxonomy, insect molecular systematics, molecular phylogenetics, aquatic insects
James H. Lashomb, Professor of Entomology, CC; Ph.D., Maryland
Applied insect ecology; parasitic insect population dynamics; plant-herbivore interactions
Karl Maramorosch, Robert L. Starkey Professor, CC; Ph.D., Columbia
Insect pathology; virology; cell culture
Michael L. May, Professor of Entomology, CC; Ph.D., Florida
Physiological and behavioral ecology of insects
Sridhar Polavarapu, Assistant Extension Specialist, CC; Ph.D., New Brunswick (Canada)
Blueberry and cranberry insect management
Associate Members of the Graduate Faculty
Farida Mahmood, Research Associate, Entomology, CC; Ph.D., Florida
Physiology, ecology, and genetics of insects of medical and veterinary importance
Peter W. Shearer, Assistant Extension Specialist, CC; Ph.D., Hawaii
Physiological ecology; energetics and thermoregulation
Ayodhya P. Gupta, Professor of Entomology, CC; Ph.D., Idaho
Insect pathology; virology; cell culture
José H. Lashomb, Professor of Entomology, CC; Ph.D., Maryland
Applied insect ecology; parasitic insect population dynamics; plant-herbivore interactions
Karl Maramorosch, Robert L. Starkey Professor, CC; Ph.D., Columbia
Insect pathology; virology; cell culture
Michael L. May, Professor of Entomology, CC; Ph.D., Florida
Physiological and behavioral ecology of insects
Sridhar Polavarapu, Assistant Extension Specialist, CC; Ph.D., New Brunswick (Canada)
Blueberry and cranberry insect management

Adjunct Members of the Graduate Faculty
Richard K. Jansson, Senior Research Fellow, Merck and Co., Inc.; Ph.D., Pennsylvania State
Insect pest management
Joan A. LaSota, Manager, Merck and Co., Inc.; Ph.D., Virginia Polytechnic Institute
Insect pest management

Programs
The doctoral program normally requires 48 credits of course work and 24 credits of research. No foreign language is required. Ordinarily, two full research terms in residence are required, but this requirement may be waived by petition to the program faculty. The master’s with thesis degree requires 24 credits of course work and 6 credits of research. The master’s nonthesis degree may be awarded with the substitution of classes and an essay in the place of the thesis, on recommendation by the student’s adviser and the advisory committee. The graduate program in entomology also publishes an Academic Guide for Graduate Students, which explains requirements and is available on request.
Graduate Courses

16:370:504. (S) MOSQUITO BIOLOGY (3)
Crans. Lec. 2 hrs., lab. 3 hrs. Prerequisite: Permission of instructor.
Biology, physiology, and behavior of mosquitoes on a worldwide basis; emphasis on current techniques used in field and laboratory investigations.

16:370:506. (S) INTEGRATED PEST MANAGEMENT (3)
Lashomb. Prerequisite: A background in entomology or other pest sciences and ecology. Recommended: Statistics. Students who lack background in these areas must obtain permission from the instructor.
A systems approach for measuring major ecological processes, such as development, mortality, and dispersal, presented as a means for evaluating pheromones, biocontrol, and cultural and pesticidal strategies in major crops.

16:370:507. (S) BIOLOGICAL CONTROL OF INSECT PESTS (3)
Gaugler. Prerequisite: General entomology.
Concepts and methods involved in the control of harmful insects and mites through the use of parasites, predators, and pathogens.

16:370:511. (F) PRINCIPLES OF SYSTEMATIC ENTOMOLOGY (3)
Kjer. Lec. 2 hrs., lab. 3 hrs.
Taxonomy, species concepts, methods of contemporary systematic research, and zoogeographic analysis.

16:370:515. (F) INSECT STRUCTURE AND FUNCTION (3)
Brattsten. May. Lec. 3 hrs., lab. 3 hrs. Prerequisite: 11:370:381 or equivalent. Required core course.
Physiology and functional morphology, including response systems, sensory systems, energy utilization, transport and secretion, and renewal systems.

16:370:517. (S) INSECT-PLANT BIOCHEMICAL INTERACTIONS (3)
Brattsten. See also 16:215:595. Prerequisites: Organic chemistry, biochemistry.
Biochemical aspects of interactions between herbivorous insects and their host plants, in particular those that involve adaptations to toxic plant allelochemicals. This includes metabolic and physiological defense mechanisms and mode of action and fate of phytochemicals.

16:370:519. (F) INSECT BEHAVIOR (3)
May. Prerequisite: Background in entomology and/or animal behavior.
Insect behavior from a functional standpoint: stimuli and responses; adaptive significance and evolutionary context; underlying physiological mechanisms.

16:370:522. (S) TOXICOLOGY OF PESTICIDES (3)
Brattsten. Lec. 2 hrs. Prerequisite: Advanced undergraduate biochemistry.
Mode of action, metabolism, and side effects of pesticides, their use in IPM, resistance mechanisms and development; health, registration, and legal aspects.

16:370:524. (S) INSECT TAXONOMY (4)
Kjer. Lec. 2 hrs., lab. 6 hrs. Required core course.
Insect systematic, identification, natural history, and evolution. Emphasizes North American insects at the family level.

16:370:525. (S) INSECT ECOLOGY (3)
Lashomb. Prerequisite: General entomology.
Relationship between insect populations and elements of the physical and biotic environment. Emphasis on principles governing population size, quality, and spatial and temporal variation.

16:370:601,602. SPECIAL TOPICS IN ENTOMOLOGY (BA,BA)
Each term, faculty members arrange a series of topics in specialized fields of entomology.

16:370:603,604. SEMINAR IN ENTOMOLOGY (1,1)
Required core course (2 terms for M.S.; 3 terms for Ph.D.). Discussion and critique of presentations by guest speakers.

16:370:605. INSECT COLLECTION (1)
Kjer
Students make a properly curated, labeled, and identified insect collection.

16:370:701,702. RESEARCH IN ENTOMOLOGY (BA,BA)

ENVIRONMENTAL CHANGE, HUMAN DIMENSIONS OF 390

Program Offered: Certificate Program in the Human Dimensions of Environmental Change
Director of the Certificate Program in Human Dimensions of Environmental Change: Thomas Rudel, Human Ecology, Cook Office Building, Cook Campus (732/932-9169)

Participating Faculty
The following members and associate members of the graduate faculty, identified more fully under their respective programs, are among those who participate in the certificate program in human dimensions of environmental change:

L. Clarke, Sociology
D. Ehrenfeld, Ecology and Evolution
J. Ehrenfeld, Ecology and Evolution
J. Friedman, Sociology
M. Greenberg, Geography/Public Health
B. Hallman, Psychology
M. Hamm, Nutritional Sciences
B. Holcomb, Geography
R. Latrop, Geography
B. McCoy, Anthropology/Ecology and Evolution
J. Miller, Oceanography
K. Mitchell, Geography
G. Morren, Anthropology/Ecology and Evolution
G. Nieswandt, Geography
K. Nordstrom, Geography
P. Parks, Agricultural Economics
S. Pickett, Ecology and Evolution
F. Popper, Geography
N. Pusty, Geography/Geological Sciences
D. Robinson, Geography/Environmental Sciences
T. Rudel, Geography/Sociology
S. Schrepfer, History
R. Schroeder, Geography
L. Small, Agricultural Economics
P. Strom, Environmental Sciences
A. Vayda, Anthropology/Ecology and Evolution
N. Weinstein, Psychology

Certificate Program
Students with an interest in human-induced environmental changes may pursue, in addition to their regular program of studies, a special concentration in the human dimensions of environmental change. Two competing foci define research on these human dimensions of environmental change. One strand of research, ecological and institutional in emphasis, addresses questions of changes in natural resources, land cover, and industrial metabolism. A second strand of research, more perceptual and behavioral in emphasis, focuses on risks, hazards, and disasters. In both fields, research accomplishment requires competence in the methods of several different disciplines. Students who fulfill the following requirements will receive a Certificate in the Human Dimensions of Environmental Change, signifying special achievement in the field. To receive the certificate, students must complete, in addition to the requirements in their major disciplines, one course in one of the other participating programs that focus on the human dimensions of environmental change. Students also must complete a two-term sequence of courses in the human dimensions of environmental change.
Graduate Courses

16:390:501. SEMINAR ON THE HUMAN DIMENSIONS OF ENVIRONMENTAL CHANGE (3)
Multidisciplinary survey of the human dimensions of environmental problems and the full range of disciplinary approaches used to study these problems.

16:390:502. TOPICS SEMINAR: THE HUMAN DIMENSIONS OF ENVIRONMENTAL CHANGE (3)
Focus on a particular human dimension of environmental problems, such as commons problems/institutions, or on a particular environmental problem.

ENVIRONMENTAL SCIENCES 375

Degree Programs Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Professor Peter F. Strom,
Environmental Science Building, Cook Campus (732/932-8078)

Members of the Graduate Faculty

Alan Appleby, Professor Emeritus of Radiation Science, CC; Ph.D., Durham
Radiation chemistry; radiation interactions at the molecular level
Ronni Avisar, Professor of Meteorology, CC; Ph.D., Hebrew
Micrometeorology; boundary layer meteorology, air-sea interactions, numerical modeling
Jonna Burger, Professor of Biology, FAS-NB, and of Ecology, Evolution, and Natural Resources, CC; Ph.D., Minnesota
Behavioral ecology, ecotoxicology, ecological risk
Marcus Cheney, Assistant Professor of Environmental Science, CC; Ph.D., California (Davis)
Degradation of xenobiotic organic compounds on mineral surfaces and in soil environments
Keith R. Cooper, Professor of Toxicology, CC; Ph.D., Rhode Island
Xenobiotic metabolism and diseases of aquatic and terrestrial animals/animal models
Robert M. Cowan, Assistant Professor of Environmental Science, CC; Ph.D., SUNY (Buffalo)
Environmental engineering; biological treatment; bioremediation; process modeling
Joan G. Ehrenfeld, Professor of Ecology, Evolution, and Natural Resources, CC; Ph.D., CUNY
Wetland ecology; soil ecology, ecosystem ecology; pollution impacts on ecosystems
Steven J. Eisenreich, Professor of Environmental Science, CC; Ph.D., Wisconsin (Madison)
Environmental organochemistry of surface and subsurface aquatic systems
Melvin S. Finstein, Professor Emeritus of Environmental Science, CC; Ph.D., California (Berkeley)
Pollution microbiology; waste treatment composting as a controlled system
Susan E. Ford, Assistant Research Professor of Oyster Culture, CC; Ph.D., Duke
Invertebrate pathology; paralogy; genetics and mechanisms of resistance to pathogens: physiologic ecology of estuarine organisms
Jennifer Francis, Assistant Research Professor of Marine and Coastal Sciences, CC; Ph.D., Washington
Polar ecology; remote sensing, air-sea; ice-energy transfer
Michael A. Gallo, Professor of Environmental and Community Medicine, UMDNJ-RWJMS; Ph.D., Albany Medical College
Food additives; phototaxis; dermatotoxicology
Emil J. Genetelli, Professor of Environmental Science, CC; Ph.D., Rutgers
Biological wastewater treatment processes
Daniel Gimenez, Assistant Professor of Environmental Science, CC; Ph.D. Minnesota
Soil structure; water movement and solute transport through soils; soil quality
William Goldfarb, Professor of Environmental Science, CC; Ph.D., Columbia
Environmental water resources; hazardous substances law and policy
Fred Grasse, Director, Institute of Marine and Coastal Sciences, CC; Ph.D., Duke
Ecology of marine bottom-dwelling organisms
Max M. Haggblom, Associate Professor, Center for Agricultural Molecular Biology, CC; Ph.D., Helsinki
Environmental and applied microbiology; biodegradation and bioremediation
Robert P. Harnack, Professor of Meteorology, CC; Ph.D., Maryland
Sympathetic and climatic aspects of meteorology
Sidney A. Katz, Professor of Chemistry, FAS-C; Ph.D., Pennsylvania
Environmental and nutritional, and toxicological aspects of trace elements
Stanley E. Katz, Research Professor of Microbiology, CC; Ph.D., Rutgers
Antibiotic residues in tissues and soils
Kathleen J. Keating, Professor of Environmental Science, CC; Ph.D., Yale
Zooplankton and phytoplankton culture

David S. Kossen, Associate Professor of Chemical and Biochemical Engineering, SE; Ph.D., Rutgers
Microbial degradation of hazardous wastes and remediation
Uta Krogmann, Assistant Professor of Environmental Science, CC; Ph.D., Hamburg; Harburg
Solid waste management and engineering; biosolids, recycling, waste minimization, anaerobic digestion, composting
Jeremy J. Kuik, Assistant Professor of Environmental Science, CC; Ph.D., Michigan
Biotechnology: microbial degradation of aromatic and aliphatic compounds
Paul J. Lay, Professor of Environmental and Community Medicine, UMDNJ-RWJMS; Ph.D., Rutgers
Human exposure to pollutants; air pollution; industrial hygiene; risk assessment
James R. Miller, Professor of Marine and Coastal Sciences, CC; Ph.D., Maryland
Meteorology; atmospheric modeling
George H. Niesswander, Professor of Environmental Systems Engineering, CC; Ph.D., Rutgers
Environmental systems analysis
Claire E. Reimers, Professor of Marine and Coastal Sciences, CC; Ph.D., Oregon State
Marine carbon cycle; sedimentary geochemistry
John R. Reinfeld, Assistant Professor of Environmental Sciences, CC; Ph.D., Stony Brook
Tracer metal biogeochemistry of aquatic systems; phytoplankton ecology
Nathan M. Reiss, Associate Professor Emeritus of Meteorology, CC; Ph.D., New York
Air pollution meteorology; physical meteorology
David A. Robinson, Professor of Geography, FAS-NB; Ph.D., Columbia
Climate and climate change
Alan Roback, Professor of Environmental Science, CC; Ph.D., Massachusetts Institute of Technology
Climate change, modeling; soil moisture
Robert M. Sherrill, Assistant Professor of Marine and Coastal Sciences, CC; Ph.D., Massachusetts Institute of Technology
Marine geochemistry of trace metals and natural radionuclides
Georgiy L. Stenchikov, Research Professor of Environmental Science, CC; Ph.D., Moscow Physical Technical Institute
Climate modeling, cloud modeling, air pollution, computational fluid dynamics, radiative transport, numerical methods
Peter F. Strom, Associate Professor of Environmental Science, CC; Ph.D., Rutgers
Biological treatment; hazardous wastes
Gary L. Taghon, Associate Professor of Marine and Coastal Sciences, CC; Ph.D., Washington
Marine toxicology
Robert L. Tate III, Professor of Soils and Crops, CC; Ph.D., Wisconsin
Soil microbiology
Paul E. Thomas, Professor of Chemical Biology and Pharmacognosy, CP; Ph.D., Ohio State
Metabolism of drugs and environmental chemicals, cytochrome P-450
Barbara J. Turpin, Assistant Professor of Environmental Science, CC; Ph.D., Oregon Graduate Institute
Air pollution; the chemistry and physics of atmospheric aerosols
Christopher G. Urich, Professor of Environmental Science, CC; Ph.D., Michigan
Math modeling of contamination transport in surface and groundwater
Judith S. Weiss, Professor of Zoology, FAS-NP; Ph.D., New York
Effects of environmental factors, including pollutants on development and growth of estuarine organisms
Clifford P. Weisel, Assistant Professor of Environmental and Community Medicine, UMDNJ-RWJMS; Ph.D., Rhode Island
Measurement of environmental contaminants to assess human exposure
Lily Y. Young, Professor of Environmental Sciences, CC; Ph.D., Harvard
Radiological physics; bioeffects and risks of ionizing and nonionizing radiations
Edward A. Christman, Director of Environmental Health and Safety, Columbia University; Ph.D., Rutgers
Radiation safety; health physics
Nancy L. Fiedler, Associate Professor of Environmental and Community Medicine, UMDNJ-RWJMS; Ph.D., Bowling Green State
Neurobehavioral and health effects in human exposure to hazardous substances
Elan J. Gandsman, Director of Health and Safety, Yale University; Ph.D., Tel Aviv
Medical imaging; health physics; radiation safety; occupational health

103
that includes defense of thesis; or (2) 30 credits of course work, 6 credits of research, and a comprehensive oral examination to demonstrate their deficiency.

Accepted applicants who are interested in environmental science should contact the Department of Environmental and Community Medicine, UMDNJ-RWJMS. Within these options, the following areas of specialization are offered: air pollution and resources; aquatic biology; radiation biology; radiation chemistry; radiation physics; risk assessment; soil mineralogy and micromorphology; soil chemistry; industrial hygiene; occupational health; pesticide residue chemistry; environmental microbiology; climate change; aerosol and hydrosol systems; environmental prediction; environmental modeling; and pollution prevention and remediation.

The M.S. and Ph.D. degrees are offered with concentrations in chemical, physical, and biological processes utilized to treat municipal wastewaters. Process mechanisms, treatment efficiencies, and their relationship to wastewater quality; techniques utilized to obtain maximum efficiency.

Graduate Courses

16:375:501. (F) ENVIRONMENTAL SCIENCE ANALYSIS (3) Physical, chemical, and biochemical processes utilized to treat municipal wastewaters. Process mechanisms, treatment efficiencies, and their relationship to wastewater quality; techniques utilized to obtain maximum efficiency.

16:375:502. (S) WASTE TREATMENT II: WATER TREATMENT (3) Chemical, physical, and biological factors affecting development of water supplies; water quality; municipal and industrial water treatment processes consisting of removal of particulate matter, softening, disinfection, corrosion control, iron and manganese removal, aeration, deaeration, and taste and odor removal.

16:375:503. (F) WASTE TREATMENT II: WATER TREATMENT (3) Principles of biological stabilization of pollution materials in streams; factors influencing atmospheric reaeration; changes in biological populations in polluted waters.

16:375:505. (S) WASTE TREATMENT III: INDUSTRIAL WASTES (2) Industrial wastes; industrial processes and sources of wastes; composition, characteristics, and effects; methods of treatment, disposal, and recovery.

16:375:507. (F) ENVIRONMENTALCHEMISTRY (3) Equilibria: acid-base, dissolution and precipitation, multiphase; oxidation-reduction in aquatic systems; elements of chemical thermodynamics.

16:375:510. (S) POLLUTION MICROBIOLOGY (3) Kukor, Young. Prerequisite: Permission of instructor. Bacteria as indicators of sanitary conditions; cycles of carbon, nitrogen, sulfur, and iron in polluted waters; microbiology of activated sludge, anaerobic digestion, composting, and other liquid and solid waste treatment processes.
Applications of Aquatic Chemistry (3)

Strom

Definition of environmental science emphasizing its interdisciplinary and systems aspects: matter and energy, biosphere, atmosphere, hydrosphere, lithosphere; mathematical, physical, chemical, and biological principles.

Fundamental Concepts of Environmental Science I (3)

Strom

Environmental contamination: how discharges into one “sphere” affect other “spheres.” Topics include environmental management, wastes, air and water pollution, soil management, physical “pollution,” risk, human health, policy, regulation, analysis, modeling.

Fundamental Concepts of Environmental Science II (3)

Strom

Description and application of advanced technology for treatment, resource recovery, and ultimate disposal of sludges and solid wastes from municipal, industrial, and agricultural sources; techniques of theory of operation, process design, application, and performance; environmental and socioeconomic implications.

Fundamental Concepts of Environmental Science II (3)

Strom

Techniques for Biomonitoring in Aquatic Ecosystems (3)

Reinfeider

A detailed examination of the thermodynamics and principles of absorption at air-water interfaces, carbon-water interfaces, colloid-water interfaces, etc. Some consideration is also given to coagulation and flocculation and to complex metal ions in aqueous solutions.

Wetland Ecology (3)

Ehrenfeld. Prerequisites: 11:704:351 or equivalent, and permission of instructor.

Survey of the ecology, management, and utilization of wetlands. Topics include the hydrology, soils, biogeochemistry, flora, fauna, and ecosystem dynamics of the major types of wetlands. Waste-water application, wetland creation, wildlife management, wetland assessment and delineation, and conservation also discussed.

Techniques for Biomonitoring in Aquatic Ecosystems (3)

Prerequisite: 16:375:519 or permission of instructor.

Discussion of techniques used to monitor for the presence of trace contaminants in aquatic ecosystems and to assess the effects of contaminants on the structure and function of these ecosystems.

Environmental Organic Chemistry (3)

Eisenreich. Prerequisite: Graduate standing or permission of instructor.

Transport and transformations of anthropogenic organic chemicals in the environment; chemical-physical properties of organic chemicals, air-water and air-land exchange, atmospheric processes and deposition, sorption processes, bioaccumulation, chemical transformation, photochemical transformations, modeling concepts, case studies.

Environmental Fate and Transport (3)

Eisenreich, Uchrin. Corequisites: 11:375:444 or 431 or equivalent; CALC1, CALC2.

Fate and transport of chemicals, chemical exposures in aquatic systems, and prediction of future conditions. Water quality problems introduced by addition of nutrients and oxygen-demanding material, metals and toxic organic chemicals to water, soil, and air. Models to assess environmental mobility and predict scenarios. New paradigm of “environmental indicators” to assess environmental quality emphasized.

Source Control of Atmospheric Pollution (3)

Topics. Prerequisite: Permission of instructor.

Principles, operation, performance, and application of methods and devices to control aerosol and gaseous emissions.

Principles of Solid Waste Management and Treatment (3)

Strom. Prerequisite: Permission of instructor.

Solid waste problems in the municipal, industrial, and agricultural areas. Interrelationships with other environmental problems; socioeconomic aspects; present state-of-the-art techniques. Quality and quantity variations, treatment and management systems; recycling, source control.

Limnology of Urban and Suburban Waters (3)

Keating. Prerequisite: Permission of instructor.

Study of waters stressed by population, development, wastes; emphasis on biological characterization of urban and suburban waters.

Hazardous Waste Management (3)

Strom. Prerequisite: 16:375:525 or permission of instructor.

Overview of hazardous waste management. Case histories; legislation and regulations; treatment, disposal, and cleanup technologies; sampling and analysis methodologies; persistence and fate in the environment; emergency response procedures.

Biological Waste Treatment (3)

Strom. Prerequisites: 16:375:501 and 510, or permission of instructor.

Advanced topics in biological waste treatment, particularly activated sludge; focusing on microbial ecosystems.

Water Law (3)

Harnack. Prerequisite: 11:670:201,202,11:670:323,324 or equivalent.

Application of policies of the atmosphere including the theory and observations of cyclone development, vertical motion, jet streams, fronts, and synoptic-scale circulation systems.

Mesoscale Weather Systems (3)

Harnack. Prerequisite: 11:670:323,324 or equivalent.

Description, dynamics, and prediction of moist convective weather systems such as supercells, mesoscale convective complexes, squall lines, and other multicellular storms.

Atmospheric Chemistry (3)

Zhang. Prerequisite: 11:375:421 or permission of instructor.

Air pollutants, trace gases, and aerosols discussed in terms of their observed distribution in time and space; sources and sinks in the atmosphere and its boundaries; budgets and cycles. Emphasis on tropospheric chemical reactions.

Environmental Models (3)

Uchrin

Development and applications of environmental models discussed in terms of their ability to simulate and predict the workings of environmental systems and to communicate information and trade-offs between economic and conservation goals.

Aerosol Sciences (3)

Liyo. Prerequisite: Calculus. Recommended: Differential equations.

Micrometeorology (3)

Avissar. Prerequisite: 11:670:324 or equivalent.

Theory of energy fluxes near and on both sides of the earth’s surface, including sensible and latent heat transfer in the atmospheric boundary layer and soil heat transfer; temperature, wind, and humidity structure of the boundary layer and the temperature structure of soil; experimental methods and equipment in micrometeorology.
Relationships between the movement of water, the transport of energy and matter through soils. Study of transport processes of energy and matter through soils. Relationships between the movement of water, the transport of heat, gas, and solute, and the physical properties of soils.

16:375:544. (S) MODELING OF CLIMATIC CHANGE (3)
Robock. Stenchikov. Prerequisite: Permission of instructor.
Principles of numerical modeling of regional and global climate. Sensitivity of parameterizations of land-ocean-atmosphere interactions including the effects of vegetation and human activities on climatic change.

16:375:545. (S) PHYSICAL CLIMATOLOGY (3)
Robock. Prerequisite: Permission of instructor.
Atmospheric composition; trends and possible long-range effects on the global radiation budget; optical phenomena of the atmosphere; circulation of the stratosphere and lower mesosphere; cloud physics and weather modification; climatic fluctuations and probable causes.

16:375:546. (S) AIR POLLUTION METEOROLOGY (3)
Prerequisites: 11:670:323,324 or equivalent.
Theory and applications of air pollution dispersion modeling. Meteorological effects on and by cooling towers. Effects of pollutants on meteorological parameters.

16:375:547. (F) ATMOSPHERIC BOUNDARY LAYER DYNAMICS (3)
Avisar. Prerequisite: 11:670:324 or equivalent.
Basic governing equations in the atmospheric boundary layer and their application to turbulent flow, including turbulent kinetic energy, turbulence closure techniques, forcing, and stability.

16:375:548. (S) ATMOSPHERIC NUMERICAL MODELING (3)
Avisar. Prerequisite: 16:375:547 or equivalent.
Basic governing equations in the atmosphere, simplification, and scaling; parameterization of turbulence, radiation, and clouds; numerical methods for the solution of the mathematical system; boundary and initial conditions; evaluations of atmospheric models.

16:375:549. (F) APPLIED CLIMATOLOGY (3)
Prerequisites: 11:670:323,324 or equivalent, one term of statistics, or permission of instructor.
Critical use of statistics as applied to climatology; analysis of meteorological time series. Application of various statistical distributions to regional climate diagnostics. Dynamic air mass analysis.

16:375:550. (S) LARGE-SCALE CLIMATE DIAGNOSTICS (3)
Harnack. Prerequisite: 16:375:549.
Observed characteristics of the general circulation of the atmosphere and surface layer of the oceans; atmospheric energetics; empirical studies of large-scale, air-sea interactions, tropical-midlatitude interactions, and recent climatic fluctuations; empirical methods of short-range climate prediction.

16:375:551. (S) REMOTE SENSING OF THE OCEAN AND ATMOSPHERE (3)
Miller. Prerequisite: 11:670:323 or equivalent.
Theoretical basis of remote sensing. Methods, instruments, and their application to observations of ocean and atmosphere. Remote sensing of oceanic parameters such as temperature, salinity, currents, sea state, turbidity and pollutants, and atmospheric parameters such as temperature, water vapor, cloud cover, wind speeds, and pollutants.

16:375:552. (F) SOIL GENESIS AND MORPHOLOGY (3)
Gimenez. Lec. 3 hrs. Prerequisite: Permission of instructor.
Soil-forming processes in various climatic regions as evidenced by chemical, physical, and mineralogical characteristics of the profile. System of classification and literature review.

16:375:554. (S) SOIL AND PLANT RELATIONSHIPS (3)
Prerequisite: 11:670:452.
Selected topics related to factors affecting the chemical environment of the plant.

16:375:555. (F) SOIL PHYSICS (3)
Gimenez. Lec. 3 hrs. Prerequisite: Permission of instructor.
Study of transport processes of energy and matter through soils. Relationships between the movement of water, the transport of heat, gas, and solute, and the physical properties of soils.

16:375:559. (S) SOIL MANAGEMENT AND CROP PRODUCTION (3)
Influence of land management systems and cultural practices on soil productivity and environmental quality.

16:375:561. (F) SOIL CHEMISTRY (3)
Lec. 2 hrs., lab. 3 hrs.
Structural chemistry, formation mechanisms, chemical properties, weathering, and surface reactions of major soil components: silicates, aluminum hydroxides, and iron oxides.

16:375:568. (S) TOPICS IN SOIL CHEMISTRY (3)
Chemistry of phosphate, potassium, and carbonate in soils; soil acidity and amendments; oxidation-reduction; ion exchange equilibria; pollution of the soils environment.

16:375:573. (S) TOPICS IN SOIL ORGANIC MATTER (3)
Tate
Role of organic matter in soil, extraction and analysis of soil organic matter, biodegradation and synthesis of humic and fulvic acids; biological and ecological aspects.

16:375:584. (S) TOPICS IN RADIATION BIOLOGY (3)
The current literature of radiation biology.

16:375:589,590. SEMINAR IN RADIATION SCIENCE (1,1)
Topics of current interest.

16:375:598. (S) SPECIAL TOPICS IN RADIOLOGICAL HEALTH (3)
Prerequisite: 16:375:591.
Advanced topics of current interest, background radiation levels, radiation exposure standards, external and internal radiation exposure limits, medical radiation exposure and protection, space radiation problems, environmental radioactivity.

16:375:601. EXPERIMENTAL PROBLEMS IN RADIOLOGICAL HEALTH (2)
Prerequisite: Completion of all other courses in the radiological health or health physics program. Offered in summer session only.
A series of problems requiring literature search, field and laboratory exercises, and written reports. Typical problems: reactor radiation survey, X-ray installation survey, environmental sample analysis. Laboratory and fieldwork.

16:375:603,604. INDEPENDENT STUDY IN METEOROLOGY (BA,BA)
Prerequisite: Permission of instructor.
The student conducts an independent comprehensive literature review and investigation of meteorological areas of interest other than the thesis topic. Regular reports of progress made in conference.

16:375:605,606. SPECIAL TOPICS IN METEOROLOGY (3,3)
Prerequisite: Permission of instructor.
Selected topics in meteorology. Current literature and recent advances.

16:375:612,613. SEMINAR IN ENVIRONMENTAL SCIENCE (0,0)

16:375:625,626. ADVANCED SPECIAL PROBLEMS (BA,BA)

16:375:635. EXPERIMENTAL PROBLEMS IN ENVIRONMENTAL SCIENCE (BA)

16:375:651,652. SEMINAR IN SOIL SCIENCE (1,1)

16:375:671,672. SEMINAR IN METEOROLOGY (1,1)
Prerequisite: 11:670:323,324 or equivalent.
Review of recent advances in meteorology.

16:375:701,702. RESEARCH IN ENVIRONMENTAL SCIENCE (BA,BA)
Research in water pollution, water and wastewater treatment, air pollution, and aquatic microbiology.
FOOD SCIENCE 400

Degree Programs Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Joseph D. Rosen, 107 Food Science
Building, Cook Campus (732/932-9611, ext. 215)

Members of the Graduate Faculty

- George M. Carman, Professor of Food Science, CC; Ph.D., Massachusetts
 Biochemistry; membranes, phospholipids, and enzymes
- Henryk Daun, Professor of Food Science, CC; Ph.D., Politechnika Gdanska
 Chemistry of food colors; thermal degradation of foods
- Chaim Frenkel, Professor of Horticulture, CC; Ph.D., Washington State
 Postharvest biology; senescence science, fruit ripening, and stress
- Michael Gallow, Professor of Environmental and Community Medicine, UMDNJ-RWJMS; Ph.D., Albany Medical College
 Food additives; phototoxins; dermatotoxicology
- Thomas G. Hartman, Mass Spectrometry Lab Manager, CAFT; CC; Ph.D., Rutgers
 Advanced instrumental analytical techniques as applied to food chemistry, mass spectrometry, chromatography, infrared spectroscopy, toxicology
- Chi-Tang Hu, Professor of Food Science, CC; Ph.D., Washington University
 Flavor and lipid chemistry
- Mukund V. Karve, Associate Research Professor of Food Science, CC; Ph.D., Rutgers
 Numerical simulation of thermal transport in extrusion processes; instrumentation of extruders, laser Doppler anemometry
- Jozef Kokini, Professor of Food Science, CC; Ph.D., Carnegie Mellon
 Food rheology; biophysical properties; extrusion
- Paul A. Lachance, Professor of Food Science, CC; Ph.D., Ottawa
 Nutrition; nutritional aspects of food processing
- Tung-Ching Lee, Professor of Food Science, CC; Ph.D., California (Davis)
 Food chemistry and biochemistry; biotechnological applications in food processing; seafood technology; nutritional and safety aspects of food processing
- Joseph D. Rosen, Professor of Food Science, CC; Ph.D., Rutgers
 Analytical and food chemistry; mass spectrometry; instrumental analysis; natural products chromatography
- Donald W. Schaffner, Associate Extension Specialist in Food Science, CC; Ph.D., Washington State
 Chemistry of food colors; thermal degradation of foods
- Richard D. Ludescher, Associate Professor of Food Science, CC; Ph.D., Oregon
 Protein structure and dynamics; time-resolved fluorescence and phosphorescence
- Karl Matthews, Assistant Professor of Food Science, CC; Ph.D., Kentucky
 Pathogenesis and reservoirs of foodborne pathogens
- Thomas J. Montville, Professor of Food Science, CC; Ph.D., Massachusetts Institute of Technology
 Microbial food safety; fermentations; biotechnology
- Joseph D. Rosen, Professor of Food Science, CC; Ph.D., Rutgers
 Food chemistry; toxicology; mass spectrometry
- Robert T. Rosen, Associate Director, CAFT; Ph.D., Rutgers
 Analytical and food chemistry; mass spectrometry; instrumental analysis; natural products chromatography
- Donald W. Schaffner, Associate Extension Specialist in Food Science, CC; Ph.D., Georgia
 Predictive food microbiology; modeling microbial growth; applied food microbiology
- Karen M. Schaich, Associate Professor of Food Science, CC; Sc.D., Massachusetts Institute of Technology
 EPR studies of free radicals; lipid oxidation; co-oxidation of macromolecules; chemistry of antioxidants
- Myron Solberg, Professor of Food Science, CC; Director of the Center for Advanced Food Technology; Ph.D., Massachusetts Institute of Technology
 Synthesis and regulating mechanisms of microbes
- Beverley J. Tepper, Associate Professor of Food Science, CC; Ph.D., Tufts
 Nutrition; food intake regulation; sensory evaluation; taste in disease
- Shaw S. Wang, Professor of Chemical and Biochemical Engineering, SE; Ph.D., Rutgers
 Biochemical engineering; food science and technology
- Kit L. Yam, Associate Professor of Food Science, CC; Ph.D., Michigan State
 Food packaging engineering; polymeric material
- Chung S. Yang, Professor of Pharmacognosy, CP; Ph.D., Cornell
 Cancer prevention by dietary constituents; molecular and cellular mechanisms of carcinogenesis
- Mikhail Tchikindas, Assistant Research Professor of Food Science; Ph.D., Institute Genetika (Moscow)
 Microbiology; genetics; biotechnology; antimicrobial peptides
- Karen M. Schaich, Associate Professor of Food Science, CC; Sc.D., Massachusetts Institute of Technology
 EPR studies of free radicals; lipid oxidation; co-oxidation of macromolecules; chemistry of antioxidants
- Myron Solberg, Professor of Food Science, CC; Director of the Center for Advanced Food Technology; Ph.D., Massachusetts Institute of Technology
 Synthesis and regulating mechanisms of microbes
- Beverley J. Tepper, Associate Professor of Food Science, CC; Ph.D., Tufts
 Nutrition; food intake regulation; sensory evaluation; taste in disease
- Shaw S. Wang, Professor of Chemical and Biochemical Engineering, SE; Ph.D., Rutgers
 Biochemical engineering; food science and technology
- Kit L. Yam, Associate Professor of Food Science, CC; Ph.D., Michigan State
 Food packaging engineering; polymeric material
- Chung S. Yang, Professor of Pharmacognosy, CP; Ph.D., Cornell
 Cancer prevention by dietary constituents; molecular and cellular mechanisms of carcinogenesis

Adjunct Members of the Graduate Faculty

- Gail V. Civille, President, Sensory Spectrum, Inc.; B.S., College of Mount Saint Vincent
 Sensory evaluation of food; methodology
- Dennis R. Heldman, Visiting Professor of Food Engineering; Ph.D., Michigan State
 Mathematical models for prediction of thermophysical properties of food based on composition; process design

Programs

The following areas of specialization are offered: basic studies in physical, chemical, or biological changes in foods; chemistry of fats and oils; flavor chemistry, including isolation and identification of food flavors; chemistry of food proteins; nutritional aspects of food products; food enzymology and biochemistry; food microbiology; food toxicology; heat and mass transfer in foods, energy conservation in processing; food packaging, theoretical aspects, functionality, and properties; food colors; food emulsions; sensory attributes of foods; biotechnology. The program is suitable for part-time study.

Applicants are expected to have completed one year each of calculus, physics, and organic chemistry, and to have some foundation in the biological sciences. Biochemistry, microbiology, and/or nutrition are recommended, as is statistics. Some undergraduate food science courses may be taken for graduate credit. The Graduate Record Examination must be taken.

Food science offers a Master of Science degree with options for a thesis or nonthesis option. In the thesis option, the student must take a minimum of 6 research credits and 24 course credits, and must carry out a research problem and write a thesis. For the nonthesis option, the student must have a minimum of 30 course credits and must present an essay. A nonthesis M.S. normally is considered a terminal degree. However, the student with the support of his or her major adviser may petition the faculty for permission to continue with the Ph.D. program.

The student should demonstrate proficiency in food science by the satisfactory completion of course work in the following areas: food science fundamentals, food science seminar (1 credit), food biochemistry, food engineering, nutrition, food analysis or quantitative analysis, food microbiology. Any of the above requirements may be waived, except seminars, if the student has had courses that satisfy the core requirements.

Students must demonstrate proficiency in food biology, food chemistry, and food engineering early in their academic careers by completing 16:400:507 Food Engineering Fundamentals and Processes and 16:400:513,514 Food Science Fundamentals I, II with an average grade of B or better.

The Ph.D. requires a minimum of 72 credits beyond the bachelor’s degree, of which 45 must be course credits. Candidates who have any deficiencies upon admission are required to make up these deficiencies prior to receiving the degree.

Qualifying examinations for the doctorate include both written and oral examinations. A student must take a written qualifying examination in one of the following areas: food biology, food chemistry, food physics/engineering. After passing the written qualifying examination, the student takes the oral qualifying examination, which normally includes approval of the research proposal for the dissertation. Should a student fail all or part of the written qualifying examination, with the concurrence of the faculty and his or her adviser, those portions that were failed may be retaken once. Likewise, a student who does not pass the oral qualifying examination may retake the examination once, with the dissertation committee’s concurrence. After passing both the written and oral components of the qualifying examination, the student is recommended as a candidate for the Ph.D. There is no language or residence requirement for the Ph.D. degree.

The Master of Philosophy degree is available to doctoral candidates. Graduate assistantships, teaching assistantships, and fellowships are available to qualified students.

Academic and research training in the area of packaging science and engineering as applicable to food is available in this program. For further information concerning this option, refer to the listing under Packaging Science and Engineering in this chapter.
Graduate Courses

15:400:501. (F) FLAVOR CHEMISTRY (3)
Ho. Prerequisite: One year of organic chemistry or equivalent.
Isolation, fractionation, and identification of the desirable and objectionable flavor constituents in food; chemical mechanisms for the formation of flavor components in food; methods for the measuring of flavor and flavor stability of food and food components; manufacture of food flavors.

16:400:502. (F) FOOD SCIENCE INSTRUMENTATION (3)
R. Rosen, Hartman. Prerequisite: Organic chemistry.
Theory, methodology, and application of chromatographic methods, including high-performance liquid, thin-layer, and gas chromatography. Theory, methodology, and application of spectrometry, including visible color, ultraviolet, infrared, NMR, and mass spectrometry.

16:400:503. (S) FOOD SCIENCE INSTRUMENTATION LABORATORY (1)
Ho. Prerequisite: 16:400:502 and permission of instructor.
Investigation of the macromolecular and trace components in food systems. Topics include separation techniques (gas chromatography, TLC, HPLC), spectroscopic techniques (UV/Vis, IR), and investigation of research problems in food chemistry.

16:400:504. (F) CARBOHYDRATES IN FOODS (3)
J. Rosen. Prerequisite: Organic chemistry.
Basic chemistry and technology of carbohydrates in food products. Functional properties of carbohydrates related to their use in food systems.

16:400:505. (S) LIPID CHEMISTRY (3)
Schach. Prerequisite: Organic chemistry; 16:400:513 or equivalent
Structure and composition of lipids and their chemical and physical properties; processing of fats and oils and their application in foods; fractionation, purification, and analysis of lipids; chemistry of autoxidation, antioxidants, and emulsifiers; emulsions; membranes; and health effects of lipids.

16:400:506. (S) CHEMISTRY OF FOOD PROTEINS (3)
Ludescher. Prerequisite: Organic chemistry.
Study of the molecular structure, physical chemical properties, and functions of proteins and their constituents. Special emphasis on the relationship between molecular structure and function in food proteins.

16:400:507. (S) FOOD ENGINEERING FUNDAMENTALS AND PROCESSES (4)
Karwe. Prerequisites: Physics, calculus.
Principles of material and energy balance, thermodynamics, fluid flow, and heat and mass transfer. Review of unit operations: thermal processing, refrigeration, freezing, evaporation, dehydrolysis, and extraction. Filtration and membrane processes.

16:400:509. (F) NUTRITIONAL ASPECTS OF FOOD PRODUCT DEVELOPMENT (3)
Lachance. Prerequisites: Food science fundamentals; general biochemistry; nutrition.
Study of the application of basic and applied principles of nutrition to the formulation, fabrication, processing, and marketing of food products.

16:400:510. (S) FOOD RHEOLOGY (3)
Kokini. Prerequisite: 16:400:517 and permission of instructor.
Concepts of flow and deformation behavior and their application in food materials. Rheological properties for liquid and solid materials. Methods of measurement of rheological properties in food systems. Rheology stability and rheology texture relationships used to illustrate applications of rheology in product quality. Basic equations of fluid flow and their application in selected flow processes such as extrusion and spinning.

16:400:511. (S) FOOD ENZYMEOLOGY (3)
Carman. Prerequisite: General biochemistry.
Study of enzymes important to food systems, including methods of isolation and characterization. Regulation of enzyme synthesis and enzyme activity. Traditional and emerging applications of enzyme technology in food processing and ingredient production with focus on selected topics such as thermostability, immobilization, catalysis under extreme conditions, enzyme mimics, and control of endogenous enzyme activities.

16:400:512. (F) BIOREGULATION AND BIOTECHNOLOGY IN FOOD FERMENTATION (3)
Montville. Prerequisites: 16:115:503,504 and 16:680:501, or equivalent.
Utilization and physiology of microorganisms in the food industry. Metabolic regulation of fermentation products. Fermentors as laboratory tools, new microbial technologies, and approaches to the use of microorganisms in foods.

16:400:513. FOOD SCIENCE FUNDAMENTALS I (3)
Lee, et al. Prerequisite: Organic chemistry.
Basic chemistry of carbohydrates, proteins, lipids, vitamins, and water independent of and in relation to interaction during processing.

16:400:514. FOOD SCIENCE FUNDAMENTALS II (3)
Matthews. Prerequisites: 16:400:513 or equivalent; general microbiology or biochemistry.
Mechanistic examinations of foodborne microbes, enzymology, biotechnology, postharvest physiology, nutrition, and current concepts in food safety as related to food composition and processing.

16:400:515.516. PRINCIPLES OF FOOD PROCESS ENGINEERING I,II (3,3)
Staff. Prerequisites: 11:400:401,402 and a year of calculus or equivalent.
Applications of kinetic models to microbial growth and inactivation, as well as quality attributes in foods. Influence of temperature, water activity, and phase change on reaction rates. Use of transient-state heat and mass transfer to describe temperature and water activity distribution histories within foods during typical preservation processes. Integration of kinetic models and temperature/water activity distributions into models for prediction of microbial safety and product quality as function of process conditions and/or storage environment.

16:400:519. (S) FOOD SAFETY (3)
J. Rosen. Prerequisite: Organic chemistry.
Chemistry and toxicology of food additives, pesticides, mycotoxins, and materials naturally present in food. Chemical carcinogenesis. Role of diet in both cancer causation and cancer inhibition.

16:400:521. (F) CHEMISTRY OF FOOD COLORS (3)
Daun. Prerequisites: Organic chemistry, physics.
Occurrence, structure, and physical and chemical properties of synthetic and natural food colors. Interactions between color and other food components during processing and storage. Analytical aspects of food colors.

16:400:523,524. TECHNOLOGY OF PACKAGING I,II (3,3)
Yam. Prerequisite: Organic chemistry.
Formulation of materials, basic uses of packaging materials and packaging design; limitations of various materials.

16:400:526. (S) PREDICTING SHELF LIFE OF FOODS (3)
Yam
Deteriorative kinetics of foods. Relationships between transport properties of packaging material and storage life of the packaged food. Techniques for measuring transport properties; computer simulations of shelf life.

16:400:530. (S) ADVANCED FOOD SENSORY SCIENCE (3)
Tepper. Prerequisites: 01:960:401 or equivalent; basic physiology; nutrition.
In-depth study of the principles of sensory physiology, taste psychophysics, and sensory evaluation with emphasis on food and food constituents and the various methods of product testing. Includes laboratory exercises.
Programs

The M.A. and Ph.D. programs deal with all important aspects of French literature and some related fields through a variety of critical approaches. These programs are open to candidates whose academic records and Graduate Record Examinations give evidence of distinguished accomplishment and promise of successful graduate work. The M.A.T. program in French studies is designed primarily for persons already involved in teaching French or using their knowledge of French and French civilization in some professional capacity: persons seeking to complement and refresh their awareness of current literary, cultural, and linguistic trends. Candidates for the M.A.T. are admitted on the basis of formal background and professional activity and need not submit Graduate Record Examination scores. Nonmatriculated students may take these courses. For all three programs, applications for September admission should be submitted by February 1 in order to receive full consideration for financial aid.

Candidates for the M.A. must satisfactorily complete 30 credits of course work (6 of which may be devoted to a research problem if the candidate elects to write a thesis), and pass an examination based on course work and a reading list. Those who wish to continue toward the Ph.D. are screened for that program at the time of the M.A. examination. Candidates for the M.A.T. also take ten term courses, chosen from among offerings in French and Francophone civilization, language, literature, and film. Students may take 6 credits of work in France. The degree is awarded after the student has taken a final written and oral examination based on course work.

Doctoral candidates are required to complete 48 credits of course work beyond the bachelor’s degree. Credit for graduate work taken at other institutions may be accepted in partial fulfillment of the course requirement, but in no case will the doctoral candidate do less than one full year of course work (24 credits) at Rutgers.

Prospective candidates for the Ph.D. degree fulfill the residence requirement through full-time commitment to course work and/or research during two consecutive terms, excluding summer session. Doctoral candidates must demonstrate by examination a reading knowledge of two foreign languages in addition to French. These languages usually include a Romance language and either German or Latin, but substitution of a different language on the basis of relevance to projected research is possible. Greater proficiency in one language, proven by the successful completion of 6 credits of graduate course work in the literature of that language, may replace the second language requirement. Any of the above substitutions may be made only after receiving the approval of the graduate director. The language requirement must be satisfied before the candidate is admitted to the qualifying examination in a field of concentration. This examination is based on a reading list reflecting the research interests of the candidate. Once a student fulfills the course and language requirements and passes the qualifying examination, the student is admitted to candidacy for the Ph.D. degree and may then proceed with the preparation of the dissertation.

Reading lists upon which the examinations are based, as well as a Guide for Graduate Students in French, are available in the department office, or on the department’s web site.

Graduate Courses

16:420:500. INTRODUCTION TO RHETORICAL AND STYLISTIC ANALYSIS (3)
Eisenzeig, Undank, Caurant, Morand

Techniques of literary interpretation of prose fiction, theater, and poetry. Critical readings and analyses of selected texts.

16:420:501. INTRODUCTION TO THE THEORY OF LITERATURE (3)
Eisenzeig, Flieger, Undank

Structure and range of such literary value judgments and critical approaches as the historical, thematic, phenomenological, Marxist psychoanalytic, structuralist, poststructuralist, and gender-related approaches to literature.
16:420:502. PHONETICS (3)
Cornilliat
Theory and practice of French phonetics with emphasis on pedagogical approaches. Special attention to regional, social, and cultural influences on the production of speech.

16:420:503. ADVANCED GRAMMAR, STYLISTICS, AND THEORY OF LANGUAGE (3)
Deprez
Advanced French grammar and theory of language with special attention to typical problems of idiomatic expression; themes, oral presentations, and translation exercises.

16:420:504. TRANSLATION (3)
Translation as a lingustic, cultural, and creative exchange of signs from one language into another. Intensive practice in oral and written translation from literary, journalistic, and official sources.

16:420:505. STUDIES IN CONTEMPORARY FRENCH CULTURE (3)
Aspects of French society, history, geography, economy, intellectual and artistic life; institutions, codes of behavior, and patterns of thought; Franco-American relations and influences.

16:420:506. STUDIES IN FRANCOPHONE CULTURE (3)
Civilization and literatures of French-speaking Africa and America. Overviews and close examinations of the society, language, and literature of places as diverse as Sénégal, Haiti, and Québec.

16:420:512. TEACHING APPRENTICESHIP IN FRENCH (N1.5)
Observation of elementary and intermediate language classes; supervised practice teaching.

16:420:513. HISTORY OF THE FRENCH LANGUAGE (3)
Speer, Pairet
Development of the French language from its origins to the present. Consideration of the cultural forces that have influenced linguistic evolution in France.

16:420:601,602. INDIVIDUAL STUDIES IN FRENCH LITERATURE AND THEORY (3,3)
Available only by special arrangement with permission of the graduate adviser. Independent study course of directed readings in areas of particular interest, such as linguistics, critical theory, cinema studies, and studies of individual genres or issues.

16:420:611,612. OLD FRENCH LANGUAGE AND LITERATURE (3,3)
Speer, Pairet
Readings of selections from the various forms and periods of medieval French literature, with an introductory study of French philology.

16:420:613,614. STUDIES IN OLD FRENCH LANGUAGE AND LITERATURE (3,3)
Speer, Pairet
Intensive study of a medieval genre, theme, author, or major work such as La Chanson de Roland, Tristan et Iseult, Le Roman de la Rose; Chrétiens de Troyes, Villon; literary and linguistic analysis; problems of textual criticism.

16:420:622. FRENCH LITERATURE OF THE RENAISSANCE (3)
Cornilliat
Introduction to the principal ideological and aesthetic currents of the sixteenth century through selected texts by the major poets (Marot, Scève, Labé, DuBellay, Ronsard, and D'Aubigné) and prose writers (Rabelais, Marguerite de Navarre, and Montaigne).

16:420:623. RABELAIS (3)
Cornilliat
Rabelais as humanist and storyteller; problems of language and the narrative in the early French Renaissance.

16:420:624. POETRY OF THE FRENCH RENAISSANCE (3)
Cornilliat
Jean Lemaire, Clément Marot; the School of Lyons; the Pléiade; scientific and satirical poets of the century's end.

16:420:625. MONTAIGNE (3)
Cornilliat
Critical reading of the Essais with attention to the dynamics of form and meaning.

16:420:631,632. FRENCH LITERATURE OF THE SEVENTEENTH CENTURY (3,3)
Horowitz, Deprez
Against the background of the age, a study of the main literary currents and an analysis of some of the significant works of the major writers.

16:420:633. THE CLASSICAL THEATER (3)
Horowitz, Lockwood
Intensive study of the forms, rhetoric, and meaning of the plays of Corneille, Racine, and Molière.

16:420:634. LA FONTAINE AND THE MORALISTES (3)
Horowitz, Lockwood
Study of La Rochefoucauld, LaFontaine, Pascal, Sévigné, LaFayette, Boileau, Perrault, or other selected writers whose work addresses moral, social, or political issues, with particular attention to rhetoric and subjectivity.

16:420:636. PASCAL (3)
Lockwood, Undank
Intensive study of problems in Pascal and Pascal criticism.

16:420:637,638. STUDIES IN NINETEENTH-CENTURY FRENCH LITERATURE (3,3)
Lockwood, Horowitz
Intensive study of a major figure, theme, movement, or single work.

16:420:641,642. FRENCH LITERATURE OF THE EIGHTEENTH CENTURY (3,3)
Grieder, Showalter, Swenson, Undank
The rise and development of new literary forms and their relationship to intellectual and social changes of the Enlightenment.

16:420:643,644. STUDIES IN EIGHTEENTH-CENTURY FRENCH LITERATURE (3,3)
Grieder, Showalter, Swenson, Undank
Intensive study of a theme, period concept (rococo, “bourgeois” sentimentiality, neoclassicism), stylistic practice, or major figure (Marivaux, Voltaire, Diderot, Rousseau).

16:420:651,652. FRENCH LITERATURE OF THE NINETEENTH CENTURY (3,3)
Diamond, Eisenoveig, Shaw
Study of the romantic movement in France with emphasis on the evolution of cultural history and art forms.

16:420:655. FLAUBERT (3)
Diamond
Development of the technique; his views on art, society, and man; his place in the history of the modern novel.

16:420:657. STUDIES IN NINETEENTH-CENTURY FRENCH POETRY (3)
Diamond, Shaw
Ideologies and aesthetics of the romantic, Parnassian, or symbolist schools; or close examination of one major figure: Hugo, Baudelaire, Rimbaud, Mallarmé.

16:420:659. THE WRITER AND SOCIETY (3)
Eisenoveig
Interaction of historical, sociological, and political forces with writers and their aesthetics. Special attention to methodology.
16:420:661,662. FRENCH LITERATURE OF THE TWENTIETH CENTURY (3,3)
Boroz-Azzi, Eisenzeig, Flieger, Lamiot, Shaw
Major contemporary French authors from surrealism to the anti-roman and the theater of the absurd, with special attention to the evolution of each genre.

16:420:663. FRENCH THEATER OF THE TWENTIETH CENTURY (3)
Boroz-Azzi, Flieger, Lamiot, Shaw
Study of the modern theater as exemplified in the plays of Beckett, Ionesco, and Genét.

16:420:664. SARTRE AND EXISTENTIALISM (3)
Boroz-Azzi
The ideas and literary achievements of Sartre and Simone de Beauvoir; Camus’s relation to the group.

16:420:667,668. STUDIES IN FRENCH LITERATURE OF THE TWENTIETH CENTURY (3,3)
Boroz-Azzi, Flieger, Lamiot, Larrier, Shaw
Intensive study of a major figure, movement, or theme.

16:420:671. STUDIES IN FRANCOPHONE LITERATURE (3)
Lamiot, Larrier
Intensive study of major works of African, Caribbean, or Canadian literature in French. Emphasis on selected authors, genres, themes, or literary movements.

16:420:673,674. THE NOVEL IN FRANCE (3,3)
Diamond, Eisenzeig, Shoveller, Undank
Forms of the French novel from L’Astrée to the “nouveau roman.” The relationship of rhetoric to meaning; contemporary approaches. LaFayette, Diderot, Laclos, Sade, Stendhal, Gauthier, Balzac, Flaubert, Gide, Colette, Proust, Sartre, Robbe-Grillet, Sarrate.

16:420:675. (F) STUDIES IN FILM AND FILM THEORY (3)
Williams
History of French cinema from Lumière and Méliès to the New Wave. Examination of contemporary critics and critical approaches.

16:420:681. FRENCH RHETORIC AND POETICS (3)
Comillat, Lockwood
Evolution of rhetoric and poetics and their application to literature from the Renaissance to modern times.

16:420:682. PERSPECTIVES OF CONTEMPORARY CRITICISM (3)
Diamond, Eisenzeig, Flieger, Swenson, Undank
The New French Criticism: theory and models of the phenomenological, structuralist, generative, or poststructuralist enterprise.

16:420:687. TOPICS IN FRENCH LITERATURE (3)
Analysis of special problems, such as “Ideas and Ideologies 1930–1980.”

16:420:691,692,693,694. HALF-TERM PROJECTS (1.5,1.5,1.5,1.5)
Half-term courses devoted to an aspect of critical theory, a single literary work, a scholarly or textual problem, or a theme spanning more than one literary period.

16:420:701,702. RESEARCH IN FRENCH (BA,BA)

Interdisciplinary Graduate Course

15:617:510. INTRODUCTION TO LITERARY THEORY (3)
Flieger, Marsh, Eisenzeig, Edwards, Lockwood, Persin, Calperin, Davidson, Swenson, et al. Prerequisite: Open to second-term graduate students; priority given to students from programs participating in the Council of Languages and Literature.
Introduction to contemporary literary theory, including formalism, structuralism, deconstructionism, feminism, psychoanalysis, cultural studies, and other approaches. Readings of theoretical texts and applications to short literary texts from a variety of literatures.

GEOGRAPHY 450

Degree Programs Offered: Master of Arts, Master of Science, Doctor of Philosophy

Director of Graduate Program: Professor J. Kenneth Mitchell, Lucy Stone Hall, Livingston Campus (732/445-4107)
Web site: http://geography.rutgers.edu

Members of the Graduate Faculty

Gail M. Ashley, Professor of Geological Sciences, FAS-NB, Ph.D., British Columbia
Sedimentology; glacial geomorphology; environmental geology; modern processes
Michael R. Greenberg, Professor of Urban Studies and Public Health, EJBSPPP, Ph.D., Columbia
Environmental and health; mathematical models
Briavel Holcomb, Professor of Urban Studies, EJBSPPP, Ph.D., Colorado
Urban revitalization; gender; tourism
Robert M. Hordon, Associate Professor of Geography, FAS-NB, Ph.D., Columbia
Water resources; physical geography
Robert W. Lake, Professor of Urban Planning and Policy Development, CUPR, Ph.D., Chicago
Urban restructuring; social and environmental policy analysis; political
Richard C. Lathrop, Jr., Associate Professor of Environmental Resources, CC; Ph.D., Wisconsin (Madison)
Remote sensing and spatial modeling of terrestrial/aquatic ecosystems; GIS
Robin Leichenko, Assistant Professor of Geography, FAS-NB, CUPR, Ph.D., Pennsylvania State
Economic geography; urban and regional development; international trade
Michael J. Medier, Assistant Professor of Geography, FAS-NB, Ph.D., Arizona
Biogeography; remote sensing; GIS; natural resource and wilderness policy
J. Kenneth Mitchell, Professor of Geography, FAS-NB, Ph.D., Chicago
Environment and public policy; coastal and marine; human response to hazards; global environmental change
George H. Niesswand, Professor of Environmental Resources, CC; Ph.D., Rutgers
Land, water, and agricultural resources; environmental systems
Karl F. Nordstrom, Professor of Geography, FAS-NB, IMCS; Ph.D., Rutgers
Coastal geomorphology
Frank Popper, Professor of Urban Studies, EJBSPPP, Ph.D., Harvard
Land use; environmental and regional policy; natural resources management
Norbert P. Patusy, Professor of Geography and Geology and Associate Director of the Institute for Marine and Coastal Studies, IMCS/CC; Ph.D., Louisiana State Coastal geomorphology; process-response models; coastal management
Joanna M. Regulska, Professor of Geography, FAS-NB, Ph.D., Colorado
Urban policy; political; central and East European restructuring; gender
David A. Robinson, Professor of Geography, FAS-NB, Ph.D., Columbia
Climatology; cryosphere; solar radiation; physical geography
Thomas Rudel, Professor of Sociology, CC; Ph.D., Yale
Latin America; environment; development
Dona Schneider, Associate Professor of Urban Studies and Community Health, EJBSPPP; Ph.D., Rutgers
Medical geography; epidemiology; minority health
Richard Schroeder, Associate Professor of Geography, FAS-NB; Ph.D., California (Berkeley)
Development; gender; Africa; agriculture; social theory and environment
Neil Smith, Professor of Geography, FAS-NB; Ph.D., John Hopkins
Urban geography; gentrification; political economy; history of geography; social theory
David Tulloch, Assistant Professor of Landscape Architecture, CC; Ph.D., Wisconsin
Geospatial technologies; environmental and land-use planning
Andrew P. Vayda, Professor of Anthropology and Ecology, CC; Ph.D., Columbia
Human ecology; methodology and explanation; human impact in tropical areas; agro-ecological knowledge; transmission and use
Peter O. Wacker, Assistant Professor of Geography, FAS-NB, Ph.D., Pennsylvania State
Urban revitalization; gentrification; labor markets; gender; housing

Associate Member of the Graduate Faculty

Michelle Goman, Lecturer in Geography and Geological Sciences, Ph.D., California (Berkeley)
Biogeography; palaeocology
Graduate Courses
16:450:501. (F) INTRODUCTION TO NATURAL RESOURCES MANAGEMENT (3)
Review of recent literature on natural resources management, with emphasis on identifying and analyzing research themes and methodologies employed by contemporary geographers.

16:450:502. (S) RESOURCE MANAGEMENT DECISION MAKING (3)
Prerequisite: 16:450:501 or equivalent.
Individual and collective behavior theories applied to the analysis of private decisions and public natural resource policy, from a human ecological perspective.

16:450:503. (S) ENVIRONMENTAL MANAGEMENT (3)
Prerequisite: 16:450:502 or equivalent.
Contemporary resource management issues in the United States, including resource evaluation, environmental impact assessment, and planning procedures. Emphasis on conflict resolution, public participation, and the role of science in decision making.

16:450:504. (F) COASTAL GEOMORPHOLOGY (3)
Prerequisite: 01:450:403 or 404 or equivalent.
Erosional and depositional processes in the coastal environment. Process-response models and problem-solving methods in coastal research.

16:450:505. (F) ADVANCED PHYSICAL GEOGRAPHY (3)
Prerequisite: 01:450:403 or 404 or equivalent.
Selected topics within the general field of earth science.

16:450:507. (S) APPLIED GEOMORPHOLOGY (3)
Prerequisite: 01:450:403 or 404 or equivalent.
Applications of modern geomorphological research to environmental management including geomorphological constraints to human activity and human effects on landform processes.

16:450:508. (S) ENVIRONMENTAL PROBLEMS IN DEVELOPING COUNTRIES (3)
Similarities and differences among developing countries in their environmental problems, their definitions of them, and their policies about them. The role of economic development in either solving or causing environmental problems. Environmental considerations in development planning.

16:450:509. (F) HUMAN GEOGRAPHICAL PROBLEMS OF DEVELOPING COUNTRIES (3)
Human underpinnings to problems of development as seen from the perspectives of historical, political, demographic, economic, and social geography. Case studies and examples from the third world.

16:450:510. (S) WATER RESOURCES MANAGEMENT (3)
Problems in the management of water use in metropolitan environments. The effects of urbanization on the hydrologic regime. The influence of geohydrologic factors on water use decisions.

16:450:511. (S) LAND USE SYSTEMS (3)
Environmental factors in land use planning. Land use data systems including storage and retrieval, “third dimension” planning; water and ground below the surface soil. Multivariate analysis of land variables. Land use and water quality.

16:450:513. (S) SETTLEMENT GEOGRAPHY (3)
Field trips required. Evolution and morphology of selected rural settlement landscapes interpreted in terms of natural conditions, institutional factors, and economic functions.

16:450:514. ENVIRONMENT AND CULTURE (3)
Interrelations of the environment and cultural practices, knowledge, and ideals. Concepts and methods for studying these interrelations.
16:450:515. (S) POPULATION MIGRATION AND MOBILITY (3)
Analysis of population mobility at the international (immigration, guest workers, refugees), interregional, and intrarural levels through examination of spatial patterns of migration, locational decisions, impact of migrants in places, and population redistribution policies.

16:450:516. (S) URBAN GEOGRAPHY (3)
Geographic aspects of urbanization, theories of contemporary urban geography, and their application to existing urban patterns.

16:450:517,518. DIRECTED STUDY IN GEOGRAPHY (3,3)
Prerequisite: Permission of graduate director.
Directed readings and individual study supplementary to formal courses.

16:450:519. (F) PROBLEMS IN POLITICAL GEOGRAPHY (3)
Geographic implications of state theory, locational conflict, public policy, and national-local government relations.

16:450:520. WOMEN IN THE URBAN ENVIRONMENT (3)
Documented spatial constraints faced by women in the urban environment; examination of women’s roles in the context of the interrelation between the activities of production and reproduction.

16:450:521. REGIONAL HYDROLOGY AND LANDFORMS (3)
Relationships between physiographic regions and hydrologic systems. Field trips to regional watersheds in varying landform areas. Land use and water quality.

16:450:522. TOURISM GEOGRAPHY (3)
Geographical aspects of world’s leading industry by value. Economic, environmental, cultural, and social impacts of tourism domestically and internationally.

16:450:523. THE CLIMATE SYSTEM AND GLOBAL CLIMATE CHANGE (3)
The earth’s energy balance, hydrologic cycle, and atmospheric circulation at a variety of spatial and temporal scales. Present climate events and aspects of climate change.

16:450:525. RESTRUCTURING OF CENTRAL AND EASTERN EUROPE AFTER 1989 (3)
Examination of the roots of the collapse of totalitarian regimes in Central and Eastern Europe. Analyzes spatial implications of the transition for urban development, gender relations, economic restructuring, and environmental change.

16:450:530. DATA STRUCTURES AND ALGORITHMS FOR SPATIAL PROBLEMS (3)
Discussion and hands-on programming of data structures and algorithms used in geographic information systems.

16:450:601,602. FIELD AND RESEARCH METHODS IN GEOGRAPHY (3,3)
Research procedures and methods, survey of past and current literature, data collection and analysis, preparation of reports, papers, and theses; colloquia on analytical problems.

16:450:603. (F) RESEARCH PROSEMINAR (3)
Required for graduate degrees.
Evolution and status of main disciplinary subfields, contemporary paradigms, transdisciplinary relationships, professional employment trends, introduction to geographical bibliography, and basic research skills.

16:450:605,606. GEOGRAPHY SEMINAR (3,3)
Lectures and special problems in current issues. Course content varies according to student and faculty interest.

16:450:607. (S) SEMINAR IN HISTORICAL CULTURAL GEOGRAPHY (3)
Origins and diffusions of selected material and nonmaterial culture traits in North America from the seventeenth through the nineteenth centuries.

16:450:612. NATURAL HAZARDS MANAGEMENT (3)
Analysis of human and environmental contributions to the generation and management of natural hazards, including, among others, earthquakes, hurricanes, floods, and droughts. Contemporary public policy issues at national and international levels of government. Theoretical emphasis on decision making in the face of uncertainty.

16:450:613. (F) SEMINAR IN COASTAL RESOURCES GEOGRAPHY (3)
Analysis of contemporary maritime management issues, including ecosystem preservation, energy facilities siting, ocean dumping, storm disaster mitigation, port development, waterfront revitalization, and beach recreation. Focus on U.S. and international public policy.

16:450:614. (F) SEMINAR IN MEDICAL GEOGRAPHY (3)
Advanced topics of medical geography. Student research and analysis of specific problems.

16:450:615. (S) SEMINAR IN REMOTE SENSING (3)
Remote sensors and their research capabilities. Research design for remote sensing studies.

16:450:616. SEMINAR IN TECHNOLOGICAL HAZARDS (3)

16:450:617. SEMINAR IN REMOTE SENSING OF THE BIOSPHERE (3)
Lathrop. Prerequisites: 16:450:615 or equivalent or permission of instructor.
The application of satellite remote sensing and geographic information system technology to monitor and model the earth’s biosphere, including terrestrial/aquatic primary production, biogeochemical cycling, and climate dynamics.

16:450:625. SEMINAR IN GEOGRAPHIC INFORMATION SYSTEMS (3)
Prerequisites: 01:450:420 or 11:372:415.
Advanced topics in geographic information systems: raster/vector data structures, GIS modeling. Requires literature review and hands-on computer analysis.

16:450:632. (S) SEMINAR IN REGIONAL GEOGRAPHY (3)
Selected world regional and interregional problems associated with environmental constraints, natural resource use, and other public policy issues. Varying foreign area focus.

16:450:650,651. MASTER’S PAPER IN GEOGRAPHY (3,3)
16:450:701,702. RESEARCH IN GEOGRAPHY (BA,BA)

GEOLOGICAL SCIENCES 460

Degree Programs Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Professor Michael J. Carr, Wright-Rieman Laboratories, Busch Campus (732/445-3619)

Members of the Graduate Faculty
Gail M. Ashley, Professor of Geological Sciences, FAS-NB; Ph.D., British Columbia
Sedimentology; geomorphology; quaternary geology; modern processes
Michael J. Carr, Chairperson and Professor of Geological Sciences, FAS-NB; Pr.D., Dartmouth
Convergent plate margins; volcanology, tectonics, igneous petrology
Jeremy S. Delaney, Research Scientist, Geological Sciences, FAS-NB; Ph.D., Queen’s University (Belfast)
Biogeochemical cycles; evolution; astrobiology

Paul G. Falkowski, Professor of Geological Sciences and Marine and Coastal Sciences, FAS-NB; Ph.D., British Columbia
Biogeochemical cycles; evolution; astrobiology
Craig S. Feibel, Assistant Professor of Anthropology and Geological Sciences, FAS-NB; Ph.D., Utah
Geoarchaeology, paleoenvironments, paleoecology, microstratigraphy, geochronology
Mark D. Feigenson, Professor of Geological Sciences, FAS-NB; Ph.D., Princeton Geochemistry, igneous rocks and other geologic samples
Claude T. Herzberg, Professor of Geological Sciences, FAS-NB; Ph.D., Edinburgh
Gregory F. Herzog, Professor of Chemistry, FAS-NB; Ph.D., Columbia
Meteoritics: radiometric dating and cosmic ray exposure; trace elements
Roger H. Hewins, Professor of Geological Sciences, FAS-NB; Ph.D., Toronto
Polymerization of meteorites, mafic and ultramafic rocks, mineral chemistry
Dennis V. Kent, Professor of Geological Sciences, FAS-NB; Ph.D., Columbia
Paleomagnetism, paleogeography, stratigraphy
Alexander E. Gates, Associate Professor of Geology, FAS-N; Ph.D., Virginia
Geochemistry of marine and fresh waters; paleochemical records in ice cores
David A. Robinson, Professor of Geography, FAS-NB; Ph.D., Columbia
Climatology, cryosphere, solar radiation, physical geography
Peter Rona, Professor of Geological Sciences and Marine and Coastal Sciences, IMCS; Ph.D., Yale
Ocean ridge crest processes; sea floor hydrothermal processes; marine geology and geophysics
Roy W. Schlioeche, Associate Professor of Geological Sciences, FAS-NB; Ph.D., Columbia
Extrusion tectonics; structural and stratigraphic development of rift basins; growth of faults
Robert E. Sheridan, Professor of Geological Sciences, FAS-NB; Ph.D., Columbia
Seismic reflection and refraction; seismic stratigraphy; general geophysics; geology of the Atlantic continental margin
Robert M. Sherrell, Assistant Professor of Geological Sciences and Marine and Coastal Sciences, FAS-NB; Ph.D., Massachusetts Institute of Technology / Woods Hole Oceanographic Institution
Gas chemistry of marine and fresh waters; paleochemical records in ice cores
Martha O. Withjack, Professor of Geological Sciences, FAS-NB; Ph.D., Brown University
Experimental structural geology; seismic stratigraphy
James D. Wright, Assistant Professor of Geological Sciences, FAS-NB; Ph.D., Columbia
Marine geology; paleoceanography; stable isotopes; stratigraphy

Programs
The research activities of the program concentrate in the areas of stratigraphy, sedimentology, paleontology, paleoecology, biostatigraphy, structural geology, tectonics, geochemistry, geophysics, volcanology, igneous petrology, and geomorphology. A broad background in chemistry, physics, and mathematics, as well as in geology, is stressed. The candidate for the Ph.D. must pass an examination in one foreign language, demonstrate satisfactory capability in computers, and pass a qualifying examination that includes a comprehensive written examination and an oral defense of the proposed dissertation research. One year of full-time graduate work satisfies the residency requirement. The Master of Philosophy degree is available to doctoral candidates.

All applicants should submit three letters of recommendation and their Graduate Record Examination results. Part-time students are encouraged to apply.

Graduate Courses
16:460:501. (S) ECONOMIC GEOLOGY (3)
Feigenson. Prerequisite: 01:460:401 or 402 or equivalent.

16:460:502. (F) RADIOACTIVITY (3)
Feigenson. Prerequisite: 01:460:401 or 402 or equivalent.

16:460:503. (F) STUDIES IN PALEONTOLOGY (3)
Prerequisites: 01:460:303, 304, or equivalent.

16:460:504. (F) SEQUENCE STRATIGRAPHY (3)
Prerequisites: 01:460:401 or 402 or equivalent.

16:460:505. (S) STRUCTURE AND FORMATION OF THE EARTH (3)
Feigenson, Herzberg, Hewins. Prerequisites: 01:460:305, 307, 401, or permission of instructor.

16:460:506. (S) MINERAL PHASE RELATIONS (3)
Hewins. Prerequisite: 01:460:308.

16:460:507. (F) GEODYNAMICS (3)
Prerequisites: 01:460:307, 312.

16:460:508. (F) METEORITES (3)
Hewins. Prerequisite: 01:460:307.
Basic principles of thermodynamics applied to solid-solid and solid-liquid equilibria in silicate systems; igneous and metamorphic processes that structured the petrology of the earth’s crust and mantle through time.

Principles of thermodynamics applied to the stability of mineral assemblages in meta-igneous and meta-sedimentary rocks of the earth’s crust; fluids in the crust; metamorphism and plate tectonics.

Geologic settings of volcanos; geophysical and geochemical constraints on the origin of magmas; energetics and periodicity; volcanos and earthquakes; eruption mechanisms; volcanic hazards and prediction; geothermal power and volcanogenic ore deposits.

Examination of clastic depositional environments, with emphasis on sedimentary processes. Sediment sampling and analyzing; sedimentary structures; grain characteristics; facies models.

Plate tectonic theory; quantitative analysis of plate motions on a sphere; use of paleomagnetism and seismology in tectonics; causes of plate motion.

Advanced topics in structural geology including: tensor analysis of stress and strain; practical strain measurement; geometric, kinematic, and dynamic analysis of folds and fractures; seismic expression of structural styles.

Study of the Mesozoic-Cenozoic stratigraphic sequences in different basinal settings and relationship to tectonic history.

Examination of the physical processes of sedimentation on the continental shelf and continental slope environments. Inter-relationship between organisms and sediment, as well as environmental problems.

Paleoecology, paleoclimatology, and paleogeography of marine microfossils; study of major paleoceanographic events and their relationships to stratigraphy and sedimentary facies.

The evolution of ecological systems in geologic time; application of evolutionary theory to paleoecological patterns and processes.

Structure and evolution of ocean basins, continental margins, and marine sediments.

Studies of stable and radiogenic isotopes in the earth’s mantle and crust. The use of isotopes in age dating, source tracing, and geothermometry.
oral examination in the candidate’s areas of specialization, and a dissertation. The Ph.D. qualifying examination may be taken in parts spaced over six months. No more than 3 credits for the master’s degree and no more than 6 credits for the doctorate may be taken in independent study courses. A Master of Philosophy degree can be obtained by candidates who complete their course work and qualifying examination within four years. Although there is no formal residence requirement, the candidates accepted must be available for close supervision and consultation.

Courses at the 500 and 600 level are open to all graduate students and constitute the major portion of the program. As part of their graduate training, doctoral students are given the opportunity to assume certain teaching obligations under faculty supervision. Further details concerning the program, including additional information about the qualifying examination and the dissertation, as well as information about teaching assistantships, can be found in Graduate Programs in German and in Guidelines for Graduate Students in German. These pamphlets are available on request from the office of the graduate director.

Graduate Courses

Three to four courses from the following list are normally offered each term.

16:470:501. THE TEACHING OF COLLEGE GERMAN (3)
Introduction to the nature of language acquisition, practical examination of instructional materials; principles of cultural analysis; theory and practice of teaching literature. Patterned to the practice of college instruction.

16:470:502. TEACHING APPRENTICESHIP IN GERMAN (N1.5)
Weekly workshops for teaching, testing, and evaluation techniques in elementary and intermediate language courses. Observation of language classes.

16:470:510. LITERARY THEORY AND METHODOLOGY (3)
Ciklamini, Rushing. Recommended during the first year. Study and practice of scholarly techniques, the use of secondary literature for research, the writing of papers, and an overview of literary theories.

16:470:511. ADVANCED GRAMMAR (3)
Ciklamini
Comparison of syntactic and semantic differences between source and target languages.

16:470:512. ADVANCED STYLISTICS (3)
Ratych
Studies in the nature and development of literary styles and nontextual prose from the sixteenth century to the present, with emphasis on the expressive possibilities of various syntactic modes.

16:470:513. ANALYSIS OF LITERARY TEXTS (3)
A study of selected works of poetry, drama, and prose with a view to increasing a teacher’s faculties of literary interpretation and aesthetic judgment.

16:470:515. HISTORY OF THE GERMAN LANGUAGE (3)
Ciklamini, Zitzelsberger
Survey of linguistic changes and phenomena from the Indo-European era to the present.

16:470:516. INTRODUCTION TO MIDDLE-HIGH GERMAN (3)
Ciklamini, Zitzelsberger
Phonology and grammar. Reading of representative texts from the Middle-High German period A.D. 1050 to A.D. 1350, with special emphasis on the popular epic, court epic, and “Minnesänger.”

16:470:517. INTRODUCTION TO OLD HIGH GERMAN (3)
Zitzelsberger
Survey of the morphology of Old High German with readings and discussions of representative literary texts as recorded in the various dialects.

16:470:520. LITERATURE OF THE MIDDLE AGES (3)
Ciklamini, Zitzelsberger
Analysis of the folk epic (Nibelungenlied) and its sources, the courtly romances by Hartmann von Aue, Wolfram von Eschenbach, and Gottfried von Strassburg, the saint’s legend, and of poems by prominent “Minnesänger.”

16:470:521. LITERATURE OF THE RENAISSANCE, REFORMATION, AND BAROQUE (3)
Zitzelsberger
Sociohistorical overview of German literature of the sixteenth and seventeenth centuries.

16:470:522. FROM ROCOCO TO CLASSICISM (3)
Herbst
Literature of the eighteenth century with emphasis on “Anakreonitik,” “Sturm und Drang,” and the “Weimarer Klassik,” focusing mainly on contemporaries of Goethe and Schiller.

16:470:523. GERMAN ROMANTICISM (3)
Ciklamini, Herbst
The aims and characteristics of the romantic movement as reflected in the works of Hölderlin, Novalis, Kleist, Brentano, Eichendorff, and Hoffmann.

16:470:524. NINETEENTH-CENTURY REALISM (3)
Rushing, Donahue
Studies in the theory, themes, and styles of German literary realism in the nineteenth century, focusing on the works by Büchner, Hebbel, Stifter, Keller, Meyer, Storm, and Fontane.

16:470:525. LITERATURE OF THE TWENTIETH CENTURY BEFORE 1945 (3)
Donahue
A study of significant literary works and trends against the background of late Wilhelminian Germany, the Weimar Republic, and the Nazi era.

16:470:526. LITERATURE OF THE TWENTIETH CENTURY AFTER 1945 (3)
Consentino-Dougherty, Donahue
A study of German writers after World War II, including Bernhard, Borchert, Böll, Dürrenmatt, Frisch, Grass, Handke, Hochhuth, Johnson, Lenz, Botho Strauß, Walser, and Weiss.

16:470:601,602. INDEPENDENT STUDY IN GERMANIC LANGUAGES AND LITERATURES (3,3)
Ciklamini, Ratych
Prerequisites: Permission of instructor and approval of graduate director. Independent study or directed research. Intended for exploring areas not covered in depth by regularly scheduled courses.

16:470:610. OLD NORSE LITERATURE (3)
Ciklamini, Zitzelsberger. Conducted in English.
The principal genres of saga literature; Eddic and Scaldic poetry.

16:470:611. COURTLY POETRY AND MEDIEVAL DRAMA (3)
Ciklamini, Rushing, Zitzelsberger
Major lyrics of the “Minnesang” and its later developments. The Latin and romance origins of German lyric poetry. Selected dramas from the thirteenth to the late fifteenth centuries.

16:470:615. LITERATURE OF THE BAROQUE (3)
Zitzelsberger
Study of lyric, dramatic, and prose works as an expression of religious, historical, and cultural currents of the seventeenth century.

16:470:622. THE GERMAN ENLIGHTENMENT (3)
Herbst
The concept and question of German Enlightenment, especially as it relates to modernity. Readings by Leibniz, Kant, Mendelssohn, Gottsched, Bodmer, Lessing, Klopstock, Wieland, and Gellert.
16:470:625. GOETHE (3)
Herbst
Study of Goethe’s poetry, drama, and prose, focusing on three major areas: works of the Storm and Stress, works of Goethe’s classical period, and the “Alterswerk,” including Faust.

16:470:626. FAUST IN GERMAN LITERATURE (3)
Herbst
The Faust tradition from biblical days to contemporary German literature. Emphasis on the Volksbuch, the Faust theme in the Storm and Stress period, Goethe’s Faust, and Faust works of the twentieth century.

16:470:627. SCHILLER (3)
Herbst
Schiller’s development as an author through detailed study of his prose, poetry, and plays, including Die Räuber, Kabale und Liebe, Don Carlos, and Wallenstein.

16:470:632. HEINE AND HIS CONTEMPORARIES (3)
Development of German literature of the nineteenth century in the context of social and political change brought about by the end of feudalism and the rise of industrialism in the period 1813 to 1849.

16:470:642. THE EXPRESSIONIST MOVEMENT (3)
Cosentino-Dougherty
German expressionism from its early prewar phase to the mid-1920s, with emphasis on its philosophical foundations, sociopolitical aims, and poetic styles. The poets Benn, Heym, Stadler, Strauß, and Werfel; the dramatists Goering, Hasenclever, Kaiser, Sorge, Sternheim, and Toller.

16:470:645. CONTEMPORARY GERMANY (3)
Cosentino-Dougherty, Donahue
Study of modern Germany with consideration of pertinent cultural, historical, political, geographical, and sociological factors and their impact on contemporary literary life.

16:470:650. LYRICAL POETRY FROM THE MIDDLE AGES TO THE PRESENT (3)
Ratych
Study of significant poets, with special emphasis on the development of literary movements and the intellectual background of the times.

16:470:651. GERMAN DRAMA FROM THE BAROQUE TO THE PRESENT (3)
Ratych
Readings of selected plays with background studies in the theory and historical development of the drama.

16:470:652. SHORT FORMS OF GERMAN PROSE (3)
Donahue, Herbst
Short prose forms such as the Anekdote, Skizze, Novelle, Erzählung, and Kurzgeschichte. Historical, theoretical, and analytical approaches to representative works.

16:470:653. THE GERMAN “NOVELLE” AND “NOVELLE” THEORY (3)
Donahue, Herbst
Development of the Novelle as a specific German narrative form and as an expression of social, philosophical, and metaphysical viewpoints.

16:470:654. THE GERMAN NOVEL (3)
Donahue
Development of the novel as a literary genre in German literature. Emphasis on European influences, the novel and the court, the rise of the bourgeoisie, women and writing, and theory of novel.

16:470:660. AUSTRIAN NARRATIVE OF THE NINETEENTH AND TWENTIETH CENTURIES (3)
Donahue, Rennie
Comparative study of representative works that use various narrative techniques. Special emphasis on the end of the monarchy, the emergence of national socialism, and the period after 1945.

16:470:661. FOLKLORE IN GERMAN LITERATURE (3)
Ciklamini
Archetypal patterns, motifs, figures in folklore, Sage, folksong, hagiography, and sources in pagan and biblical tradition as a basis for study of adaptations and interpretations in literary works of various genres and periods to the present.

16:470:662. GERMAN FEMINIST WRITERS (3)
Donahue
The rise of literary feminism and a sociological analysis of women’s literature.

16:470:663. LITERATURE AND IDEOLOGY (3)
Rushing, Rennie
Study in the history of ideas, dealing specifically with the conflict of ideologies in varying periods of German culture as expressed in the works of such authors as Gottfried von Strassburg, Luther, Gryphius, Goethe, Büchner, Nietzsche, Wagner, and Brecht.

16:470:670,671,672,673. TOPICS IN GERMAN LITERATURE I,II,III,IV (3,3,3,3)
Special topics devoted to the investigation of a single author, text, critical or philosophical problem, theme or motif, historical period or development.

16:470:701,702. RESEARCH IN GERMAN (BA,BA)

Interdisciplinary Graduate Course

15:617:510. INTRODUCTION TO LITERARY THEORY (3)
Fleger, Marsh, Eisenzeig, Edmunds, Persin, Galperin, Davidson, et al.
Open to second-term graduate students; priority given to students from programs participating in the Council of Languages and Literature.
Introduction to contemporary literary theory, including formalism, structuralism, poststructuralism, feminism, psychoanalysis, cultural studies, and other approaches. Readings of theoretical texts and applications to short literary texts from a variety of literatures.

HISTORY 510

Degree Programs Offered: Master of Arts, Doctor of Philosophy
Director of Graduate Program: Professor David M. Oshinsky, 305D Van Dyck Hall, College Avenue Campus (732/932-8493)
Vice Chairperson for Graduate Education: Professor Phyllis Mack, 305E Van Dyck Hall, College Avenue Campus (732/932-7941)

Members of the Graduate Faculty
Michael P. Adas, Abraham Voorhees Professor of History, FAS-NB; Ph.D., Wisconsin
Comparative history, colonialism and technology
Samuel L. Baily, Professor of History, FAS-NB; Ph.D., Pennsylvania
Comparative migration, twelfth-century Latin American social history
Norma Bewick, Professors of History, FAS-NB; Ph.D., New York
American legal history, U.S. antebellum politics and culture
Mia Elisabeth Bay, Assistant Professor of History, FAS-NB; Ph.D., Yale
American legal history, American intellectual and cultural history
Seymour Becker, Professor of History, FAS-NB; Ph.D., Harvard
European, quantitative history
Peter B. Ciklamini, Assistant Professor of History, FAS-NB; Ph.D., CUNY
Comparative migration, twentieth-century Latin American social history

Members of the Graduate Faculty
Michael P. Adas, Abraham Voorhees Professor of History, FAS-NB; Ph.D., Wisconsin
Comparative history, colonialism and technology
Samuel L. Baily, Professor of History, FAS-NB; Ph.D., Pennsylvania
Comparative migration, twelfth-century Latin American social history
Norma Bewick, Professors of History, FAS-NB; Ph.D., New York
American legal history, U.S. antebellum politics and culture
Mia Elisabeth Bay, Assistant Professor of History, FAS-NB; Ph.D., Yale
American legal history, American intellectual and cultural history
Seymour Becker, Professor of History, FAS-NB; Ph.D., Harvard
European, quantitative history
Peter B. Ciklamini, Assistant Professor of History, FAS-NB; Ph.D., CUNY
Comparative migration, twentieth-century Latin American social history

Members of the Graduate Faculty
Michael P. Adas, Abraham Voorhees Professor of History, FAS-NB; Ph.D., Wisconsin
Comparative history, colonialism and technology
Samuel L. Baily, Professor of History, FAS-NB; Ph.D., Pennsylvania
Comparative migration, twelfth-century Latin American social history
Norma Bewick, Professors of History, FAS-NB; Ph.D., New York
American legal history, U.S. antebellum politics and culture
Mia Elisabeth Bay, Assistant Professor of History, FAS-NB; Ph.D., Yale
American legal history, American intellectual and cultural history
Seymour Becker, Professor of History, FAS-NB; Ph.D., Harvard
European, quantitative history
Peter B. Ciklamini, Assistant Professor of History, FAS-NB; Ph.D., CUNY
Comparative migration, twentieth-century Latin American social history

Members of the Graduate Faculty
Michael P. Adas, Abraham Voorhees Professor of History, FAS-NB; Ph.D., Wisconsin
Comparative history, colonialism and technology
Samuel L. Baily, Professor of History, FAS-NB; Ph.D., Pennsylvania
Comparative migration, twelfth-century Latin American social history
Norma Bewick, Professors of History, FAS-NB; Ph.D., New York
American legal history, U.S. antebellum politics and culture
Mia Elisabeth Bay, Assistant Professor of History, FAS-NB; Ph.D., Yale
American legal history, American intellectual and cultural history
Seymour Becker, Professor of History, FAS-NB; Ph.D., Harvard
European, quantitative history
Peter B. Ciklamini, Assistant Professor of History, FAS-NB; Ph.D., CUNY
Comparative migration, twentieth-century Latin American social history

Members of the Graduate Faculty
Michael P. Adas, Abraham Voorhees Professor of History, FAS-NB; Ph.D., Wisconsin
Comparative history, colonialism and technology
Samuel L. Baily, Professor of History, FAS-NB; Ph.D., Pennsylvania
Comparative migration, twelfth-century Latin American social history
Norma Bewick, Professors of History, FAS-NB; Ph.D., New York
American legal history, U.S. antebellum politics and culture
Mia Elisabeth Bay, Assistant Professor of History, FAS-NB; Ph.D., Yale
American legal history, American intellectual and cultural history
Seymour Becker, Professor of History, FAS-NB; Ph.D., Harvard
European, quantitative history
Peter B. Ciklamini, Assistant Professor of History, FAS-NB; Ph.D., CUNY
Comparative migration, twentieth-century Latin American social history

Members of the Graduate Faculty
Michael P. Adas, Abraham Voorhees Professor of History, FAS-NB; Ph.D., Wisconsin
Comparative history, colonialism and technology
Samuel L. Baily, Professor of History, FAS-NB; Ph.D., Pennsylvania
Comparative migration, twelfth-century Latin American social history
Norma Bewick, Professors of History, FAS-NB; Ph.D., New York
American legal history, U.S. antebellum politics and culture
Mia Elisabeth Bay, Assistant Professor of History, FAS-NB; Ph.D., Yale
American legal history, American intellectual and cultural history
Seymour Becker, Professor of History, FAS-NB; Ph.D., Harvard
European, quantitative history
Peter B. Ciklamini, Assistant Professor of History, FAS-NB; Ph.D., CUNY
Comparative migration, twentieth-century Latin American social history

Members of the Graduate Faculty
Michael P. Adas, Abraham Voorhees Professor of History, FAS-NB; Ph.D., Wisconsin
Comparative history, colonialism and technology
Samuel L. Baily, Professor of History, FAS-NB; Ph.D., Pennsylvania
Comparative migration, twelfth-century Latin American social history
Norma Bewick, Professors of History, FAS-NB; Ph.D., New York
American legal history, U.S. antebellum politics and culture
Mia Elisabeth Bay, Assistant Professor of History, FAS-NB; Ph.D., Yale
American legal history, American intellectual and cultural history
Seymour Becker, Professor of History, FAS-NB; Ph.D., Harvard
European, quantitative history
Peter B. Ciklamini, Assistant Professor of History, FAS-NB; Ph.D., CUNY
Comparative migration, twentieth-century Latin American social history
Programs

The graduate program in history is primarily intended for students who pursue full-time work toward a Ph.D. Requirements for a Ph.D. degree include twelve courses in history or a supporting discipline, two of which must be in a minor field, and two or more of which must be research seminars; successful completion of minor and major field examinations (generally taken in the third year); reading knowledge of two foreign languages (for students in European and non-Western history); preparation of an acceptable thesis based on original research; and successful defense of the thesis in a final examination by a faculty committee. Credits for M.A. work in history done at other institutions will likely be transferred with the permission of the Graduate School–New Brunswick.

The M.A. is offered within the framework of the doctoral program. Its requirements include eight courses in history and successful completion of an examination in the student’s major field. A thesis is not required. Students whose sole objective is the M.A. should consider applying to the M.A. program in American history on the Rutgers–Camden campus or to the M.A. program in history on the Rutgers–Newark campus. For further information about these M.A. programs, write to Department of History, Rutgers, The State University of New Jersey, Camden, NJ 08102; or Department of History, Rutgers, The State University of New Jersey, Newark, NJ 07102, respectively.

Applications for September admission should be submitted no later than January 15 by students seeking financial assistance; otherwise by February 15. Transcripts, Graduate Record Examination scores, three letters of recommendation, and a writing sample are required.

While the Ph.D. program offers work in most fields of American, European, Latin American, and East Asian history, there are special concentrations in early American history and women’s history. The department is the center for the Thomas A. Edison papers project, the IEEE History Center, the Medieval and Early Modern Data Bank project, and the Elizabeth Cary Stanton and Susan B. Anthony papers. The department has particular strength in social, political, and cultural history, in African-American history, and in comparative and world history.

A full description of the program may be found in the brochure Graduate Study in History, available from the department. This brochure also offers information about fellowships (which pay $10,000, plus tuition remission), teaching assistantships, and other forms of financial aid.

Graduate Courses

Courses in Historiography, Theory, and Practice

16:510:501. COLLOQUIUM: HISTORY OF HISTORICAL WRITING (3)
Kelley, Morrison, Reinhart
Exploration of the evolution of historical writing, in varying cultural and chronological contexts, but excluding contemporary historiographic theory and practice.

16:510:503. CONTEMPORARY HISTORIOGRAPHY—THEORY AND PRACTICE (3)
Lears, Livingston, Slaughter, Yans-McLaughlin
Impact of social and literary theories on the work of recent prominent historians, including assessments of the utility and testability of such theories in contemporary historical practice.

16:510:505. STATISTICAL METHODS IN HISTORY (3)
Bell
Analysis of secondary literature employing quantitative methods, design, implementation, and presentation of an original historical research problem involving statistical techniques and computer applications.

16:510:507. HISTORICAL EDITING (3)
Jenkins

Courses with Transnational, Comparative, or Interdisciplinary Themes

16:510:511. COLLOQUIUM IN COMPARATIVE HISTORY (3)
Adas, Baily, Bell, Howard

16:510:513. COLLOQUIUM IN CULTURAL HISTORY (3)
Lears, Matsuda

16:510:515. COLLOQUIUM IN DIPLOMATIC HISTORY (3)
Foglesong, Gardner, Kimball

16:510:517. COLLOQUIUM IN ECONOMIC HISTORY (3)
Livingston, Triner-Besosa

Survey of the principal problems and methodologies in economic history.

16:510:519. COLLOQUIUM IN INTELLECTUAL HISTORY (3)
Lears, Yans-McLaughlin
An investigation of consciousness—past and present—through the writings of philosophers, moralists, and cultural critics from the seventeenth through the twentieth centuries.

16:510:521. COLLOQUIUM IN LABOR HISTORY (3)
Kesssler-Harris, Livingston

16:510:523. COLLOQUIUM IN MIGRATION, COMMUNITY, AND IDENTITY (3)
Baily, Whalen, Yans-McLaughlin
Immigration, community, and identity formations among immigrants. Dynamics of assimilation and its opposites in selected cultural and chronological contexts.

16:510:525. COLLOQUIUM IN POLITICAL HISTORY (3)
Basch, O’Neill, Oshinsky

16:510:527. TOPICS IN THE HISTORY OF RELIGION (3)
Lears, Mack, Morrison, Reinhart
Selected issues and relevant historiography in the history of religion. Specific cultural and historical context varies according to the interests of the instructors.

16:510:529. TOPICS IN THE HISTORY OF SEXUALITY (3)
Lears, Ko, Reinhart, Scott, Smith
Problems and historiography on the history of sexuality in selected historical and cultural contexts.

16:510:531. COLLOQUIUM IN SOCIAL HISTORY (3)
Gillis, Greven, Reed
Introduction to European and American social history, with emphasis on historical demography, the family, class structure and social stratification, protest, and culture.

16:510:533. TOPICS IN SOCIAL HISTORY (3,3)
Gillis, Greven, Reed
The early nineteenth- through early twentieth-centuries, covering key themes of political, military, social, and cultural development.

Directed research in projects related to a specific theme using readings designed to promote an understanding of the relevant theoretical and analytical literature.

Courses in American History

Introduction to the problems and concepts of women's history.

Courses in European History

Introduction to the major problems and readings in the field of medieval history. Designed to prepare students to become competent and informed teachers in their major field.

Courses in American History

Introductory survey of history and historiography. America from precontact Indian societies to the Great Awakening. European and African background to colonization; colonial society and politics.

Courses in American History

Introductory survey of history and historiography. America from the early nineteenth- through early twentieth-centuries, covering key themes of political, military, social, and cultural development.

Courses in American History

Introductory survey of history and historiography. America from the early twentieth century to the present, covering key themes of political, military, social, and cultural development.

Courses in American History

Introductory survey of history and historiography. America from the early twentieth-century to the present, covering key themes of political, military, social, and cultural development.

Courses in American History

Introductory survey of history and historiography. America from the early nineteenth-century to the present, covering key themes of political, military, social, and cultural development.

Courses in American History

Introductory survey of history and historiography. America from the early twentieth-century to the present, covering key themes of political, military, social, and cultural development.

Courses in American History

Introductory survey of history and historiography. America from the early twentieth-century to the present, covering key themes of political, military, social, and cultural development.

Courses in American History

Introductory survey of history and historiography. America from the early twentieth-century to the present, covering key themes of political, military, social, and cultural development.

Courses in European History

Introductory survey of history and historiography. America from precontact Indian societies to the Great Awakening. European and African background to colonization; colonial society and politics.

Courses in European History

Introductory survey of history and historiography. America from precontact Indian societies to the Great Awakening. European and African background to colonization; colonial society and politics.

Courses in European History

Introductory survey of history and historiography. America from precontact Indian societies to the Great Awakening. European and African background to colonization; colonial society and politics.

Courses in European History

Introductory survey of history and historiography. America from precontact Indian societies to the Great Awakening. European and African background to colonization; colonial society and politics.

Courses in European History

Introductory survey of history and historiography. America from precontact Indian societies to the Great Awakening. European and African background to colonization; colonial society and politics.

Courses in European History

Introductory survey of history and historiography. America from precontact Indian societies to the Great Awakening. European and African background to colonization; colonial society and politics.

Courses in European History

Introductory survey of history and historiography. America from precontact Indian societies to the Great Awakening. European and African background to colonization; colonial society and politics.

Courses in European History

Introductory survey of history and historiography. America from precontact Indian societies to the Great Awakening. European and African background to colonization; colonial society and politics.

Courses in European History

Introductory survey of history and historiography. America from precontact Indian societies to the Great Awakening. European and African background to colonization; colonial society and politics.

Courses in European History

Introductory survey of history and historiography. America from precontact Indian societies to the Great Awakening. European and African background to colonization; colonial society and politics.

Courses in European History

Introductory survey of history and historiography. America from precontact Indian societies to the Great Awakening. European and African background to colonization; colonial society and politics.

Courses in European History

Introductory survey of history and historiography. America from precontact Indian societies to the Great Awakening. European and African background to colonization; colonial society and politics.

Courses in European History

Introductory survey of history and historiography. America from precontact Indian societies to the Great Awakening. European and African background to colonization; colonial society and politics.

Courses in European History

Introductory survey of history and historiography. America from precontact Indian societies to the Great Awakening. European and African background to colonization; colonial society and politics.

Courses in European History

Introductory survey of history and historiography. America from precontact Indian societies to the Great Awakening. European and African background to colonization; colonial society and politics.

Courses in European History

Introductory survey of history and historiography. America from precontact Indian societies to the Great Awakening. European and African background to colonization; colonial society and politics.

Courses in European History

Introductory survey of history and historiography. America from precontact Indian societies to the Great Awakening. European and African background to colonization; colonial society and politics.

Courses in European History

Introductory survey of history and historiography. America from precontact Indian societies to the Great Awakening. European and African background to colonization; colonial society and politics.

Courses in European History

Introductory survey of history and historiography. America from precontact Indian societies to the Great Awakening. European and African background to colonization; colonial society and politics.

Courses in European History

Introductory survey of history and historiography. America from precontact Indian societies to the Great Awakening. European and African background to colonization; colonial society and politics.

Courses in European History

Introductory survey of history and historiography. America from precontact Indian societies to the Great Awakening. European and African background to colonization; colonial society and politics.

Courses in European History

Introductory survey of history and historiography. America from precontact Indian societies to the Great Awakening. European and African background to colonization; colonial society and politics.

Courses in European History

Introductory survey of history and historiography. America from precontact Indian societies to the Great Awakening. European and African background to colonization; colonial society and politics.

Courses in European History

Introductory survey of history and historiography. America from precontact Indian societies to the Great Awakening. European and African background to colonization; colonial society and politics.

Courses in European History

Introductory survey of history and historiography. America from precontact Indian societies to the Great Awakening. European and African background to colonization; colonial society and politics.

Courses in European History

Introductory survey of history and historiography. America from precontact Indian societies to the Great Awakening. European and African background to colonization; colonial society and politics.

Courses in European History

Introductory survey of history and historiography. America from precontact Indian societies to the Great Awakening. European and African background to colonization; colonial society and politics.

Courses in European History

Introductory survey of history and historiography. America from precontact Indian societies to the Great Awakening. European and African background to colonization; colonial society and politics.

Courses in European History

Introductory survey of history and historiography. America from precontact Indian societies to the Great Awakening. European and African background to colonization; colonial society and politics.

Courses in European History

Introductory survey of history and historiography. America from precontact Indian societies to the Great Awakening. European and African background to colonization; colonial society and politics.

Courses in European History

Introductory survey of history and historiography. America from precontact Indian societies to the Great Awakening. European and African background to colonization; colonial society and politics.

Courses in European History

Introductory survey of history and historiography. America from precontact Indian societies to the Great Awakening. European and African background to colonization; colonial society and politics.

Courses in European History

Introductory survey of history and historiography. America from precontact Indian societies to the Great Awakening. European and African background to colonization; colonial society and politics.

Courses in European History

Introductory survey of history and historiography. America from precontact Indian societies to the Great Awakening. European and African background to colonization; colonial society and politics.

Courses in European History

Introductory survey of history and historiography. America from precontact Indian societies to the Great Awakening. European and African background to colonization; colonial society and politics.

Courses in European History

Introductory survey of history and historiography. America from precontact Indian societies to the Great Awakening. European and African background to colonization; colonial society and politics.

Courses in European History

Introductory survey of history and historiography. America from precontact Indian societies to the Great Awakening. European and African background to colonization; colonial society and politics.

Courses in European History

Introductory survey of history and historiography. America from precontact Indian societies to the Great Awakening. European and African background to colonization; colonial society and politics.

Courses in European History

Introductory survey of history and historiography. America from precontact Indian societies to the Great Awakening. European and African background to colonization; colonial society and politics.

Courses in European History

Introductory survey of history and historiography. America from precontact Indian societies to the Great Awakening. European and African background to colonization; colonial society and politics.

Courses in European History

Introductory survey of history and historiography. America from precontact Indian societies to the Great Awakening. European and African background to colonization; colonial society and politics.
INDUSTRIAL AND SYSTEMS ENGINEERING 540

Degree Program Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Professor Susan L. Albin,
CoRE Building, Busch Campus (732/445-3654)
Email: salbin@rci.rutgers.edu
Web Site: http://www.engr.rutgers.edu/~ie

Members of the Graduate Faculty
Susan L. Albin, Professor of Industrial and Systems Engineering, SE;
D.E.Sc., Columbia
Quality engineering; stochastic models
Tayfur Altıkı, Professor of Industrial and Systems Engineering, SE; Ph.D.,
North Carolina State
Production lines; production/inventory systems; queueing networks; simulation
Melike Baykal-Gürsoy, Associate Professor of Industrial and Systems
Engineering, SE; Ph.D., Pennsylvania
Stochastic processes; stochastic optimization and control; applications to
manufacturing and telecommunications
Thomas O. Boucher, Professor of Industrial and Systems Engineering, SE;
Ph.D., Columbia
Production analysis and control; automation and manufacturing systems;
management and engineering economics
David W. Cott, Assistant Professor of Industrial and Systems Engineering, SE;
Ph.D., Pittsburgh
Reliability engineering; optimization
Elsayed A. Elsayed, Professor of Industrial and Systems Engineering, SE;
Ph.D., Windsor
Production analysis and control; automation and manufacturing systems; quality
and reliability engineering
Mohsen A. Jafari, Associate Professor of Industrial Engineering, SE;
Ph.D., Syracuse
Manufacturing systems controller design and analysis; simulation; quality control
James T. Luxhoj, Associate Professor of Industrial and Systems Engineering, SE;
Ph.D., Virginia Polytechnic Institute and State University
Maintenance, reliability, and systems safety; production economics; decision
support systems
Hau Nguyen, Associate Professor of Industrial and Systems Engineering, SE;
Ph.D., SUNY (Buffalo)
Reliability theory and applications; software reliability; applied probability
Fred Roberts, Professor of Mathematics, FAS-NB; Ph.D., Stanford
Discrete mathematical models; graph theory; decision making;
measurement theory
Shansheng Wang, Assistant Professor of Industrial and Systems Engineering, SE;
Ph.D., California (Berkeley)
Lasers, micromachining; manufacturing processes; micromanufacturing

Programs
The Industrial and Systems Engineering program’s mission is
to provide a high-quality education to graduate students and to
conduct research, often in collaboration with industry and other
disciplines, which advances the state of knowledge and practice in
the field of industrial engineering.

The program aims to ensure that each student is firmly rooted
in scientific principles, while knowledgeable and confident to
implement these principles to solve relevant engineering problems
in industry and the public sector.

Specialized training is provided to prepare doctoral students to
become capable, independent researchers and leaders in both the
academic and industrial communities.

The department’s focus is in manufacturing/production engi-
neering and quality/reliability engineering, areas of critical
importance to national competitiveness and productivity. Both
the curriculum and laboratories support these research foci.

In the manufacturing/production engineering area, research is
conducted at both the systems and machine levels. Faculty study
problems and implement solutions in production planning and
control, manufacturing process validation, computer integrated
manufacturing, automation, real-time machine control, and manu-
facturing processes.

In the quality/reliability engineering area, research is conducted
on problems in online process control, off-line quality improve-
ments, component and systems reliability, and data acquisition
and analysis.
Industrial and Systems Engineering offers programs leading to the Master of Science and Doctor of Philosophy degrees. The Ph.D. degree requires a minimum of 48 credits beyond the B.S. degree in course work and 24 credits in research. Students must complete qualifying examinations, one year of full-time residence, and an original research dissertation.

The M.S. degree requires a minimum of 30 course credits beyond the B.S. degree. Students may choose a thesis option. The degree requires a comprehensive examination in core subjects. At least 21 of the 30 credits must be taken in the Industrial and Systems Engineering program. The remaining credits may be taken in other graduate programs, including statistics, mathematics, mechanical and electrical engineering, computer science, economics, and operations research.

The program offers three options for the M.S. degree. The Industrial and Systems Engineering option offers the most flexibility, providing students with knowledge in the major areas of the discipline, including stochastic and deterministic models, and in application areas such as production, quality, reliability, manufacturing, transportation, and aviation, as well as a range of skills, including simulation and statistical analysis.

The Quality and Reliability Engineering option, offered in cooperation with the statistics graduate program, includes courses in process control, design of experiments, and quality management and reliability. This option is enhanced greatly by the Quality and Reliability Engineering Center, a National Science Foundation industry/university collaboration that is housed within the Industrial and Systems Engineering program.

The Manufacturing Systems Engineering option includes courses in CAD/CAM, robotics, manufacturing processes, automation, control, and an independent laboratory project. A special feature of this option is a required course in which each student performs an independent study in the laboratory.

Extensive research facilities are available for student use in manufacturing automation, manufacturing processing, microcomputer/multimedia, facilities design, quality and reliability engineering, and microprocessors. Specialized equipment includes robotics, CNC machines, CAD facilities, microcomputers, quality and reliability engineering metrology and life testing equipment, temperature chambers, vibration unit, scanning electron microscope, metal processing equipment, and materials handling. Computing facilities include the SUN workstations and a wide range of microcomputers.

To be admitted to the program, students must have completed basic industrial engineering courses including four terms of calculus; a high-level computer language; and courses in deterministic methods, probability, engineering economics, and production control. Students who are missing prerequisite courses may be admitted to the graduate program with the requirement that they take the prerequisites for no credit within their first year.

Applicants are urged to contact the graduate director for an application and an applicant’s handbook that contains detailed information about admission requirements, financial support, degree requirements, courses, faculty research, and facilities.

Graduate Courses

15:540:510. DETERMINISTIC MODELS IN INDUSTRIAL ENGINEERING (3)
Altiok, Baykal-Gürsoy, Coit. Prerequisite: Introduction to linear programming. Deterministic models of operations research. Linear programming, the simplex method, duality, sensitivity analysis, transportation assignment, minimum cost network flow problems.

15:540:515. STOCHASTIC MODELS IN INDUSTRIAL ENGINEERING (3)
Albin, Altiok, Baykal-Gürsoy, Coit, Jafari. Prerequisite: Calculus-based course in probability.

Stochastic models of operations research applied to queueing, reliability, inventory, and other problems. Markov chains, Markov processes, renewal processes.

16:540:520. DESIGN OF PHYSICAL DISTRIBUTION SYSTEMS (3)
Boucher. Prerequisite: Probability and linear programming. Methods and techniques of analysis applied to the design of inventory and distribution systems. Topics include sales forecasting, single- and multi-echelon inventory and distribution systems, and routing and scheduling of product delivery.

16:540:525. APPLIED QUEUEING THEORY (3)
Albin, Altiok, Baykal-Gürsoy. Prerequisite: 16:540:515. Markovian and non-Markovian queueing models; networks of queues; numerical solutions, approximations; statistical estimation of system parameters; cost models; emphasis on queueing applications in manufacturing.

16:540:530. FORECASTING AND TIME SERIES ANALYSIS (3)
Baykal-Gürsoy, Luxhoj. Prerequisites: Advanced calculus, statistics. Alternative time series models for purposes of prediction. Smoothing techniques, probability and regression analysis, and econometric analysis.

16:540:535. NETWORK APPLICATIONS IN INDUSTRIAL ENGINEERING (3)
Altiok. Prerequisite: 16:540:510 or 14:540:311. Flow problems in networks. Topics include shortest-route problems, critical path, and graph theory.

16:540:540. COMPUTATIONAL METHODS FOR INDUSTRIAL SYSTEMS (3)
Altiok, Jafari. Prerequisites: 16:540:510, 515. Computational methods in modeling, planning, and control of production systems, numerical methods, artificial intelligence techniques, exact and heuristic search methods, and computational strategies.

16:540:545. APPLICATION OF HUMAN FACTORS TO DECISION SYSTEMS ENGINEERING (3)
Introduction of human factors to engineering techniques. Decision-aiding concepts considered include prompting, expert systems, and artificial intelligence. Use of psychological scaling techniques in the development of a knowledge base for expert systems. Basic concepts in decision theory used in an analysis of decision elements of the FAA Air Traffic Control System and in the design of a panel or a keyboard.

16:540:550. SPECIAL PROBLEMS IN INDUSTRIAL ENGINEERING (BA)
Prerequisite: Permission of instructor. Special investigations in selected areas of industrial engineering.

16:540:552. MANUFACTURING PROJECT (3)
Boucher, Elsayed, Jafari, Wang. Prerequisite: Permission of instructor. Understanding of the state of technology in discrete, batch, and continuous manufacturing; hands-on experience.

16:540:555. SIMULATION OF PRODUCTION SYSTEMS (3)
Altiok, Elsayed, Jafari, Prerequisites: 14:540:313; 01:640:477 or 01:960:379; 01:640:481 or 01:960:381, 382, or equivalent; and FORTRAN or C. Discrete event simulation applied to problems in manufacturing, SIMAN/ARENA simulation tools. Estimation of manufacturing systems performance measures, analysis of production system operating characteristics, comparison of alternative systems, and validation of approximate analytic models. Case studies.

16:540:560. PRODUCTION ANALYSIS (3)
Boucher, Elsayed, Luxhoj. Prerequisite: Undergraduate production planning and control. Analysis of production engineering, with emphasis on planning and control of manufacturing and service systems.

16:540:565. FACILITIES PLANNING AND DESIGN (3)
Coit, Luxhoj. Prerequisite: Deterministic models in operations research. Operations research methodologies applied to facilities planning and design problems. Facilities layout and location problems, assembly line balancing, conveyor design, and automated warehousing problems.
16:540:568. AUTOMATION AND COMPUTER INTEGRATED MANUFACTURING I (3)
Boucher. Prerequisite: Introductory course in computer control or permission of instructor.
Design of automated and computer integrated manufacturing systems using programmable automation. Modeling of discrete and continuous control systems, implementation of programmable controllers and factory information systems.

16:540:570. APPLICATIONS OF ROBOTICS IN MANUFACTURING SYSTEMS (3)
Boucher, Jafari, Wang. Prerequisites: 14:540:343, 453, or equivalent.
Integration of robots in manufacturing systems, design of robot work stations, materials handling, and interactions among manufacturing cells. Machine vision with applications in manufacturing.

16:540:572. MANUFACTURING PROCESSES AND CONTROL (3)
Wang. Prerequisite: Basic knowledge of manufacturing processes.
Overview of manufacturing processes, machine tools and machining operations, mechanism of metal cutting and tool wear, control and optimization of machining process, sensor-based and other advanced monitoring and control technology, manufacturing automation.

16:540:573. ADVANCED MANUFACTURING PROCESSES (3)
Wang, Prerequisite: 14:540:303, or permission of instructor.

16:540:575. ADVANCED ENGINEERING ECONOMICS I (3)
Boucher, Luxhoj. Prerequisite: Introductory course in engineering economics or equivalent.
Economic decision models for engineers involving allocation and scheduling of resources; evaluation of factual and strategic alternatives; advanced risk and uncertainty analysis; weighing and evaluating nonmonetary factors.

16:540:580. QUALITY MANAGEMENT (3)
Albin
Quality management philosophies, Deming, Juran; quality planning, control, and improvement; quality systems, management organizations for quality assurance. Role of operations research.

16:540:585. SYSTEM RELIABILITY ENGINEERING I (3)
Cost, Elsayed. Prerequisite: Advanced probability or 16:540:515.
Methods of measuring the reliability and effectiveness of complex engineering systems, including optimization theory, preventive maintenance models, and statistical analysis.

16:540:590. DESIGN OF ENGINEERING EXPERIMENTS (3)
Albin, Boucher. Prerequisite: Statistics.

16:540:595. SOFTWARE RELIABILITY I (3)
Pham. Prerequisite: 16:540:515 or 16:540:580.
Software reliability issues; software errors, faults, and failures; software design for reliability; data collection; formal methods for reliability; software fault tolerance; modeling growth in software reliability; cost modeling and estimation; and software quality management.

16:540:615. (S) NONLINEAR PROGRAMMING (3)
Baykal-Gürsoy. Prerequisite: 14:540:311 or equivalent.
Some methods and applications of nonlinear programming, approximate methods; Kuhn-Tucker theory; quadratic programming; integer linear programming; gradient methods; stochastic programming; computer solutions.

16:540:650. DISCRETE EVENT DYNAMIC SYSTEMS (3)
Jafari. Prerequisite: 16:540:515.
Supervisory control of discrete event dynamic systems, process monitoring, Petri nets, functional analysis, performance analysis, control specification, control verification and validation.

16:540:655. PERFORMANCE ANALYSIS OF MANUFACTURING SYSTEMS (3)
Altiok. Prerequisites: 16:540:515, 560, or equivalent.
Modeling of manufacturing systems such as flow shops, job shops, transfer lines, and production/inventory systems. Topics include problems of failures and repairs, the role of buffer inventories, capacity allocation, decomposition, approximations, pull-type systems, and the Kanban concept.

16:540:660. INVENTORY CONTROL (3)
Altiok, Baykal-Gürsoy. Prerequisites: 16:540:515, 525.
Modeling of pure inventory systems with stochastic demand and lead times. Characterization of optimal control policies and analysis of simple as well as multi-item systems with simple and multiple echelons. Computational issues emphasized.

16:540:665. THEORY OF SCHEDULING (3)
Elsayed, Luxhoj. Prerequisite: Production planning and control.
Advanced topics in sequencing and scheduling for manufacturing and service systems; flow shop, job shop—static and dynamic models; multiprocessor parallel machining; preempt-resume algorithms; optimal due-date problems; probabilistic sequencing; simulation and applied operations research models.

16:540:668. AUTOMATION AND COMPUTER INTEGRATED MANUFACTURING II (3)
Boucher, Jafari. Prerequisite: 16:540:568 or permission of instructor.
Design of automated and computer-integrated manufacturing using programmable automation. Modeling, specification, and implementation of factory information systems. Reference models and control architecture for discrete parts manufacturing, batch process manufacturing, and semiconductor manufacturing industries.

16:540:673. LASER-BASED MICROMANUFACTURING (3)
Wang. Prerequisite: Permission of instructor.

16:540:675. ADVANCED ENGINEERING ECONOMICS II (3)
Boucher, Luxhoj. Prerequisite: 16:540:575 or permission of instructor.
Focuses on engineering economic decision making. Application of analytical techniques to the evaluation of industrial projects, and the relationship between the economics of technical choice and industrial productivity.

16:540:680. PRODUCTION AND QUALITY ENGINEERING (3)
Albin, Elsayed. Prerequisites: Production planning and control; operations research.
Integration of research in quality and production. Topics include models that relate quality and inventory policies, scheduling, set-up costs, lot sizing, production cycles, scrap, rework, repair, location of inspection stations, process control, and electronics testing and manufacturing.

16:540:682. PROCESS MODELING AND CONTROL (3)
Baykal-Gürsoy. Prerequisite: 16:540:515.
Stationary (ARMA), nonstationary (ARIMA) time series models for process control, various automatic process control (APC) strategies, statistical process control (SPC) methods, integration of APC and SPC.
16:540:685. SYSTEM RELIABILITY ENGINEERING II (3)
Coit, Elsayed, Pham. Prerequisite: 16:540:585.
Advanced topics in reliability theory and engineering; reliability optimization; theory of preventive maintenance, replacement, and inspection; accelerated life reliability models; renewal processes; and maximum likelihood estimation.

16:540:690. COMPONENT RELIABILITY (3)
Baykal-Gürsoy, Cot, Elsayed, Pham. Prerequisite: 16:540:585.
Emphasizes reliability estimation of components stressed through different types of stresses such as thermal, electric field, humidity, vibration, and fatigue. Burn-in testing, reliability estimation from degradation data, and relationships between accelerated stresses and normal operating conditions.

16:540:691,692. SEMINAR IN INDUSTRIAL AND SYSTEMS ENGINEERING (0,0)
Lectures by graduate students, faculty, and invited speakers on current research topics in industrial and systems engineering.

16:540:694. ADVANCED TOPICS IN INDUSTRIAL ENGINEERING (3)
Prerequisite: Permission of instructor. Seminar for doctoral students in a selected area of industrial engineering. Based on current literature.

16:540:701,702. RESEARCH IN INDUSTRIAL ENGINEERING (BA,BA)

INDUSTRIAL RELATIONS AND HUMAN RESOURCES 545
Degree Programs Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Professor Susan Jackson, Janice Levin Building, Livingston Campus (732/445-5447)

Members of the Graduate Faculty
John R. Aiello, Professor of Psychology, FAS-NB; Ph.D., Michigan State
Director of Graduate Program: Professor Susan Jackson, Degree Programs Offered: Master of Science, Doctor of Philosophy
John Burton, Professor of Industrial Relations and Human Resources and Dean, Ph.D., Columbia

John R. Aiello, Professor of Psychology, FAS-NB; Ph.D., Michigan State
Industrial and organizational psychology; environmental stress; nonverbal communication

Clayton P. Alderfer, Professor of Psychology, GSAPP; Ph.D., Yale
Organizational behavior and organizational change

Richard W. Beatty, Professor of Human Resource Management, SMLR; Ph.D., Washington
Human resource systems and planning; performance appraisal; compensation

David Bensman, Associate Professor of Labor Studies and Employment Relations, SMLR; Ph.D., Columbia
Labor history; contemporary collective bargaining issues; schools and education

Joseph Blasi, Professor of Labor-Management Relations, SMLR; Ph.D., Harvard
Employment law; employee participation in management and governance

John Burton, Professor of Industrial Relations and Human Resources and Dean, SMLR; Ph.D., Michigan
Workers compensation; public sector collective bargaining

Cary Cherniss, Professor of Psychology, GSAPP; Ph.D., Yale
Job stress and burnout; careers; organizational change; supervision

Sue Cobbie, Associate Professor of Labor Studies and Employment Relations, SMLR; Ph.D., Stanford
Women and work; labor history; union leadership

Steven M. Director, Professor of Human Resource Management, SMLR; Ph.D., Northwestern
Human resource policy, planning, and evaluation; financial analysis of human resources and labor relations decisions

Adrienne E. Eaton, Associate Professor of Labor and Employment Relations, SMLR; Ph.D., Wisconsin
Collective bargaining; worker and union participation in management, union organizing

Charles H. Fay, Associate Professor of Human Resource Management, SMLR; Ph.D., Washington
Compensation, performance appraisal, human resource information systems

Charles Heckscher, Professor of Labor Studies and Employment Relations, SMLR; Ph.D., Harvard
Workplace transformation; new forms of employment representation

Mark Huselid, Associate Professor of Human Resource Management, SMLR; Ph.D., SUNY (Buffalo)
Strategic human resource management

Susan E. Jackson, Professor of Human Resource Management, SMLR; Ph.D., California (Berkeley)
Strategic human resource management; work teams; work force diversity; stress and burnout

Jeffrey H. Keele, Associate Professor of Industrial Relations and Human Resources, SMLR; Ph.D., Cornell
Work restructuring and technology; collective bargaining; telecommunications; labor relations

Mark R. Kilgourn, Professor of Economics, FAS-NB; D.Phil., Oxford
Labor and human resources; discrimination

Douglas L. Kruse, Associate Professor of Industrial Relations and Human Resources, SMLR; Ph.D., Harvard
Profit-sharing; employee ownership; disability and employment

Barbara A. Lee, Professor of Human Resource Management, SMLR; Ph.D., Ohio State
Employment law; employer relations

Charles A. Nanny, Professor of Human Resource Management, SMLR; Ph.D., Rutgers
Social organization; training policy; general management

Randall S. Schuler, Professor of Human Resource Management, SMLR; Ph.D., Michigan State
Strategic and international human resource management

Carl Edward Van Horn, Professor of Public Policy, EJBSPPP; Ph.D., Ohio State
American political institutions, public policy

Paulo Voos, Professor of Labor Studies and Employment Relations, SMLR; Ph.D., Harvard
Collective bargaining; labor markets

John D. Worrall, Professor of Economics, FAS-C; Ph.D., Rutgers
Worker's compensation; property-casualty insurance; labor economics

Associate Members of the Graduate Faculty
Paula Caligiuri, Assistant Professor of Human Resource Management, SMLR; Ph.D., Pennsylvania State International human resources; selection

Stan M. Gull, Assistant Professor of Human Resource Management, SMLR; Ph.D., Michigan State
Leadership and team effectiveness; training and development; multilevel theory and analysis

Marlene Kim, Assistant Professor of Labor Studies and Employment Relations, SMLR; Ph.D., California (Berkeley)
Compensation; the working poor; discrimination

Claudia G. Meer, Associate Extension Specialist, SMLR; Ph.D., Rutgers
Education in industry; training and development; adult learning

Jean Phillips, Assistant Professor of Human Resource Management, SMLR; Ph.D., Michigan State
Leadership; teams; learning organizations; job search/research

Saul Rubinstein, Assistant Professor of Labor Studies and Employment Relations, SMLR; Ph.D., Massachusetts Institute of Technology
Work systems; organizational transformation

Lisa Schur, Assistant Professor of Labor Studies and Employment Relations, SMLR; J.D., Northwestern; Ph.D., California (Berkeley)
Labor law; employment law; work and disability

James Sesil, Assistant Professor of Human Resource Management, SMLR; Ph.D., London School of Economics
Strategic human resource management; pay systems

Ryan Smith, Assistant Professor of Labor Studies and Employment Relations, SMLR; Ph.D., California (Los Angeles)
Social stratification; workplace diversity; race and ethnic relations

Kirsten Weyer, Assistant Professor of Labor Studies and Employment Relations, SMLR; Ph.D., Massachusetts Institute of Technology
Comparative labor relations; workplace governance

Program
The Ph.D. in Industrial Relations and Human Resources is a full-time, interdisciplinary program committed to developing scholars who are capable of studying the dynamic and changing conditions of employment and work.

The program prepares students to conduct research that contributes to the advancement of knowledge and practice in the fields of industrial relations and human resource management. In addition to studying the foundational theories in the fields of industrial relations and human resource management, students design and conduct rigorous research, analyze and report their findings, and develop the skills needed to disseminate their findings through scholarly publications. Students are expected to be actively involved in research throughout the entire time they are enrolled in the program.

Required course work for the program includes seven courses to fulfill interdisciplinary distribution requirements, at least three statistics and research methods courses, two advanced seminars, and
four electives. During their second year in the program, students complete an empirical research project. After completing their master’s thesis and required course work, students take a qualifying examination tailored to the research interest of the student. Upon passing the qualifying examination, students are awarded the M.S. degree and admitted to Ph.D. candidacy. Students complete a dissertation during their fourth and fifth years.

Graduate Courses

16:545:601,602. INDEPENDENT STUDY IN INDUSTRIAL RELATIONS AND HUMAN RESOURCES (3,3)
Directed study under the supervision of a faculty member.

16:545:610. PROSEMINAR IN INDUSTRIAL RELATIONS AND HUMAN RESOURCES (1)
Research, theoretical, or pedagogical presentation by SMLR faculty, outside scholars, and advanced Ph.D. students. Students must enroll for eight terms.

16:545:611. SEMINAR IN INDUSTRIAL RELATIONS: A SURVEY OF THE SCHOLARLY LITERATURE (3)
Industrial relations systems theory. Analysis of managerial capitalism and the diffusion of systematic management techniques; the development of modern craft, industrial, and professional labor organizations; and the emergence of the regulatory state and the role of law and specialized government agencies in regulating industrial conflict. Conceptual framework to assess bargaining power, negotiations processes, grievance procedures, and conflict resolution.

16:545:612. SEMINAR IN HUMAN RESOURCES: A SURVEY OF THE SCHOLARLY LITERATURE (3)
Industrial relations systems theory. Analysis of managerial capitalism and the diffusion of systematic management techniques; the development of modern craft, industrial, and professional labor organizations; and the emergence of the regulatory state and the role of law and specialized government agencies in regulating industrial conflict. Conceptual framework to assess bargaining power, negotiations processes, grievance procedures, and conflict resolution.

16:545:613. RESEARCH METHODS FOR INDUSTRIAL RELATIONS AND HUMAN RESOURCES (3)
Prerequisite: One Ph.D.-level statistics or measurement course. Problems of research design, data collection, data management, and the selection of analytical techniques.

16:545:614. MULTIVARIATE ANALYSIS FOR INDUSTRIAL RELATIONS AND HUMAN RESOURCES (3)
Prerequisites: Ph.D.-level course in regression, and one additional Ph.D.-level measurement or statistics course. Multiple regression, analysis of variance, analysis of covariance, factor analysis, canonical correlation, and cluster analysis.

16:545:615. ECONOMICS FOR INDUSTRIAL RELATIONS AND HUMAN RESOURCES (3)
Alternative theories of the firm and labor markets explored, with focus on competing hypotheses and research evidence about wage and benefit determination, internal labor markets, discrimination, unions, and employee incentive systems.

16:545:701,702. RESEARCH IN INDUSTRIAL RELATIONS AND HUMAN RESOURCES (3,3)
Dissertation study.

INTERDISCIPLINARY PH.D. PROGRAM 554

A student who seeks the Ph.D. in an area requiring the services of two or more programs should consult interested faculty members and then submit a formal proposal to the Dean of the Graduate School–New Brunswick, outlining a program of study. Courses, examinations, the dissertation topic, and the names of faculty members who have consented to serve as the student’s committee must have the approval of the directors of the Ph.D. programs involved. Once approved by the dean, the student will be transferred into the interdisciplinary Ph.D. program code (554) for registration purposes. A member of the Graduate School–New Brunswick academic staff serves as graduate director of this program.

Contact the Office of the Graduate School–New Brunswick, 25 Bishop Place, New Brunswick, NJ 08903, for further information, or call 732/932-7275.

ITALIAN 560

Degree Programs Offered: Master of Arts, Master of Arts for Teachers, Doctor of Philosophy

Director of Graduate Program: Professor Laura S. White, 84 College Avenue, College Avenue Campus (732/932-7536)

Members of the Graduate Faculty

Andrea Baldi, Assistant Professor of Italian, FAS-NB; Dott. in Lettere, Firenze; Ph.D., California (Los Angeles)

Sixteenth- and seventeenth-century literature

Franco Ferrucci, Professor of Italian, FAS-NB; Dott. in Lettere, Pavia

Dante studies; sixteenth- and seventeenth-century literature

Guido A. Guarino, Professor Emeritus of Italian, FAS-NB; Ph.D., Columbia

Humanism and Renaissance literature

Umberto Mariani, Professor of Italian, FAS-NB; Dott. in Lettere, Pavia

Nineteenth- and twentieth-century literature

David R. Marsh, Professor of Italian, FAS-NB; Ph.D., Harvard

Influence of classical literature in Renaissance Italy from Petrarch to Tasso

Alessandro Vettori, Assistant Professor of Italian, FAS-NB; Dott. in Lettere, Florence; Ph.D., Yale

Thirteenth-century literature; Dante and Francesco literature

Laura S. White, Chairperson of Department and Professor of Italian, FAS-NB; Dott. in Lettere, Trieste; Ph.D., California (Los Angeles)

Seventeenth- and eighteenth-century literature; Renaissance theater; the epic; early medieval literature

Programs

The graduate faculty in Italian offers three degree programs. The M.A.T. program is intended primarily for those who are teaching, or intend to teach, at the secondary school level. The program emphasizes language, literature, and civilization. The M.A. and Ph.D. programs deal with all aspects of Italian literature and literary criticism. All three programs are open to candidates with academic records of distinction and other evidence of scholarly accomplishment. The Master of Philosophy degree is available to doctoral candidates in Italian who, in addition to meeting the other M.Phil. requirements of the Graduate School–New Brunswick, achieve grades of A in at least nine term courses.

Candidates for the M.A.T. must satisfactorily complete ten term courses (30 credits) and take an examination based on a reading list. Master of Arts candidates also take ten term courses (30 credits) and must pass a comprehensive examination based on a reading list. Six of the 30 credits required for the M.A. may be devoted to a research problem if the candidate elects to write a thesis. Doctoral candidates are usually required to complete 48 credits of course work beyond the bachelor’s degree, a minimum of 24 credits of research towards the dissertation, and residence for one year; credit for graduate work taken at other institutions may be accepted in partial fulfillment of the course requirement, but in no case may the doctoral candidate do less than a full year of course work at Rutgers. Doctoral candidates must demonstrate a reading knowledge of German, Greek, or Latin and of a second Romance language. The language requirement must be satisfied before the candidate is admitted to the qualifying examination. This examination is based on a reading list covering all periods of Italian
literature. Once a student fulfills the course requirements, including the residence requirement, and passes the qualifying examination, he or she is admitted to candidacy for the Ph.D. degree and may then proceed with the preparation of a dissertation.

Reading lists on which the examinations are based, as well as a Guide for Graduate Students in Italian, are available at the office of the program director.

Graduate Courses

Mash
Development of the Italian language from its origins to the present day, with emphasis on the phonological, morphological, syntactical, and lexical growth of the literary tongue.

16:560:503,504. ADVANCED GRAMMAR AND COMPOSITION (3,3)
Advanced grammar, with special attention to problems of idiomatic expression and literary style; themes, oral presentations, and translation.

16:560:506. (F) APPLIED LINGUISTICS IN ITALIAN (3)
Contrastive analysis of the phonology, morphology, and syntax of English and Italian, oriented toward actual teaching problems in the classroom.

16:560:507,508. INTRODUCTION TO ROMANCE PHILOLOGY (3,3)
Introduction to the typology of the Romance languages. First term: history and structure of the Romance languages. Second term: readings of parallel texts with studies of special problems.

16:560:509,510. ITALIAN CIVILIZATION (3,3)
Survey of Italian civilization, with emphasis on its expression through the arts from the thirteenth century to the present.

16:560:511,512. APPROACHES TO LITERATURE (3,3)
Poetry and prose from various periods of Italian literature, with examples of interpretive and textual scholarship and criticism, and various methods of literary study.

16:560:513,514. STYLISTICS AND LITERARY CRITICISM (3,3)
Prerequisite: 16:560:504 or permission of instructor.
Elements of style and theory of grammar; rhetoric and structure of literature; stylistic analysis and practice in literary criticism.

16:560:515,516. ITALIAN LITERATURE FROM THE THIRTEENTH TO SIXTEENTH CENTURY (3,3)
Survey of the first four centuries of Italian literature. First term: late medieval literary currents. Second term: the age of humanism and the Renaissance.

16:560:517,518. ITALIAN LITERATURE FROM THE SEVENTEENTH TO THE TWENTIETH CENTURY (3,3)
Survey of the main literary currents and major writers of modern and contemporary Italy. First term: from Verismo to the present. Second term: from Verismo to the present.

16:560:521. (F) PROBLEMS OF TEACHING ITALIAN (N1.5)
Objectives, teaching techniques, testing, and student evaluation in elementary and intermediate language and literature courses. Bibliographical and other professional resources. Observation of classes.

16:560:522. (S) TEACHING APPRENTICESHIP IN ITALIAN (N1.5)
Observation of elementary and intermediate language classes; supervised practice teaching.

16:560:601,602. STUDIES IN EARLY ITALIAN LITERATURE (3,3)
Vettori, White
The beginnings of Italian literature in the thirteenth century; poetry and prose before Dante, the Sicilian School, and the dolcissinuovo.

16:560:605,606. DANTE SEMINAR (3,3)
Ferrucci, Vettori
Medieval thought as represented in Dante’s works.

16:560:610,611. THE CLASSICAL TRADITION IN ITALIAN LITERATURE (3,3)
Marsh
Survey of Greek and Roman literary genres—epic, lyric, tragedy, comedy, history, pastoral, epyllion, satire, dialogue, and novel—and their influence on Italian literature from the late Middle Ages to the present.

16:560:613,614. ITALIAN LITERATURE OF THE FOURTEENTH CENTURY (3,3)
White

16:560:615,616. ITALIAN LITERATURE OF THE FIFTEENTH CENTURY (3,3)
White

16:560:621,622. ITALIAN LITERATURE OF THE SIXTEENTH CENTURY (3,3)
Baldi, White
The flowering of the Renaissance—the Reformation, Ariosto, Machiavelli, Guicciardini, Castiglione, Della Casa, Embo, Aretino, Tasso, and others.

16:560:625,626. ITALIAN EPIC AND CHIVALRIC POETRY (3,3)
Baldi, White
Medieval origins of the genre and its evolution during the Renaissance through Pulci’s Morgante, Boiardo’s Orlando Innamorato, Ariosto’s Orlando Furioso, and Tasso’s Gerusalemme Liberata.

16:560:631. ITALIAN LITERATURE OF THE SEVENTH CENTURY (3,3)
White
Works of Campanella, Marino, Galileo, and Baroque theater.

White
Works of Vico, Goldoni, Gozzi, Parini, Alfieri, and others.

16:560:641,642. THE ROMANTIC AGE (3,3)
Ferrucci

16:560:643,644. ITALIAN LITERATURE OF THE LATE NINETEENTH CENTURY (3,3)
Baldi, Ferrucci

16:560:645,646. STUDIES IN ITALIAN LITERATURE OF THE NINETEENTH CENTURY (3,3)
Ferrucci
Each term deals in depth with one or two major literary figures or movements of nineteenth-century Italian literature.

16:560:651,652. ITALIAN POETRY OF THE TWENTIETH CENTURY (3,3)
Mariani
16:560:653,654. ITALIAN NOVEL OF THE TWENTIETH CENTURY (3,3)
Mariani

16:560:655,656. MODERN ITALIAN THEATER (3,3)
Mariani
Italian naturalistic and bourgeois theater from its late nineteenth-century origins to the major works of Verga, D’Annunzio, Giacosa, and Bracco. The “grotesque” theater, Pirandello, and the contemporary theater from Betti, Fabбри, and De Filippo to Zardi, Squarzina, and Testori.

16:560:657,658. ITALIAN LITERATURE OF THE TWENTIETH CENTURY (3,3)
Reaction to the nineteenth-century models in poetry, fiction, and theater; establishment of new models of writing in the cultural climate that followed futurism and World War I; the hermeticism of the 1930s and the neorealism of the 1940s; major literary figures and trends of recent decades.

16:560:661,662. THE ITALIAN SHORT STORY (3,3)
The origins, development, and influence of the Italian short story from the Novellino to today.

16:560:671,672. HISTORY OF ITALIAN CRITICISM (3,3)
Survey of modern Italian critical thought, starting with the pre-romantic aesthetics of Vico in the early eighteenth century and concluding with the twentieth-century contributions of Croce and the post-Crocens.

16:560:673,674. PROBLEMS IN LITERARY RELATIONSHIPS (3,3)
Independent study under the supervision of a faculty member of the relationship between Italian literature and the literature of France or Spain.

16:560:701,702. RESEARCH IN ITALIAN (BA,BA)

Interdisciplinary Graduate Course

15:617:510. INTRODUCTION TO LITERARY THEORY (3)
Fleiger, Marsh, Eisenzeig, Edmunds, Persin, Galperin, Davidson, et al.
Prerequisite: Open to second-term graduate students; priority given to students from programs participating in the Council of Languages and Literature.
An introduction to contemporary literary theory, including formalism, structuralism, poststructuralism, feminism, psychoanalysis, cultural studies, and other approaches. Readings of theoretical texts and applications to short literary texts from a variety of literatures.

LABOR AND EMPLOYMENT RELATIONS
(See the catalog of the School of Management and Labor Relations for information about the program leading to the Master of Labor and Employment Relations.)

LIBRARY STUDIES
(See the catalog of the School of Communication, Information and Library Studies for information about programs leading to the Master of Library Service.)

LINGUISTICS 615
Degree Programs Offered: Master of Arts, Doctor of Philosophy
Director of the Graduate Program: Professor Veneeta Dayal,
18 Seminary Place, College Avenue Campus (732/932-7289)

Members of the Graduate Faculty
Akinbiyi Akinlabi, Associate Professor of Linguistics, FAS-NB; Ph.D., Ibadan
Phonology; tone; intonation in tone languages; Benue-Congophonology, Yoruba

Mark Baker, Professor of Linguistics, FAS-NB; Ph.D., Massachusetts Institute of Technology
Comparative syntax; linguistic universals; semantic roles; Amerindian and African languages

Maria Bittner, Associate Professor of Linguistics, FAS-NB; Ph.D., Texas (Austin)
Crosslinguistic semantics; pragmatics; ergativity; Eskimo and other exotic languages

Jose Camacho, Assistant Professor of Linguistics / Spanish and Portuguese, FAS-NB; Ph.D., Southern California
Spanish syntax; second-language acquisition; language contact; Amazonian linguistics

Veneeta Dayal, Associate Professor of Linguistics, FAS-NB; Ph.D., Cornell
Syntax-semantics interface; semantics; South-Asian linguistics

Viviane M. Déprez, Associate Professor of Linguistics, FAS-NB; Ph.D., Massachusetts Institute of Technology
Syntactic theory; Romance linguistics; language acquisition; Creole syntax

Jane Grimshaw, Professor of Linguistics, FAS-NB; Ph.D., Massachusetts
Syntactic theory; the lexicon; language acquisition; cognitive science

Alan S. Prince, Professor of Linguistics, FAS-NB; Ph.D., Massachusetts Institute of Technology
Phraseology; prosody; prosodic morphology; optimality theory; cognitive science

Kenneth Safir, Professor of Linguistics, FAS-NB; Ph.D., Massachusetts Institute of Technology
Syntactic theory; Germanic linguistics; Romance linguistics; history of linguistics; learnability theory

Roger Schwarzschild, Associate Professor of Linguistics, FAS-NB; Ph.D., Massachusetts
Semantics; pragmatics; intonation

Bruce Tesar, Assistant Professor of Linguistics, FAS-NB; Ph.D., Colorado
Learnability and acquisition; computational linguistics; cognitive science; phonology

Hubert Truckenbrodt, Assistant Professor of Linguistics, FAS-NB; Ph.D., Massachusetts Institute of Technology
Phonology; syntax-phonology interface; intonation

Associate Member of the Graduate Faculty
Young-mee Yu Cho, Assistant Professor of East Asian Languages and Culture, FAS-NB; Ph.D., Stanford
Phonology; morphology; Korean linguistics; synchronic variation; diachrony

Program*
The graduate program in linguistics offers a comprehensive program of study leading to the Ph.D. in the major areas of theoretical linguistics. It is structured from the start to facilitate the student’s involvement in research through work undertaken in close contact with members of the faculty and is designed to prepare graduates for careers in research and teaching at the university level in linguistics or in linguistically oriented subfields within the larger enterprise of cognitive science. Students are expected to develop broad expertise in all of the core areas of phonology, syntax, and semantics before specializing.

* Students do not enroll for the M.A.; a terminal master’s degree is offered.
Graduate Courses

16:615:505. LINGUISTICS COLLOQUIUM (3)
Discussion and presentation of research in progress by advanced graduate students, visitors, and faculty members.

16:615:510. SYNTAX I (3)
Introduction to syntactic theorizing and analysis. Provides fundamental background in phrase structure theory, predicate argument structure, grammatical function changing, conditions on anaphora, case marking, thematic roles, and long-distance dependencies.

16:615:511. SYNTAX II (3)
Intermediate-level discussion of major issues in syntactic theory, including theories of parametric variation, logical form and levels of grammar, and components and subtheories of grammar.

16:615:515. SEMINAR IN SYNTACTIC THEORY (3)
Prerequisite: 16:615:531, or permission of instructor.
Advanced-level discussion of current issues in syntactic theory. Topics vary.

16:615:517. TOPICS IN GERMANIC SYNTAX (3)
Prerequisite: 16:615:521, or permission of instructor.
Further study of Germanic phenomena in the construction of syntactic theory. Emphasis on construction types that are of the greatest theoretical and crosslinguistic interest.

16:615:520. PHONOLOGY I (3)
Introduction to major phonological phenomena and concepts of current theory, with emphasis on the development of analytical skills.

16:615:521. PHONOLOGY II (3)
Prerequisite: 16:615:520.
In-depth investigation of leading issues in current theory, with focus on the structure of representations and the organization of the phonological component of the grammar.

16:615:525. SEMINAR IN PHONOLOGY (3)
Prerequisite: 16:615:521, or permission of instructor.
Exploration of a special topic arising from current research in phonological theory.

16:615:530. SEMANTICS I (3)
Introduction to model-theoretic semantics. Topics include elementary set theory, predicate logic, and their applications in the analysis of major semantic phenomena.

16:615:531. SEMANTICS II (3)
Prerequisite: 16:615:530.
Mathematical tools for relating syntactic structure to semantic interpretation. Topics include higher-order logic, lambda calculus, intensional logic, type theory, type driven translation, type lifting, and lattices.

16:615:532. TOPICS IN SEMANTICS I (3)
Prerequisite: 16:615:531, or permission of instructor.
Selected topics in model-theoretic semantics. Questions, focus, presupposition, conversational implicature, context dependence, and context change.

16:615:533. TOPICS IN SEMANTICS II (3)
Prerequisite: 16:615:531, or permission of instructor.
Selected topics in model-theoretic semantics, modals, conditionals, indexicals, tense, aspect, and genericity.

16:615:535. SEMINAR IN SEMANTICS (3)
Prerequisite: 16:615:532 or 533, or permission of instructor.
Exploration of current issues in semantic theory. Topics vary.

16:615:610. FORMAL METHODS FOR LINGUISTICS (3)
Prerequisites: 16:615:511, 521, 531, or permission of instructor.
Selected topics in logic, algebra, formal languages, computation, mathematical analysis, statistics, and/or formal learning theory, with applications to linguistics.

16:615:621. FIELD METHODS FOR LINGUISTICS (3)
Prerequisites: 16:615:511, 521, 531, or permission of instructor.
Analysis of the linguistic structure of an unfamiliar language, based on in-class work with a native-speaker consultant.

16:615:660. SPECIAL TOPICS IN CURRENT LINGUISTIC THEORY (3)
Prerequisites: 16:615:511, 521, 531, or permission of instructor.
Topics in current linguistic research that cross subdisciplinary boundaries.

16:615:670. SEMINAR IN LEARNABILITY AND LINGUISTIC THEORY (3)
Prerequisite: 16:615:520, or permission of instructor.
Examines approaches to language learning, focusing on relationships between learning proposals and linguistic theory. Includes concepts from computational learning theory relevant to understanding the learning implications of contemporary linguistic theory.

16:615:690, 691. QUALIFYING PAPER WORKSHOP (3,3)
Prerequisites: 16:615:511, 521, 531.
Students working on qualifying papers present work in progress for discussion and criticism.

LITERATURE AND LANGUAGE 617

The Council of Literatures and Languages coordinates activities of interest and benefit to graduate programs in literatures and languages. The council sponsors lectures, promotes professional preparation, and facilitates interdisciplinary activities and workshops and offers literary, linguistic, and film theory courses that are open to students in all literary disciplines.

Inquiries may be addressed to the current chair of the council, Professor François Cornilliat, Graduate Program in French, Ruth Adams Building (732/932-8223).

Graduate Courses

15:617:510. INTRODUCTION TO LITERARY THEORY (3)
Prerequisite: Open to second-term graduate students; priority given to students from programs participating in the Council of Languages and Literature.
An introduction to contemporary literary theory, including formalism, structuralism, poststructuralism, feminism, psychoanalysis, cultural studies, and other approaches. Readings of theoretical texts and applications to short literary texts from a variety of literatures.

16:617:512. LINGUISTIC THEORY AND THE STUDY OF LITERATURE (3)
The major schools of linguistic theory and methods (i.e., de Saussure, American structuralism, Prague School, generative grammar) and their relevance for other fields, e.g., anthropology, literature, and cognitive science.

16:617:514. INTRODUCTION TO FILM THEORY AND ANALYSIS (3)
Surveys major film theories and methods of close analysis in the context of literary and cultural studies; includes "classical" theory, formalist analysis, feminist and psychoanalytic approaches.

LITERATURES IN ENGLISH
(See English, Literature in 350)
MATHMATICS 640, 642

Degree Programs Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Professor Peter S. Landweber, Hill Center for the Mathematical Sciences, Busch Campus (732/445-3864)

Members of the Graduate Faculty

Eric W. Allender, Associate Professor of Computer Science, FAS-NB; Ph.D., Georgia Institute of Technology Complexity theory; parallel and probabilistic computation
Abbas Bahri, Professor of Mathematics, FAS-NB; Doctorat, École Normale Supérieure Variational problems in nonlinear analysis and geometry
Tadeusz Balaban, Professor of Mathematics, FAS-NB; Ph.D., Warsaw Mathematical physics
José Barroso-Neto, Professor of Mathematics, FAS-NB; Ph.D., Sao Paulo Functional analysis; partial differential equations
R. Michael Beals, Professor of Mathematics, FAS-NB; Ph.D., Princeton Harmonic analysis; Fourier integral operators; partial differential equations
John Brezis, Distinguished Visiting Professor of Mathematics, FAS-NB; Doctoral, Paris Nonlinear functional analysis; partial differential equations
Felix E. Browder, Professor of Mathematics, FAS-NB; Ph.D., Princeton Functional analysis and partial differential equations
Richard T. Bumby, Professor of Mathematics, FAS-NB; Ph.D., Princeton Number theory
Terence Butler, Professor of Mathematics, FAS-NB; Ph.D., Indiana Partial differential equations
Sagun Chanillo, Professor of Mathematics, FAS-NB; Ph.D., Purdue Classical analysis; partial differential equations
Jane Cronin, Professor Emerita of Mathematics, FAS-NB; Ph.D., Michigan Continuum mechanics, analysis
Jane Dudek, Professor of Emeritus of Mathematics, FAS-NB; Ph.D., Columbia Functional analysis
Bernard Coleman, William Gibbs Professor of Thermomechanics, SE; Ph.D., Yale Continuum mechanics, analysis
Jane Cronin, Professor Emerita of Mathematics, FAS-NB; Ph.D., Michigan Qualitative theory of ordinary differential equations; biomathematics
William D. Duke, Professor of Mathematics, FAS-NB; Ph.D., New York Analytic number theory and automorphic forms
C. David Keys, Associate Professor of Mathematics, FAS-NB; Ph.D., Purdue Algebra and number theory
Richard S. Falk, Chair of Department and Professor of Mathematics, FAS-NB; Ph.D., Cornell Numerical analysis; partial differential equations
Giovanni Gallavotti, Distinguished Visiting Professor of Mathematics, FAS-NB; Ph.D., Florence Statistical mechanics; quantum field theory; dynamical systems
Israel M. Gel'fand, Professor of Mathematics, FAS-NB; Ph.D., Moscow State Mathematics; artificial intelligence; neuroanatomy; cell biology
Jane F. Gilman, Professor of Mathematics, FAS-NB; Ph.D., Columbia Differential operators and analysis on Lie groups
Simon G. Gindikin, Professor of Mathematics, FAS-NB; Ph.D., Mathematics Institute (Leningrad) Theory of representations; integral geometry; several complex variables; mathematical physics
Gerald A. Goldin, University Director, Science and Mathematics Partnerships, and Professor of Mathematics and Physics Education, GSE; Ph.D., Princeton Lie theory; mathematical physics; secondary education
Sheldon Goldstein, Professor of Mathematics, FAS-NB; Ph.D., Yeshiva Statistical mechanics; probability theory
Roe Goodman, Professor of Mathematics, FAS-NB; Ph.D., Massachusetts Institute of Technology Differential operators and analysis on Lie groups
Ronald L. Graham, University Professor of Mathematics, FAS-NB; Ph.D., California (Berkeley) Combinatorics; graph theory; theory of computability
Stephen Greenfield, Associate Professor of Mathematics, FAS-NB; Ph.D., Brandeis Linear partial differential equations; several complex variables
Richard F. Gundy, Professor of Statistics, FAS-NB; Ph.D., Chicago Harmonic analysis; probability theory; harmonic functions; martingales
András Hajnal, Professor of Mathematics, FAS-NB; Ph.D., Bolyai Institute (Szeged) Combinatorics; mathematical logic; set theory
Peter Hammer, Professor of Mathematics, FAS-NB, and Director of the Rutgers Center for Operations Research; Ph.D., Bucharest Boolean methods in operations research; integer programming; applications of discrete mathematics; graph theory
Zheng-Chao Han, Associate Professor of Mathematics, FAS-NB; Ph.D., Courant Institute (New York) Nonlinear analysis; partial differential equations
William Hoyt, Associate Professor Emeritus of Mathematics, FAS-NB; Ph.D., Chicago Algebraic geometry; elliptic surfaces; modular forms
Xiaojun Huang, Assistant Professor of Mathematics, FAS-NB; Ph.D., Washington (St. Louis) Several complex variables
Yi-Zhi Huang, Associate Professor of Mathematics, FAS-NB; Ph.D., Rutgers Differential geometry; conformal field theory
Henry Iwaniec, State of New Jersey Professor of Mathematics, FAS-NB; Ph.D., Warsaw Analytic number theory
Jeffrey J. Jacobowitz, Professor of Mathematics, FAS-C; Ph.D., New York Differential geometry
Michael J. Kemeny, Professor of Mathematics, FAS-NB; Ph.D., Harvard Probability and statistics
C. David Keyes, Associate Professor of Mathematics, FAS-NB; Ph.D., Chicago Number theory; harmonic analysis and representation theory of p-adic groups
Friedrich Knop, Professor of Mathematics, FAS-NB; Ph.D., Basel (Switzerland) Algebraic geometry; representation theory
János Komlós, Professor of Mathematics, FAS-NB; Ph.D., Eötvös Combinatorics; probability; theoretical computer science
Maxim Kontsevich, Distinguished Visiting Professor of Mathematics, FAS-NB; Ph.D., Bonn String theory and quantum field theory; quantum cohomology
Antoni A. Kosinski, Professor of Mathematics, FAS-NB; Ph.D., Warsaw Differential Topology
Martin Kruskal, David Hilbert Professor of Applied Mathematics, FAS-NB; Ph.D., New York Applied mathematics
András Hajnal, Distinguished Visiting Professor of Mathematics, FAS-NB; Ph.D., Princeton Mathematical physics; quantum field theory; mathematical physics
Peter S. Landweber, Professor of Mathematics, FAS-NB; Ph.D., Harvard Algebraic topology; bordism theory; generalized homology theory
Solomon Leader, Professor Emeritus of Mathematics, FAS-NB; Ph.D., Princeton Topology; combinatorial group theory
Kazuo Murotsu, Professor of Mathematics, FAS-NB; Ph.D., California (Berkeley) Complex analysis; partial differential equations
Feng Luo, Associate Professor of Mathematics, FAS-NB; Ph.D., California (San Diego) Topology and geometry
Richard N. Lyons, Professor of Mathematics, FAS-NB; Ph.D., Chicago Topology; combinatorial group theory
Benjamin Mackenhaupt, Professor Emeritus of Mathematics, FAS-NB; Ph.D., Chicago Combinatorics; probability; theoretical computer science
Roger Nussbaum, Professor of Mathematics, FAS-NB; Ph.D., Chicago Nonlinear functional analysis

129
Daniel L. Ocone, Professor of Mathematics, FAS-NB; Ph.D., Massachusetts Institute of Technology
Stochastic processes; stochastic control; filtering

Michael E. O’Nan, Professor of Mathematics, FAS-NB; Ph.D., Princeton
Permutation groups; simple groups

Barbara L. Osofsky, Professor of Mathematics, FAS-NB; Ph.D., Rutgers
Ring theory; homological algebra

Ted Petsche, Professor of Mathematics, FAS-NB; Ph.D., Princeton
Algebraic and differential topology; transformation groups; equivariant surgery

Andrew Prekop, Professor of Operations Research and Statistics, FAS-NB; Ph.D., Budapest
Optimization of stochastic systems

John D. Randall, Associate Professor of Mathematics, FAS-N; Ph.D., Warwick
Topology; algebraic geometry

Vladimir Retakh, Associate Professor of Mathematics, FAS-NB; Ph.D., Moscow Pedagogical Institute
Noncommutative algebra and combinatorics; special functions and differential equations; mathematics education

Herbert Robbins, State of New Jersey Professor Emeritus of Mathematical Statistics, FAS-NB; Sc.D., Purdue
Stochastic approximation; empirical Bayes; tests of power; design of clinical trials

Fred S. Roberts, Professor of Mathematics, FAS-NB, and Director of DIMACS; Ph.D., Stanford
Discrete mathematical models; graph theory; decision making; measurement theory

Xiaochnun Rong, Associate Professor of Mathematics, FAS-NB; Ph.D., SUNY Stony Brook
Riemannian geometry

Joseph Rosenblatt, Professor of Mathematics, FAS-NB, and Associate Director for Education, DIMACS; Ph.D., Cornell
Logic; linear orderings; recursive model theory

David Ruelle, Distinguished Visiting Professor of Mathematics, FAS-NB; Ph.D., Brussels
Statistical mechanics; dynamical systems

Siddhartha Sahi, Professor of Mathematics, FAS-NB; Ph.D., Yale
Representations of reductive groups

Michael Saks, Professor of Mathematics, FAS-NB; Ph.D., Massachusetts Institute of Technology
Combinatorial optimization and algorithm; extremal set theory; partially ordered sets

Vladimir Scheffer, Professor of Mathematics, FAS-NB; Ph.D., Princeton
Geometric measure theory; partial differential equations

David Shanno, Professor of Management, SB-NB; Ph.D., Carnegie-Mellon
Mathematical programming; numerical analysis

Saharon Shelah, Distinguished Visiting Professor of Mathematics, FAS-NB; Ph.D., Hebrew
Logic; model theory

Dana F. Shielad, Professor of Mathematics, FAS-N; Ph.D., Yale
Harmonic analysis; algebraic groups related to number theory and geometry

Lawrence Shepp, Professor of Statistics, FAS-NB; Ph.D., Princeton
Pure and applied probability; tomography; mathematics of finance

Charles C. Sims, Professor of Mathematics, FAS-NB; Ph.D., Harvard
Computational group theory and algebraic algorithms

Avraham Soffer, Associate Professor of Mathematics, FAS-NB; Ph.D., Tel Aviv
Theory of partial differential evolution equations; Schrödinger operators and scattering theory; general mathematical physics

Eduardo D. Sontag, Professor of Mathematics, FAS-NB; Ph.D., Florida System and control theory

J. François Trèves, Robert Adrain Professor of Mathematics, FAS-NB; Ph.D., Sorbonne
Functional analysis; linear partial differential equations; several complex variables

Jerrold B. Tunnell, Associate Professor of Mathematics, FAS-NB; Ph.D., Harvard
Number theory; automorphic forms

Wolmer V. Vasconcelos, Professor of Mathematics, FAS-NB; Ph.D., Chicago
Commutative algebra; computational algebra

Michael Vogelius, Board of Governors Professor of Mathematics, FAS-NB; Ph.D., Maryland
Numerical analysis; partial differential equations

Bertram Walsh, Professor of Mathematics, FAS-NB; Ph.D., Michigan
Analysis; functional analysis; potential theory

Charles A. Weibel, Professor of Mathematics, FAS-NB; Ph.D., Chicago
Algebraic K-theory; homological algebra; algebraic topology; category theory

Tilla K. Weinstein, Professor of Mathematics, FAS-NB; Ph.D., New York
Differential geometry; surfaces in semi-Riemannian manifolds

Richard L. Wheeden, Professor of Mathematics, FAS-NB; Ph.D., Chicago
Harmonic analysis; function spaces; weighted norm inequalities

Robert L. Wilson, Professor of Mathematics, FAS-NB; Ph.D., Yale
Lie algebras

Norman Zabusky, State of New Jersey Professor of Computational Fluid Dynamics, SE; Ph.D., California Institute of Technology
Vortex dynamics in two and three dimensions

Hyman J. Zimmerberg, Professor Emeritus of Mathematics, FAS-NB; Ph.D., Chicago
Boundary value problems

Programs

The graduate program in mathematics offers courses of study leading to the degrees of Master of Science and Doctor of Philosophy, with options in both pure and applied mathematics. Possible areas of specialization include algebraic geometry, discrete mathematics and combinatorics, category theory, commutative algebra, differential geometry, functional analysis, geometric measure theory, group theory, harmonic analysis on Euclidean spaces, Lie theory, logic, mathematical physics, nonlinear analysis, number theory, numerical analysis, ordinary differential equations, operations research, partial differential equations, probability theory, ring theory, algebraic and geometric topology, topos theory, and systems and control theory.

The program in mathematics is housed in the Hill Center for the Mathematical Sciences, a modern seven-story building on the Busch campus. Hill Center and the adjoining CoRE building house the departments of Computer Science and Statistics, the Center for Discrete Mathematics and Theoretical Computer Science, and the Mathematical Sciences Library, which contains more than 27,000 volumes and subscribes to more than 300 research journals in pure and applied mathematics. Office space is provided to all full-time graduate students in mathematics. The graduate programs in biology, chemistry, physics, and engineering are located nearby.

Applicants to the Ph.D. programs must have a strong undergraduate background in mathematics and must submit scores from both the general and subject tests of the Graduate Record Examination (GRE). Financial support in the form of fellowships and teaching assistantships is available to qualified doctoral students. Application for financial support should be made by January 1.

Applicants to the master’s programs should have an undergraduate degree in mathematics or a related area. Preferably, they should have taken courses in linear algebra and advanced
calculus. Both the general and subject tests of the GRE are required for master’s applicants. It is also possible to apply for admission as a nondegree student. The GRE is not required for these applicants. Up to 12 credits of course work taken as a nondegree student can count toward a degree if the student is subsequently admitted to a degree program.

All doctoral students must pass a two-stage qualifying examination before officially commencing work on their thesis. The first examination, a written one, is designed to ensure that Ph.D. graduates know certain basic material, is normally taken at the beginning of the student’s second year. The second examination is oral and is normally taken by the beginning of the second term of the student’s third year.

For the Ph.D. in applied mathematics, 48 credits of course work and 24 credits in research are required in addition to the doctoral dissertation. Courses 16:640:616,617 Seminar in Mathematics are required, and the following courses are strongly recommended: 16:640:501,502 Theory of Functions of a Real Variable, 16:640:503 Theory of Functions of a Complex Variable I, and 16:640:519,520,523,524 Functions of Several Complex Variables. Abstract Algebra. Students should also take a series of courses in an area of application, such as control and system theory, discrete mathematics, mathematical biology, mathematical physics, numerical analysis, or operations research. A reading knowledge of French, German, or Russian is required. There is no residency requirement.

For the M.S. in applied mathematics, 30 credits of course work are required. Students must take: (1) 16:642:550 Linear Algebra and Applications; (2) a course in computer science, discrete mathematics, or statistics; and (3) one of the following courses in analysis: 16:640:501 Theory of Functions of a Real Variable, 16:640:503 Theory of Functions of a Complex Variable I, 16:640:515 Ordinary Differential Equations, or 16:642:516 Partial Differential Equations. The ten courses used to fulfill the 30-credit requirement must be chosen with faculty approval. Typically, most of the courses in an approved program are organized around some coherent principle, such as applied discrete mathematics, numerical analysis, operations research, or systems and control theory. Finally, a master’s essay and proficiency in a scientific programming language (such as FORTRAN or PL/I) are required. There is no residency requirement.

Not all graduate courses listed below are given every year. Each course is scheduled subject to student demand and at the discretion of the graduate faculty.

Graduate Courses (640)

16:640:501,502. **THEORY OF FUNCTIONS OF A REAL VARIABLE** (3,3)
Prerequisite: Advanced calculus.
Real number system, measure theory, and Lebesgue integration in Euclidean and abstract spaces, set functions, bounded variation, absolute continuity, differentiation of the indefinite integral. Radon measure, L^1 spaces.

16:640:503. **THEORY OF FUNCTIONS OF A COMPLEX VARIABLE I** (3)
Prerequisite: Advanced calculus.
Elementary properties of complex numbers, analytic functions, the exponential function and logarithm, conformal mapping, Cauchy integral formula, maximum modulus principle, Laurent series, classification of isolated singularities, residue theorem.

16:640:504. **THEORY OF FUNCTIONS OF A COMPLEX VARIABLE II** (3)
Prerequisite: 16:640:503.
Analytic continuation and the monodromy theorem, normal families and Riemann mapping theorem, Picard theorems, and other topics.

16:640:507,508. **FUNCTIONAL ANALYSIS** (3,3)
Prerequisites: 16:640:502,503,540.

16:640:509,510,511. **SELECTED TOPICS IN ANALYSIS** (3,3,3)
Prerequisites: 16:640:502 and permission of instructor.

16:640:513. **NUMERICAL FUNCTIONAL ANALYSIS** (3)
Prerequisite: Permission of instructor.

16:640:515. **ORDINARY DIFFERENTIAL EQUATIONS** (3)
Prerequisites: Linear algebra and advanced calculus.

16:640:517,518. **PARTIAL DIFFERENTIAL EQUATIONS II** (3,3)
Prerequisites: 16:640:502,503,507.

16:640:519. **SELECTED TOPICS IN DIFFERENTIAL EQUATIONS** (3)
Prerequisite: Permission of instructor.
Topics in ordinary and partial differential equations chosen by the instructor.

16:640:520. **DISTRIBUTION THEORY** (3)
Spaces of distribution; tempered distributions; Sobolev spaces; spaces of test functions; topology and duality of these spaces. Kernel theorems. Growth conditions; the Fourier transform.

16:640:521. **HARMONIC ANALYSIS ON EUCLIDEAN SPACES** (3)
Prerequisites: 16:640:502.
Maximal functions, fractional integrals, singular integrals, multipliers, Littlewood-Paley theory, H^p spaces, weighted norm inequalities, Fourier series, differentiation.

16:640:523,524. **FUNCTIONS OF SEVERAL COMPLEX VARIABLES** (3,3)
Prerequisites: 16:640:502,503,507.
Elementary theorems (Hartogs, Osgood), statement of Cousin and Levi problems, complex differential geometry, complex manifolds, holomorphic convexity.

16:640:529. **POTENTIAL THEORY** (3)
Prerequisite: 16:640:502,503.
Harmonic and superharmonic functions in R^n; polar sets, potentials, capacities, Green’s functions, balayage, thin sets, and the fine topology. Energy and the Dirichlet integral. The Dirichlet problem in R^n L^1 boundary values and nontangential maximal functions for L^1 and Lip boundary values. Ideal boundaries.

16:640:532. **DIFFERENTIAL GEOMETRY** (3)
Differential manifolds, connections, Riemannian manifolds.
16:640:533. INTRODUCTION TO DIFFERENTIAL GEOMETRY (3)
Riemannian manifolds, variational methods and theorems on geodesics, connections on vector and principal bundles, curvature, Euler and other characteristic numbers and classes.

16:640:534. SELECTED TOPICS IN GEOMETRY (3)
Prerequisite: Permission of instructor.
Selected topics including Lie groups, representation theory, homogeneous spaces, and semi-Riemannian manifolds.

16:640:535,536. ALGEBRAIC GEOMETRY (3,3)
Prerequisite: Permission of instructor.
Geometry of projective spaces; cohomology of coherent sheaves; schemes.

16:640:537. SELECTED TOPICS IN GEOMETRY (3)

16:640:540,541. INTRODUCTION TO ALGEBRAIC TOPOLOGY (3,3)
Prerequisite: Basic concepts of point set topology.
Fundamental group, homology, and cohomology theory; elements of differentiable manifolds.

16:640:542,543. ALGEBRAIC TOPOLOGY (3,3)
Prerequisites: 16:640:504, 541.
Further topics of algebraic and differential topology, including duality theorems, homotopy theory, vector bundles, characteristic classes, and applications to geometric problems.

16:640:544. TRANSFORMATION GROUPS (3)
Actions of compact Lie groups on manifolds.

16:640:546. TOPICS IN ALGEBRAIC TOPOLOGY (3)
K-theory, spectral sequences, cohomology operations, various other topics.

16:640:547. TOPOLOGY OF MANIFOLDS (3)
Prerequisite: 16:640:541.
Selected topics from the theory of topological and combinatorial manifolds.

16:640:548. DIFFERENTIAL TOPOLOGY (3)
Prerequisites: 16:640:540, 541.
Vector bundles, differentiable manifolds. Sard theorem and applications to imbedding problems. Tubular neighborhoods. Other selected topics.

16:640:549. LIE GROUPS (3)
Prerequisites: 16:640:532, 541.
Lie groups. Lie algebras, elements of representation theory.

16:640:550. LIE ALGEBRAS (3)
Prerequisite: Linear algebra, 16:640:551,552.
Introduction to the general structure theory of Lie algebras and to the structure theory of finite-dimensional semisimple Lie algebras over the complex numbers.

16:640:551,552. ABSTRACT ALGEBRA (3,3)
Introductory topics in groups, rings, modules, linear algebra, fields, Galois theory, and homological algebra.

16:640:553. THEORY OF GROUPS (3)
Prerequisite: 16:640:551.
Solvable groups, Nilpotent groups, p-groups, transfer and fusion, permutation groups. Topics chosen from among group representations and character theory, primitive permutation groups, local groups, theoretic analysis of simple groups, infinite groups.

16:640:555. SELECTED TOPICS IN ALGEBRA (3)
Prerequisite: Permission of instructor.

16:640:556. THEORY OF RINGS (3)
Prerequisite: 16:640:552.
Irreducible modules, representations of rings, radicals of rings. Artinian and semisimple rings, quotient rings.

16:640:558. THEORY OF ALGEBRAS (3)
Prerequisite: Permission of instructor.
General theory of not necessarily associative algebras and rings. Topics selected from the theory of associative, Lie, alternative, and Jordan algebras. Structure and representation theory.

16:640:559. COMMUTATIVE ALGEBRA (3)
Prerequisite: 16:640:552.
Ideal theory, Noetherian rings, local rings, regular local rings, valuation theory, polynomial and power series rings, Gröbner bases, computations in polynomial rings.

16:640:560. HOMOLOGICAL ALGEBRA (3)
Prerequisite: 16:640:556.
Projective and injective modules, the derived functions Ext and Tor, categories and functors. Morita theorems, homological dimension.

16:640:561. MATHEMATICAL LOGIC (3)
Prerequisite: 16:640:560.
Metamathematics and first-order arithmetic and analysis, with emphasis on the questions of consistency and completeness. Introduction to model theory and its application to the study of formal systems.

16:640:566. AXIOMATIC SET THEORY (3)
Prerequisite: 16:640:561.
Axioms of Zermelo-Fraenkel, axioms of infinity consistency and independence of the continuum hypothesis, Dedekind-finite cardinals, large cardinals.

16:640:567. MODEL THEORY (3)
Prerequisite: 16:640:561.
Types of elements, prime and saturated models, methods of constructing models, the two-cardinal problem, categoricity and power.

16:640:569. SELECTED TOPICS IN LOGIC (3)
Prerequisite: Permission of instructor.
Topics of current interest.

16:640:571,572. NUMBER THEORY (3,3)
Prerequisites: 16:640:551,552.
An integrated, year-long introduction to ideas in algebraic and analytic number theory.

16:640:573. SPECIAL TOPICS IN NUMBER THEORY (3)
Iwaniec. Prerequisite: Permission of instructor.

16:640:574. SPECIAL TOPICS IN NUMBER THEORY (3)
Prerequisite: Permission of instructor.

16:640:615. SPECIAL STUDIES IN ADVANCED MATHEMATICS (BA)

16:640:616,617. SEMINAR IN MATHEMATICS (1,1)
Prerequisite: Two years of graduate study in mathematics. A two-term participation in one of the seminars conducted by the department is required of all candidates for the Ph.D.

16:640:651. CATEGORY THEORY (3)
Prerequisite: Some background in algebra and topology. Basic theory of categories, functors, and natural transformations. Abstract theory interpreted and illustrated through examples.

16:640:663. TOPICS IN MATHEMATICAL PHYSICS (3)

16:640:699. NONTHESIS STUDY (1)

16:640:701,702. RESEARCH IN MATHEMATICS (BA,BA)
Graduate Courses in Applied Mathematics (642)

16:642:516. APPLIED PARTIAL DIFFERENTIAL EQUATIONS (3)
Prerequisite: Advanced calculus, differential equations.

16:642:527,528. METHODS OF APPLIED MATHEMATICS (3,3)
Prerequisite: Permission of instructor. Credit not given for these courses and 16:650:567.568.
Appropriate topics from linear algebra, linear operators in Hilbert space, linear integral equations, boundary value problems, calculus of variations, numerical solution of ordinary and partial differential equations.

16:642:550. LINEAR ALGEBRA AND APPLICATIONS (3)

16:642:551. APPLIED ALGEBRA (3)
Prerequisite: 16:642:550.
Basic algebraic structures, including groups and their representations, finite fields, and Boolean algebra. Applications to physics, counting arguments, switching circuits, and coding theory. Automata theory.

16:642:561-562. INTRODUCTION TO MATHEMATICAL PHYSICS (3,3)
Prerequisites: Linear algebra, advanced calculus.
Study of models of classical and/or quantum mechanical physical systems, with emphasis on the use of rigorous mathematical techniques.

16:642:563. (F) RIGOROUS RESULTS IN STATISTICAL MECHANICS: PART I, EQUILIBRIUM (3)
Prerequisite: Permission of instructor. Students should have either a general mathematical background equivalent to that of a second-year graduate student in mathematics or knowledge of statistical mechanics obtained from physics, chemistry, or engineering courses in the subject.
Treats the subject ab initio. Deals with general questions such as the existence of the thermodynamic limit, convergence of low-density expansions, correlation inequalities, coexistence of phases.

16:642:564. (S) RIGOROUS RESULTS IN STATISTICAL MECHANICS: PART II, NONEQUILIBRIUM (3)
Prerequisite: Permission of instructor. Students should have either a general mathematical background equivalent to that of a second-year graduate student in mathematics or knowledge of statistical mechanics obtained from physics, chemistry, or engineering courses in the subject.
Ergodic theory, time evolution of infinite systems, heat flow in random systems, stationary nonequilibrium systems, exactly soluble models systems, stochastic processes.

16:642:573,574. NUMERICAL ANALYSIS (3,3)
Prerequisites: Advanced calculus, linear algebra, and differential equations.
Ideas and techniques of numerical analysis illustrated by problems in the approximation of functions, numerical solution of linear and nonlinear systems of equations, approximation of matrix eigenvalues and eigenvectors, numerical quadrature, and numerical solution of ordinary differential equations.

16:642:575. NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS (3)
Prerequisite: Partial differential equations.
Finite-difference schemes, investigating stability and convergence, other methods such as those of Ritz-Galerkin type and collocation.

16:642:577,578. SELECTED MATHEMATICAL TOPICS IN SYSTEM THEORY (3,3)
Prerequisites: Linear algebra, differential equations.
Selection of topics from mathematical system theory, e.g., realization, control, stability, optimization, and feedback, with emphasis on qualitative aspects. Algebraic techniques in linear system theory, geometrical and functional analytic techniques in the study of nonlinear control systems.

16:642:581. (S) GRAPH THEORY (3)
Prerequisites: 01:640:350 and 411, or permission of instructor. 01:640:477 is recommended.
An advanced introduction to graph theory. Topics include matching theory, connectivity, graph coloring, planarity, extremal graph theory, and the main techniques (elementary, probabilistic, algebraic, and polyhedral) for analyzing the structure and properties of graphs.

16:642:582,583. COMBINATORICS (3,3)
Prerequisites: 01:640:350 and 411, or permission of instructor. 01:640:477 and 16:540:511 are recommended.
An advanced introduction to combinatorial theory and applications. Typical topics include hypergraphs, probabilistic methods, algebraic methods, matching theory, packing and covering, Ramsey theory, partially ordered sets and lattices, block designs, error-correcting codes, and matroids. Topics and emphasis vary depending on instructor.

16:642:585. MATHEMATICAL MODELS OF SOCIAL AND POLICY PROBLEMS (3)
Prerequisites: Linear algebra, elementary probability.
Mathematical models of problems in social sciences and the public and private policy area, emphasizing discrete models. Transportation and communication networks. Energy modeling. Pollution models. Models from economics, psychology, sociology, and political science, dealing with such issues as currency movement, land development, learning, small group behavior, and power in legislatures. Development of requisite mathematical tools about graphs, signed graphs, Markov chains, and n-person games.

16:642:586. (S) THEORY OF MEASUREMENT (3)
Prerequisite: Undergraduate modern algebra or permission of instructor.
Foundations of measurement from a mathematical point of view. Homomorphisms or relational systems; scale type; uniqueness theory; ordinal, extensive, difference, and conjoint measurement; utility and expected utility; subjective probability; applications to social and physical sciences.

16:642:587. SELECTED TOPICS IN DISCRETE MATHEMATICS (3)
Prerequisite: Permission of instructor.
Topics such as combinatorics, applied graph theory, measurement theory.

16:642:588. (F) INTRODUCTION TO MATHEMATICAL TECHNIQUES IN OPERATIONS RESEARCH (3)
Prerequisite: Linear algebra.

16:642:589. (S) TOPICS IN MATHEMATICAL TECHNIQUES IN OPERATIONS RESEARCH (3)
Prerequisites: 16:642:588 or equivalent, permission of instructor.
Special mathematical topics such as matching, matroids, dynamic programming, recent work in combinatorial optimization.

16:642:591,592. TOPICS IN PROBABILITY AND ERGODIC THEORY (3,3)
Basic probability theory and its applications. Topics include: stochastic independence, distributions and densities, Markov processes, stationary processes, the law of large numbers, and the central limit theorem. A broad range of applications to communications engineering, economics, biology, and physics.
Mechanical and Aerospace Engineering 650

Degree Programs Offered: Master of Science, Doctor of Philosophy

Director of Graduate Program: Professor Haym Benaroya, D104 Engineering Building, Busch Campus (732/445-4408) WebSite: http://cronos.rutgers.edu/~mechaero

Members of the Graduate Faculty

Haim Baruh, Associate Professor of Mechanical and Aerospace Engineering, SE; Ph.D., Virginia Polytechnic Institute
Structural dynamics; controls; system identification
Haym Benaroya, Professor of Mechanical and Aerospace Engineering, SE; Ph.D., Pennsylvania
Aerospace structures; structural dynamics; probabilistic mechanics
William J. Bottega, Associate Professor of Mechanical and Aerospace Engineering, SE; Ph.D., Yale
Delamination mechanics; dynamics and stability of solids; composite materials
David C. Briggs, Professor Emeritus of Mechanical and Aerospace Engineering, SE; Ph.D., Minnesota
Heat transfer; thermodynamics; numerical modeling
Yu Chen, Professor Emeritus of Mechanics, SE; Sc.D., Harvard
Numerical simulation of thermal mechanical phenomena; applied mechanics
Alberto Cuitiño, Associate Professor of Mechanical and Aerospace Engineering, SE; Ph.D., Brown
Computational solid mechanics
Mitsunori Denda, Associate Professor of Mechanical and Aerospace Engineering, SE; Ph.D., Harvard
Fracture mechanics; computational solid mechanics
Ellis H. Dill, University Professor of Mechanical and Aerospace Engineering, SE; Ph.D., California (Berkeley)
Continuum mechanics; computational mechanics; finite element methods
Gregory S. Elliott, Assistant Professor of Mechanical and Aerospace Engineering, SE; Ph.D., Ohio State
Experimental fluid mechanics
Hae Chang Gea, Associate Professor of Mechanical and Aerospace Engineering, SE; Ph.D., Michigan
Design and structural optimization; finite element
Nick G. Glumac, Associate Professor of Mechanical and Aerospace Engineering, SE; Ph.D., California
Combustion; thermodynamics
Dale B. Haidvogel, Professor of Oceanography, CCES; Ph.D., Massachusetts Institute of Technology
Areas of basin- and global-scale ocean dynamics; coastal ocean physics; development of numerical models appropriate to these classes of problems
Yogesh Jaluria, Professor of Mechanical and Aerospace Engineering, SE; Ph.D., Cornell
Convection; numerical methods in heat transfer; materials processing
Mukund V. Karve, Assistant Professor of Food Science, CC; Ph.D., Rutgers
Thermal processing of food materials; numerical modeling

Doyle D. Knight, Professor of Mechanical and Aerospace Engineering, SE; Ph.D., California Institute of Technology
Computational fluid dynamics; turbulence; aerodynamics; supercomputer applications
Noshir A. Langrana, Professor of Mechanical and Aerospace Engineering, SE; Ph.D., Cornell
Computer-aided design; biomechanics; artificial intelligence; design
Constantinos Mavroidis, Assistant Professor of Mechanical and Aerospace Engineering, SE; Ph.D., Paris VI
Analysis and synthesis of mechanisms; design, planning, and control of robotic systems
Michael R. Muller, Professor of Mechanical and Aerospace Engineering, SE; Ph.D., Brown
Fluid mechanics; waves; rotating flows; fluidized beds
Andrew N. Norris, Professor of Mechanical and Aerospace Engineering, SE; Ph.D., Northwestern
Dynamics of solids; wave propagation; mechanics of composite materials
Medara M. Ogut, Associate Professor of Mechanical and Aerospace Engineering, SE; Ph.D., Pennsylvania State
Computer-aided design; dynamics optimization; robotics
Kook D. Paek, Professor of Mechanical and Aerospace Engineering, SE; Ph.D., Pennsylvania State
Polymer mechanics; high pressure effects on properties of polymers; surface modification of polymers
Assimina A. Pelegrì, Assistant Professor of Mechanical and Aerospace Engineering, SE; Ph.D., Georgia Institute of Technology
Fracture mechanics; electromechanical systems; smart structures
Richard B. Pelz, Professor of Mechanical and Aerospace Engineering, SE; Ph.D., Princeton
Computational fluid dynamics; turbulence; chaos; parallel processing
Richard L. Peskin, Professor Emeritus of Mechanical and Aerospace Engineering, SE; Ph.D., Princeton
Computational fluid dynamics
Constantine F. Polymersopoulos, Professor of Mechanical and Aerospace Engineering, SE; Ph.D., Cornell
Combustion; heat transfer
Kyoung T. Rhee, Professor of Mechanical and Aerospace Engineering, SE; Ph.D., Wisconsin
Internal combustion engines; flame propagation
Valentinia Seman, Professor of Mechanical and Aerospace Engineering, SE; Ph.D., Toronto
Optical techniques; boiling heat transfer; experimental methods
Samuel Temkin, Professor of Mechanical and Aerospace Engineering, SE; Ph.D., Brown
Fluid mechanics; acoustics; droplet dynamics
Timothy Wei, Associate Professor of Mechanical and Aerospace Engineering, SE; Ph.D., Michigan
Fluid mechanics and turbulence
George J. Weng, Professor of Mechanical and Aerospace Engineering, SE; Ph.D., Yale
Micromechanics of composite materials; phase transformation
Norman J. Zabusky, State of New Jersey Professor of Computational Fluid Dynamics, SE; Ph.D., California Institute of Technology
Fluid dynamics—computational and analytical; nonlinear dynamical systems
Abdelatif Zahbi, Chairperson and Professor of Mechanical and Aerospace Engineering, SE; Ph.D., Colorado
Hydrodynamic stability; computational fluid mechanics
Mark C. Zimmerman, Principal Scientist/Group Leader, Johnson & Johnson; Ph.D., Rutgers
Orthopaedic biomechanics; biomaterials; bone remodeling

Programs

Mechanical and aerospace engineering offers graduate programs leading to the Master of Science and Doctor of Philosophy degrees.

Individuals wishing to enroll in the M.S. program should have received a B.S. degree in mechanical and/or aerospace engineering from an accredited institution and should have graduated with a cumulative grade-point average of 3.0 (where A = 4.0) or better. Applicants who have a B.S. degree in other engineering disciplines or in applied mathematics, geology, meteorology, or physics also are considered.

Admission into the Ph.D. program requires an M.S. in mechanical and/or aerospace engineering. Applicants who have an M.S. in closely related discipline may be admitted directly into the Ph.D. program, provided their preparation has no significant deficiencies. The Master of Philosophy degree is available to doctoral candidates. The Master of Science program is meant to extend and broaden the undergraduate preparation. It can be considered as a terminal degree or may be used as preparation for the Ph.D. program. The
M.S. program requires a minimum of 30 credits and normally includes a research thesis. The Ph.D. program is intended for those individuals primarily interested in teaching and/or research. It requires a minimum of 48 credits of course work beyond the B.S. degree and a minimum of 24 credits of research beyond the M.S. degree. The program requires successful performance in the Ph.D. qualifying examination, one year of full-time residence, and the completion of a satisfactory research dissertation. Proficiency in a foreign language is not required. While the student may be a full-time student throughout his or her studies, the one-year residence requirement normally is satisfied after the student has passed the qualifying examination and is mainly devoted to research.

Study is offered in the general areas of applied mechanics and engineering science and design. There are four major fields of study in mechanical and aerospace engineering. These are design, fluid mechanics, solid mechanics, and thermal sciences. Because of the exceptional variety and large number of courses available in these areas and because of the wide range of research activities in the program, students have a unique opportunity to acquire a broad and thorough education and training.

Facilities for research are outstanding and include modern laboratories in acoustics, biomechanics, combustion, computational fluid dynamics, computational solid mechanics, heat transfer and thermal convection, computer-aided design, experimental fluid mechanics, geophysical fluid dynamics, internal-combustion engines, optics, and high-pressure mechanics. The School of Engineering operates a Supercomputer Remote Access Center (SRAC) that provides both high-speed network access to the U.S. National Supercomputer Centers and local computational support for code development and data post-processing. The facility includes a Sun Sparc1000 server, several color graphics workstations, and color hardcopy. Other computational facilities available include an IBM RISC system, Sparc computer servers, and a PC laboratory.

Research areas in which the faculty of the program are currently engaged include acoustics; applications of artificial intelligence; biomechanics; boiling heat transfer; combustion; composite materials; computational fluid dynamics; computational solid mechanics; convective heat transfer; dilatation mechanics; droplet dynamics; energy management; fracture mechanics; gas dynamics; geophysical fluid dynamics; hydrodynamical instability; internal-combustion engines; incompressible fluid dynamics; kinematics and dynamics of mechanisms; mantle convection; material processing; mechanical design; micromechanics; nondestructive evaluation; numerical modeling; optimal design; particulate emission; polymer mechanics; plasticity; random vibration; smart structures; space structures; stability of structures; structural dynamics; thermal stresses; turbulence; turbulent dispersion; and waves in solids.

Degree programs in mechanical or aerospace engineering may be arranged with the graduate program director. Further details may be found in Graduate Programs in Mechanical and Aerospace Engineering, available on request from the program office, and in the program's Handbook for Graduate Students, sent to applicants who have been admitted to the program.

Graduate Courses

16:650:501. (S) PRINCIPLES OF TURBULENT FLOWS (3)
Prerequisite: 16:650:540.
Physical aspects and methods of analysis of turbulent flows; scaling laws, modeling techniques, and statistical description of turbulence; application to problems in engineering science and geophysical fluid dynamics.

16:650:506. (F) COMPUTER-AIDED DESIGN (3)
Prerequisite: Permission of instructor. Limited enrollment.
Broad introduction to computer-aided design and modeling. Mathematical representations of curves, surfaces, and solids. Two- and three-dimensional computer graphics. Programming is required for design projects.

16:650:507. (S) COMPUTATIONAL METHODS I: FLUID MECHANICS (3)
Prerequisites: Undergraduate fluid mechanics and thermodynamics. Development and application of computational methods for fluid mechanics, boundary layer equations, and Euler equations. Selected algorithms including finite difference, finite volume, and special techniques. Applications chosen from incompressible and compressible flows.

16:650:508. (S) COMPUTATIONAL METHODS II: HEAT TRANSFER (3)
Prerequisites: Undergraduate fluid mechanics and thermodynamics. Development and application of computational methods for conduction, natural, forced, and mixed convection; radiation; traditional and recent conjugate heat transfer; and mass transfer. Selected algorithms include finite difference, finite volume, finite element, and spectral techniques. Applications chosen from thermal energy systems, environmental heat transfer, microelectronics packaging, materials processing, and other areas.

16:650:509. (S) COMPUTATIONAL METHODS III: FINITE ELEMENT METHODS IN SOLID MECHANICS (3)
Prerequisite: 16:650:571.
General theory, application of finite element methods to the solutions of the equations of elasticity and plasticity. Two- and three-dimensional linear and nonlinear, static and dynamic problems. Working computer programs.

16:650:510. TOPICS IN COMPUTATIONAL VISCOUS FLUID DYNAMICS (3)
Prerequisites: 16:198:510 and undergraduate thermodynamics and fluid mechanics.
Numerical solution of incompressible and compressible boundary layer equations and Navier-Stokes equations, including heat transfer applications.

16:650:511. (F) ACOUSTICS (3)
Prerequisite: Undergraduate fluid mechanics. Pre- or corequisite: 16:642:527.

16:650:512. (S) FLUID DYNAMICS OF SUSPENSIONS (3)
Prerequisites: 16:650:540 or equivalent; and one graduate-level course in applied mathematics or consent of instructor.
Fluid mechanics of small bubbles, droplets, and rigid particles in fluids. Fluid forces and heat transfer rate. Two-phase fluid dynamics. Applications to aerosols, bubbly liquids, emulsions, and hydrosols.

16:650:513. (S) EXPERIMENTAL METHODS (3)
Prerequisites: Undergraduate fluid mechanics and heat transfer.
Survey of current measuring techniques used in mechanical and aerospace engineering research; principles of digital and analog data acquisition and reduction.

16:650:517. (F) CONDUCTION HEAT TRANSFER (3)
Prerequisite: Undergraduate heat transfer.
Analytical methods in steady and transient heat conduction in solids; finite difference methods in heat conduction.

16:650:518. (S) CONVECTION HEAT TRANSFER (3)
Prerequisites: Undergraduate heat transfer; 16:650:540 or equivalent.
Forced and free convection in laminar and turbulent flows; mass transfer.

16:650:520. (S) THERMAL TRANSPORT IN MATERIALS PROCESSING (3)
Prerequisite: Permission of instructor. Limited enrollment. Transport phenomena in processes such as heat treatment, bonding, extrusion, casting, injection molding, crystal growing, metal forming, and plastic processing; analysis, mathematical modeling, and numerical simulation of such processes for design and optimization of the relevant systems.
16:650:525. (S) ROBOTICS: MECHANISMS AND CONTROLS (3)
Prerequisite: Undergraduate vibrations, controls, and design of mechanisms.
Introduction to robotics, including mechanisms and control theories as well as applications; manipulator mechanics; design considerations; control fundamentals; adaptive and sensory controls; algorithm development; robotic assembly techniques.

16:650:526. (S) KINEMATIC ANALYSIS OF MECHANISMS (3)
Prerequisite: Undergraduate kinematics of mechanisms or equivalent.
Introduction of modern kinematic analysis; analytical representa-
tion of motions; miscellaneous mechanisms; automated
kinematic designs.

16:650:527. (S) SATELLITE ORBIT DETERMINATION AND
CONTROL (3)
Prerequisites: 16:650:401, 443. Undergraduate courses in mechanical control systems and vibrations and controls.
Satellite orbit determination and control requires knowledge of
several engineering disciplines. The concepts of advanced controls,
rigid body dynamics, physics, propulsion, and mathematical
modeling developed and integrated to enable students to perform
basic satellite control and orbit determination.

16:650:528. (S) BIOMECHANICAL SYSTEMS (3)
Prerequisite: Undergraduate mechanical design and solid mechanics.
Selected topics from the study of the human body as a mechanical
system, with emphasis on modeling, analysis, and design.
Investigation of biomechanical systems frequently encountered in
orthopedic surgery and physical rehabilitation.

16:650:529. (S) RANDOM VIBRATIONS (3)
Prerequisite: Undergraduate course in mechanical vibration.
Basic ideas from mathematical probability and mechanical vibration
merged and developed in an engineering context for the
purpose of evolving students’ skills at incorporating uncertainties into
their mechanical vibration design and research and development
activities.

16:650:530. (S) MECHANICAL VIBRATIONS (3)
Prerequisite: Undergraduate mechanical vibrations.
Vibration considerations in mechanical engineering, damping, frequency response; multidegree of freedom systems; lumped parameter systems; continuous systems; exact solutions, variational
principles, system response, random vibrations.

16:650:531. (S) ADVANCED MECHANICS OF MATERIALS (3)
Prerequisite: Undergraduate solid mechanics and mechanical design.
Critical examination and application of the theories and methods for evaluating stresses and deformations of mechanical components and structures under static and dynamic loading.

16:650:532. (S) OPTIMAL DESIGN IN MECHANICAL
ENGINEERING (3)
Prerequisite: 16:650:531.
Formulation and solution of engineering optimal design problems in
mechanical engineering. Introduction to algorithms for constrained and unconstrained searching. Application to optimal design of
mechanical and structural components. Use of discretization techniques; shape optimization problem.

16:650:533. ADVANCED DESIGN OF MECHANISMS (3)
Prerequisite: Undergraduate kinematics of mechanisms or equivalent.
Complete mechanism design cycle: synthesis, analysis, and redesign; analytical, numerical, and visualization techniques applied to mechanism synthesis (type, number, and dimensional) and analysis; application of optimization methods in the design cycle; planar and spatial mechanisms.

16:650:534. (S) ANALYTICAL DYNAMICS (3)
Prerequisite: Graduate standing in mechanical/aerospace engineering.
Newtonian mechanics, rotating frames, variational principles, Lagrange’s equations, Hamilton’s equations, Euler angles, Euler’s equations, transformation theory, Hamilton-Jacobi equation.

16:650:535. (F) MECHANICS OF COMPRESSIBLE FLUIDS (3)
Prerequisite: 16:650:541 or equivalent.
Linear and nonlinear theory of one-dimensional inviscid unsteady motion, compression and expansion waves, shock tube and wave interactions; two-dimensional inviscid steady motions, including linearized subsonic and supersonic flows, boundary layer theory of compressible fluids.

16:650:540. (F) FLUID MECHANICS I (3)
Prerequisite: Undergraduate fluid mechanics.
Physical properties of fluids; basic equations of motion; kinematics; exact solutions of the Navier-Stokes equations; incompressible boundary layer equations and applications; flow past bodies, jets, and wakes; introduction to turbulent flows.

16:650:541. (S) FLUID MECHANICS II (3)
Prerequisite: 16:650:540 or equivalent.
Vortex dynamics of incompressible inviscid and low-viscosity fluids. One-, two-, and three-dimensional compressible flows.
Linear, nonlinear, acoustic, and gravity waves, etc. Shock waves using shock polars, etc. Stability of viscous and inviscid vortex, wave and boundary layer flows. Special topics: accelerated flows: Rayleigh-Taylor and Richtmeyer-Meshkov for supersonic combustion and inertial confinement fusion; visualization and quantification of evolving flows; and turbulent scaling laws.

16:650:542,543. INDEPENDENT STUDY (3-3)
Prerequisites: Permission of instructor and graduate program director.
Independent studies or investigations in a selected area of
mechanical and aerospace engineering.

16:650:544. (S) COMPUTER-AIDED ENGINEERING FOR FLUID FLOW
AND HEAT TRANSFER (3)
Prerequisites: First-year graduate level applied mathematics; fluid flow and/or heat transfer.
Use of high performance computers, expert systems, and interactive graphics for rapid prototyping of fluid flow and heat transfer models. Student participation in ongoing research in this area.

16:650:549. (F) BOILING AND CONDENSATION HEAT TRANSFER (3)
Prerequisites: Undergraduate heat transfer and fluid mechanics.
Detailed presentation of boiling and condensation heat transfer;
nucleate boiling, transitional boiling, film boiling, film condensation, and dropwise condensation.

16:650:552. (S) RADIATION HEAT TRANSFER (3)
Prerequisite: Undergraduate heat transfer.
Theory of radiant heat transfer; characteristics of ideal and real systems; radiant energy exchange with and without a participating medium; experimental techniques; gray and nongray system analysis.

16:650:553. (F) ADVANCED THERMODYNAMIC THEORY (3)
Prerequisite: Undergraduate thermodynamics.
Critical analysis of advanced theories and methods in
thermodynamics.

16:650:558. (S) COMBUSTION (3)
Prerequisites: Undergraduate thermodynamics and fluid mechanics.
Fundamentals of combustion processes; premixed flames, diffusion flames, one-dimensional gas dynamics, thermal explosion theory.

16:650:560. (S) ADVANCED MECHANICAL ENGINEERING
TOPICS (3)
Topics of current interest in mechanical and aerospace engineering, such as applications of computer-aided intelligence, computer-aided manufacturing, and waves in fluids.

16:650:561. (F) GEOPHYSICAL FLUID DYNAMICS (3)
Prerequisite: 16:650:540 or equivalent.
Fundamentals of fluid mechanics pertaining to the dynamics of oceans and atmospheres; quasigeostrophic motion, the Ekman Layer, and baroclinic instability.
16:650:567,568. (F,S) MATHEMATICAL METHODS IN ENGINEERING (3,3)
Prerequisites: Undergraduate calculus and differential equations.
Review of matrix algebra; numerical methods for inversion; ordinary
differential equations, functions of a complex variable; calculus of
variations; partial differential equations and their classification;
Fourier methods; asymptotic and perturbation methods.

16:650:571. (F) INTRODUCTION TO MECHANICS OF CONTINUA (3)
Prerequisites: Undergraduate mechanics and engineering mathematics.
Introduction to the fundamental concepts of continuum mechanics,
including stress and strain, kinematics, balance laws, and material
symmetry. Applications to theories of elasticity, plasticity, fracture,
viscoelasticity, and classical fluid dynamics.

16:650:572. (S) THEORY OF ELASTICITY (3)
Classical theory of linear elasticity. Equations of equilibrium; plane
stress; plane strain; Airy stress function; complex variable methods;
torsion; energy theorems; solutions of selected classical problems.

16:650:573. (S) THEORY OF PLASTICITY AND APPLICATIONS (3)
Prerequisite: 16:650:571.
Yield criteria and associated flow rules; hardening rules; Drucker’s
stability postulates; flow potential; derivation of multiaxial relations
from uniaxial data; high temperature creep; visco-plasticity and
strain-rate sensitivity; modern unified theories; boundary-value
problems in bending, torsion, expansion, and slip-line field.

16:650:576. (S) POLYMER MECHANICS (3)
Prerequisite: 16:650:571 or permission of instructor.
Mechanical behavior, viscoelastic behavior, effects of external
and internal factors on mechanical behavior, yielding and plastic
deformation, fracture, fatigue, and effects of high pressure on
mechanical, physical, and thermal properties of polymeric materials.

16:650:577. (F) MECHANICS OF COMPOSITE MATERIALS (3)
Prerequisite: 16:650:572.
Classification of anisotropy; engineering constants; particulate,
fiber, and disc reinforcements; orthotropic plates; laminate theory;
rule of mixture; Voigt and Reuss approximations; stress-strain
average; energy principles; two-phase and three-phase models;
mean-field theory; self-consistent method; differential scheme;
bounding techniques.

16:650:579. CONTROL OF STRUCTURES (3)
Prerequisite: 14:650:401.
Intensive, in-depth advanced introduction to increasingly important
field of structural control. Systems being designed for very
environments, such as aerospace, require control to function according
to very tight specifications. Technical challenges significant in this
discipline.

16:650:581. (S) ADVANCED ENGINEERING ANALYSIS (3)
Prerequisites: 16:650:534 or 540; 16:642:527.
Behavior of linear and nonlinear systems, phase-plane analysis,
bifurcation, stability criteria, perturbation methods. Examples from
fluid mechanics, dynamics, and heat transfer.

16:650:582. (S) DYNAMICS AND STABILITY OF ELASTIC SYSTEMS (3)
Hamilton’s principle; discrete and continuous systems; dynamical
theories of beams and plates; nonlinear vibrations; Liapunov
stability; limit cycles; chaotic motion. Applications include the
static and dynamic stability of thin-walled structures.

16:650:584. (S) THEORY OF VISCOELASTICITY AND APPLICATIONS (3)
Prerequisite: 16:650:572.
Inelastic behavior, linear theory of viscoelasticity; constitutive
equations and correspondence principles. Applications to
specific engineering problems; introduction to nonlinear
theories of viscoelasticity and viscoplasticity.

16:650:585. (F) Fracture Mechanics (3)
Prerequisite: 16:650:572, or permission of instructor.
Basic principles of fracture mechanics; linear elastic, dynamic, and
elastic-plastic. Time dependent; fracture and fatigue crack growth
for metals, ceramics, polymers, and composites. Mathematical
methods in fracture mechanics; weight functions (3D), Green’s
functions (dislocation and point force), complex variable methods
(2D), integral transforms, and applications of the FEM and BEM.

16:650:586. (S) THEORY OF THERMAL STRESSES AND APPLICATIONS (3)
Prerequisites: 16:650:571,572.
Formulation and solution of problems involving the effects
of temperature on the elastic and inelastic behavior of materials
and structures. Thermodynamics of deformation; heat transfer;
thermoelasticity/thermoviscoelasticity.

16:650:587. (F) MICROMECHANICS (3)
Prerequisite: 16:650:572 or 573.
Origins of internal stress; Green’s tensor function. Eshelby’s
solutions of ellipsoidal inclusions, stress concentration; crystal
plasticity; continuous distribution of dislocations; single crystal
versus polycrystal; self-consistent method; two-phase plasticity
and creep; principles of micro-macro transition; fracture and fatigue.

16:650:588. (S) STRESS WAVES IN SOLIDS (3)
Prerequisites: 16:642:528, 16:650:572.
Propagation of elastic waves in solids, reflection and transmission,
Rayleigh waves, waves in plates, dispersion, radiation from a point
load, Fourier transforms methods; scattering; waves in anisotropic
materials; propagation of discontinuities; shocks.

16:650:591. (S) ADVANCED MECHANICAL VIBRATIONS (3)
Prerequisites: 16:642:527 and 16:650:530.
Continuous systems, exact and approximate solutions; integral
formulation; vibration under combined effects, inclusion principle,
qualitative and quantitative behavior of the eigensolution,
computational techniques.

16:650:615. (F) HYDRODYNAMIC STABILITY (3)
Prerequisite: 16:650:541 or equivalent.
Thermal, centrifugal, and shear instabilities; linear, nonlinear,
and energy methods.

16:650:622. (F) ADVANCED TOPICS IN TURBULENCE (3)
Prerequisite: 16:650:501 or permission of instructor.
Advanced topics selected from ongoing research in turbulence,
such as numerical simulation of turbulent flows and turbulence
in the atmosphere.

16:650:691,692. SEMINAR IN MECHANICAL ENGINEERING (1,1)
Prerequisite: Ph.D. candidacy in mechanical and aerospace engineering
or permission of graduate program director.
Lectures by Ph.D. students, faculty, and invited speakers on current
research topics in mechanical and aerospace engineering.

16:650:699. NONTHESIS STUDY (N1)
Staff

16:650:701,702. RESEARCH IN MECHANICAL AND AEROSPACE ENGINEERING: (BA,BA)

MECHANICS 654

Degree Programs Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Bernard D. Coleman,
B134 Engineering Building, Busch Campus (732/445-5558)
Members of the Graduate Faculty

Abbas Bahri, Professor of Mathematics, FAS-NB: Doctorat, École
Normale Supérieure

Variational problems in nonlinear analysis and geometry
138

Programs

The graduate program in mechanics offers advanced instruction and research in theoretical mechanics. The broad areas of study are continuum mechanics, thermodynamics, analytical dynamics, and their applications to problems in engineering, materials science, and molecular biology. The topics of courses, seminars, and research include elasticity, viscoelasticity, the theory of non-Newtonian fluids, liquid crystal theory, the mechanics and thermodynamics of phase transformations, modern constitutive theory (e.g., invariance principles, thermodynamical relations, and homogenization theory), and the development of the elastic rod model for DNA.

Excellent computational facilities are available to students, including a variety of workstations and access to supercomputers. Students applying to the M.S. and Ph.D. programs should have a B.S. or B.A. degree in engineering, mathematics, or the physical sciences. The M.S. degree requires 30 credits and either a critical essay or a research thesis. The requirements for the Ph.D. degree include an appropriate combination of course work and research credits, a qualifying examination, and a dissertation. The qualifying examination is given in two parts, written and oral. Students are required to attend and participate in the mechanics seminar series. Candidates for the Ph.D. degree will be expected to spend at least one year in full-time residence, a requirement that will be waived in exceptional circumstances.

A number of fellowships are available to first-year and advanced students. Students receiving fellowships are expected to devote all of their full-time to course work and research. Teaching assistantships and research assistantships associated with specific research projects may also be available. Further information about these and other matters may be found in The Graduate Program in Mechanics, available upon request from the program office.

Graduate Courses

16:654:543. (S) CONTINUUM MECHANICS (3)
Coleman. Prerequisite: 16:650:571 or permission of instructor.
Algebraic and geometric methods in continuum physics; kinematical concepts, balance of momentum; introduction to the general theory of constitutive relations, material symmetry, and frame-indifference. Examples of nonlinear theories of material behavior, e.g., finite elasticity, non-Newtonian fluids, materials with memory.

16:654:545. (S) CONTINUUM THERMODYNAMICS (3)
Coleman. Prerequisite: 16:654:543 or permission of instructor.
Theory of thermodynamical restrictions on the constitutive relations of viscous materials, materials with memory, and materials with internal state variables. Energy criteria for stability; thermal influences on wave propagation; thermodynamical methods in the theory of the field equations of mechanics.

16:650:575. (S) FINITE ELEMENT METHODS IN SOLID MECHANICS (3)
Dill. Prerequisites: 16:650:571 or 16:654:543 or equivalent; knowledge of linear elasticity.
General theory, application of finite element methods to the solution of the equations of elasticity, viscoelasticity, and plasticity. Two- and three-dimensional linear and nonlinear, static and dynamic problems. Working computer programs for such problems studied in detail.

16:654:583. ADVANCED THEORY OF ELASTICITY (3)
Prerequisites: Elasticity, e.g., 16:650:581, and continuum mechanics, e.g., 16:654:543.
Advanced topics in the linear theory of elasticity and an introduction to finite elasticity. Uniqueness and stability theorems, variational principles, theories of rods, plates, and shells.

16:654:601,602. SELECTED TOPICS IN CONTINUUM MECHANICS (3,3)
Prerequisite: Permission of instructor.
Topics of current interest in such areas as constitutive theory, finite elasticity, viscoelasticity, theory of liquid crystals.

16:654:603,604. SELECTED TOPICS IN COMPUTATIONAL MECHANICS (3,3)
Prerequisite: Permission of instructor.
Topics of current interest in the theory and application of numerical methods to the solution of problems in such subjects as elasticity, the mechanics of rods and shells, plasticity, the theory of materials with memory, and the theory of liquid crystal phases.

16:654:605,606. SELECTED TOPICS IN PHASE TRANSFORMATION THEORY (3,3)
Prerequisite: Permission of instructor.
Topics of current interest in such subjects as heterogeneous equilibrium, the dynamics of phase transitions, spinodal decomposition, and interface motion.

16:654:611,612. SEMINAR IN MECHANICS (1,1)
Faculty, students, and invited speakers participate in presentations of contemporary topics in mechanics and related branches of mathematics and numerical analysis.

16:654:701,702. RESEARCH IN MECHANICS (BA,BA)

MEDIEVAL STUDIES 667

Program Offered: Certificate in Medieval Studies
Director of the Certificate Program in Medieval Studies:
Professor Elizabeth Parker McLachlan, Medieval Studies
Program (phone and fax: 732/932-7342), Department of Art History, Room 208, Voorhees Hall, College Avenue Campus (732/932-7041)

Participating Faculty

The following members of the graduate faculty are among those in charge of the curricular arrangements for a certificate program in medieval studies as part of a wider advanced-degree program:

R. Barton, Literatures in English
P. Bathory, Political Science
R. Bell, History
J. Bodel, Classics
M. Ciklamini, German
C. Chism, Literatures in English
F. Cornilliat, French
S. Crane, Literatures in English
L. Edmunds, Classics
S. Feldman, Philosophy
M. Gossy, Spanish
F. Grave, Music
C. Guardiola, Spanish
A. Harvey, Art History
A. Kirkman, Music
S. Klein, Literatures in English
Certificate Program

Students with a special interest in medieval studies may pursue, in the course of their regular program of studies toward an advanced degree, a special concentration in medieval studies. Those who fulfill the requirements may be awarded a certificate in medieval studies upon completion of their degrees. The special requirements for the certificate, many of which may also be used to satisfy the student’s graduate degree requirements, are as follows:

1. At least two courses in a medieval subject within the chosen discipline, with no grade lower than B.
2. At least three other courses in medieval culture in other disciplines, with no grade lower than B.
3. Demonstration of a reading knowledge of at least two languages in the forms common during the Middle Ages.

The various courses in medieval studies are offered by the participating faculty and additional faculty through their departments. A list of such courses is available from the director.

Graduate Courses

16:667:501, 502. MEDIEVAL LATIN (3,3)
Prerequisite: Two terms of classical Latin.
An overview of Medieval Latin; grammar and syntax followed by readings in major texts, including works in theology, philosophy, and literature.

16:667:550, 551. MEDIEVAL PALaeOGRAPHY (3,3)
Introduction to the study of manuscripts, records, and the forms common during the Middle Ages.

16:667:602. ADVANCED TOPICS IN MEDIEVAL STUDIES (3)
Seminar of interdisciplinary scope.

METEOROLOGY
(See Environmental Sciences 375)

MICROBIOLOGY AND MOLECULAR GENETICS 681

Degree Programs Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Professor Howard C. Passmore, Jr.,
Nelson Biology Laboratories, Busch Campus (732/445-2812)

Members of the Graduate Faculty

Morad A. Abou-Sabe, Associate Professor of Cell Biology and Neuroscience, FAS-NB; Ph.D., Pittsburgh
Microbial genetics; gene expression

Kurt Amidor, Assistant Professor of Physiology and Biophysics, UMDNJ-RWJMS; Ph.D., Tennessee
Growth factor receptor tyrosine kinases and regulation of renal epithelial cell development and behavior

Alan D. Antoine, Associate Professor of Microbiology, CC; D.Sc., Johns Hopkins
Microbial biochemistry and physiology; metabolism of natural products; microbial biochemistry and taxonomic classification of cyanobacteria

Edward Arnold, Professor of Chemistry, FAS-NB/CABM; Ph.D., Cornell
Protein and virus structure; crystallography; AI/DS; polyamides; drug and vaccine design

David E. Axelrod, Associate Professor of Genetics, FAS-NB; Ph.D., Tennessee
Cellular and molecular oncology; tumor cell proliferation

Richard Bartha, Professor Emeritus of Microbiology, CC; Ph.D., Georg August (Gottingen)
Biodegradation of xenobiotic pollutants; microbial ecology

Helen M. Berman, Professor of Chemistry, FAS-NB; Ph.D., Pittsburgh
Nucleic acid and protein structure; crystallography; biological databases

Steven J. Brill, Associate Professor of Molecular Biology and Biochemistry, FAS-NB; Ph.D., SUNY (Stony Brook)
Biochemistry and genetics of DNA replication in yeast

George M. Carman, Professor of Food Science, CC; Ph.D., Massachusetts
Molecular biology of phospholipid biosynthesis in yeast

Kiran K. Chada, Professor of Biochemistry, UMDNJ-RWJMS; Ph.D., Oxford
Functional genomics in cancer and obesity

Theodore Chase, Jr., Professor and Chairperson of Biochemistry and Microbiology, CC; Ph.D., California (Berkeley)
Microbial biochemistry in the environment; plant enzyme physiology and molecular ecology of ripening and flavor

Suzie Chen, Associate Professor of Chemical Biology, CP; Ph.D., Albert Einstein Transgenic mice predisposed to cancer development; molecular mechanisms of adipecytodifferentiation; UV-inducible genes

Xuemei Chen, Assistant Professor of Genetics, WIM/FAS-NB; Ph.D., Cornell Molecular genetic analysis of flower development in Arabidopsis

Kew-Woon Chin, Assistant Professor of Medicine and Pharmacology, CINJ/UMDNJ-RWJMS; Ph.D., Rutgers
Drug resistance in cancers; regulation of gene expression

Lori Ruth Covey, Assistant Professor of Cell Biology and Neuroscience, FAS-NB; Ph.D., Columbia
Switch recombination in human lymphocytes in response to T cell factors

Kiron M. Das, Professor of Medicine, Microbiology, and Molecular Genetics, UMDNJ-RWJMS; Ph.D., Edinburgh; M.D., Calcutta
Autoimmunity in inflammatory bowel diseases

David T. Denhardt, Professor of Cell Biology and Neuroscience, FAS-NB; Ph.D., California Institute of Technology
Molecular biology of cancer; cell signaling and regulation of gene expression

Jonathan D. Dinman, Assistant Professor of Molecular Genetics and Microbiology, UMDNJ-RWJMS; Ph.D., Johns Hopkins
Probing molecular mechanisms of ribosomal frameshifting

Hugo K. Dooner, Professor of Plant Genetics, CC/WIM; Ph.D., Wisconsin Plant molecular genetics; transposons; meiotic recombination; functional genomics

Joseph P. Dougherty, Associate Professor of Molecular Genetics and Microbiology, UMDNJ-RWJMS; Ph.D., Yale
Retrovirus replication and gene theory

Monica Driscoll, Associate Professor of Molecular Biology and Biochemistry, FAS-NB; Ph.D., Harvard
Definements of national development; global mechanisms of inherited neurodegeneration

Donald T. Dubin, Professor of Molecular Genetics and Microbiology, UMDNJ-RWJMS; M.D., Columbia
Evolution of antibiotic resistance in bacteria

Richard H. Ebright, Professor of Chemistry, WIM; Ph.D., Harvard
Transcription; protein-DNA interaction; protein-protein interaction; single-molecule imaging

Isaac Edery, Assistant Professor of Molecular Biology and Biochemistry, FAS-NB/CABM; Ph.D., McGill
Molecular mechanisms underlying biological clocks

Douglas E. Evelygh, Professor of Microbiology, CC; Ph.D., Exeter
Applied microbiology; fermentation; organic chemicals from biomass; cellular transformation; microbial ecology

Martin Farach-Colton, Associate Professor of Computer Science, FAS-NB; M.D., Johns Hopkins; Ph.D., Maryland
Computational biology; design and analysis of sequential and parallel algorithms

Dunne Fong, Associate Professor of Cell Biology and Neuroscience, FAS-NB; Ph.D., Princeton
Immunology and molecular cell biology of parasitic protozoans

David J. Foran, Assistant Professor of Pathology, UMDNJ-RWJMS; Ph.D., Rutgers/UMDNJ Imaging; telemedicine; bioinformatics; pattern recognition; computer-assisted diagnosis

Artem Gabriel, Associate Professor of Molecular Biology and Biochemistry, FAS-NB; M.D., Johns Hopkins
Molecular mechanisms of retrotransposition

Marc R. Gartenberg, Assistant Professor of Pharmacology, UMDNJ-RWJMS; Ph.D., Yale
Chromosomal DNA structure and organization; transcriptional silencing
Celine Gelinas, Associate Professor of Biochemistry, CABM; Ph.D., Sherbrooke
Functional virology of malignant squamous cell carcinomas
Millie M. Georgiadis, Assistant Professor of Chemistry, FAS-NB/WIM;
Ph.D., California (Los Angeles)
Electrochemical studies of enzyme-catalyzed reactions
Biank K. Ghost, Professor of Physiology and Biophysics, UMDNJ-RWJMS;
M.S., Calcutta
Molecular biology of microbial membrane protein receptor
Max Hoffmang, Associate Professor of Microbiology, CC; Ph.D., Helsinki
Environmental and applied microbiology; biofilm; microbial physiology
Beatrice Haimovich, Assistant Professor of Surgery, UMDNJ-RWJMS;
Ph.D., Pennsylvania
Adhesion receptors mediated signaling that regulate cell adhesion and spreading
Robert Herman, Professor of Cell Biology and Neuroscience, FAS-NB;
Ph.D., Rutgers
Parasitology
Sarah Hitchcock-DeGregori, Professor of Neuroscience and Cell Biology, UMDNJ-RWJMS;
Ph.D., Case Western Reserve
Structure-function relationships in contractile proteins; folding and design of coiled-coil proteins
Masayoshi Inouye, Professor and Chairperson of Biochemistry and Molecular Biology, UMDNJ-RWJMS;
Ph.D., Osaka
Signal transduction; adaptation to stresses; protein folding
Ken Irving, Assistant Professor of Molecular Biology and Biochemistry, FAS-NB/
WIM; Ph.D., Stanford
Cell communication; patterning; and morphogenesis
Peter C. Kahn, Associate Professor of Biochemistry, CC; Ph.D., Columbia
Protein folding and assembly; modeling; hydration in biological systems
Stanley E. Katz, Professor of Microbiology, CC; Ph.D., Rutgers
Analytical and environmental microbiology; transformation of organic molecules; antibiotics in animal products
Daniel F. Klessig, Professor of Molecular Biology, WIM; Ph.D., Harvard
Signal transduction and regulation of gene expression in plant pathogen interactions
Jeremy J. Kukor, Assistant Professor of Environmental Sciences, CC;
Ph.D., Michigan
Biochemistry and genetics of microorganisms involved in biodegradation
Casimir A. Kulikowski, Professor of Computer Science, FAS-NB; Ph.D., Hawaii
Intelligent systems and machine learning in molecular biology
Eric Lam, Associate Professor of Plant Sciences, BCAE; Ph.D., California (Berkeley)
Plant gene targeting; programmed cell death; chromatin imaging
Jerome A. Langer, Associate Professor of Molecular Genetics and Microbiology, UMDNJ-RWJMS;
Ph.D., Yale
Cloning and ligand interactions of the cell surface receptor for alpha interferon
Michael J. Leibowitz, Professor of Molecular Genetics and Microbiology, UMDNJ-RWJMS;
M.D., Ph.D., Yeshiva
Host-virus interactions in yeast; molecular epidemiology; ribonuclease zymology; HIV regulatory proteins
John Lenard, Professor of Physiology and Biophysics, UMDNJ-RWJMS;
Ph.D., Cornell
RNA virus structure, fusion cellular entry, transcription and assembly
Thomas Leustek, Associate Professor of Molecular Biology, CC; BCAE;
Ph.D., Stanford
Plant biochemistry; molecular biology; cysteine and methionine biosynthesis and metabolites; sulfur assimilation; general metabolism
Ronald M. Levy, Professor of Chemistry, FAS-NB; Ph.D., Harvard
Protein structure and dynamics; computer modeling of proteins
Alice Y. -C. Liu, Professor of Cell Biology and Neuroscience, FAS-NB; Ph.D.,
Mount Sinai
Signal transduction mechanism of the heat shock response; heat shock gene expression and cell cycling
Peter Lobel, Associate Professor of Pharmacology, UMDNJ-RWJMS/CABM;
Ph.D., Columbia
Lysosomal enzymes and human hereditary diseases; mannose-6-phosphate receptors
Kiran Madura, Assistant Professor of Biochemistry, UMDNJ-RWJMS;
Ph.D., Rochester
Mechanism and significance of ubiquitin-mediated proteolysis in DNA repair and signal transduction
Pal Maliga, Professor of Genetics, WIM; Ph.D., Hungarian Academy of Sciences
Plastid genetics and development; RNA editing
Richard A. Mann, Associate Professor of Medicine, UMDNJ-RWJMS;
M.D., Yeshiva (Einstein)
Immunopathogenesis of renal disease
Karl Maratros, Research Scientist, Rochester; Ph.D., Columbia
Comparative virology; parasitology; cell culture
Charles E. Martin, Professor of Cell Biology and Neuroscience, FAS-NB; Ph.D.,
Florida State
Genetic regulation of membrane lipid biosynthesis in Saccharomyces
Kim S. McKim, Assistant Professor of Genetics, FAS-NB/WIM; Ph.D.,
British Columbia
Regulation of meiotic recombination; homologous chromosome pairing; DNA repair
Joachim W. Messing, University Professor of Molecular Biology and Director of the Waksman Institute of Microbiology; Ph.D., Munich
Molecular biology of higher plants; MI13 cloning, sequencing, gene synthesis
Richard B. Middleton, Professor of Molecular Biology, UMDNJ-SOM;
Ph.D., Harvard
Genetics of enteric bacteria
Gaetano T. Montelione, Associate Professor of Molecular Biology and Biochemistry, FAS-NB/CABM; Ph.D., Cornell
Protein structure and dynamics; NMR spectroscopy; structural bioinformatics
Thomas J. Montville, Professor of Food Science, CC; Ph.D., Massachusetts Institute of Technology
Metabolic regulation of foodborne microbes; novel antimicrobials
N. Ronald Morris, Professor of Pharmacology, UMDNJ-RWJMS; M.D., Yale
Molecular biology of mitosis and microtubules
William R. Myler, Professor of Obstetrics and Gynecology, UMDNJ-RWJMS;
Ph.D., Harvard
Structure and function of glycoprotein hormones and their receptors
Joseph L. Nauss, Professor of Statistics, FAS-NB; Ph.D., Harvard
Significance of matching in DNA sequences; scan statistic probabilities of clustering; data editing
Lenore Neiegborn, Lecturer in Life Sciences, FAS-NB; Ph.D., Columbia
Genetic and molecular analysis of regulated gene expression
Robert A. Niederman, Professor of Molecular Biology and Biochemistry, FAS-NB; Ph.D., Illinois
Structure, function, and assembly of energy transducing membranes
David N. Norris, Assistant Professor of Molecular Biology and Biochemistry, FAS-NB; Ph.D., Harvard
Effect of chromatin structure and transcription and recombination in yeast
Wilma K. Olson, Mary J. Bunting Professor of Chemistry, FAS-NB;
Ph.D., Stanford
Theoretical studies of nucleic acid structure and properties; relation of structure, conformation, and function of nucleic acids
Richard Pachet, Associate Professor of Molecular Biology and Biochemistry, WIM; FAS-NB; Ph.D., North Carolina
TGF beta signal transduction in C. elegans and Drosophila
Howard C. Passmore, Jr., Professor of Microbiology and Molecular Genetics, FAS-NB; Ph.D., Michigan
Regulation of meiotic recombination; mouse models for the expression of tumor suppressor genes
Henrik Pedersen, Professor of Chemical and Biochemical Engineering, SE;
Ph.D., Yale
Plant cell culture; biosensing
Stuart W. Peltz, Associate Professor of Molecular Genetics and Microbiology, UMDNJ-RWJMS; Ph.D., Wisconsin (Madison)
Eukaryote gene expression
Sidney Pesik, Professor and Chairperson of Molecular Genetics and Microbiology,
UMDNJ-RWJMS; M.D., Pennsylvania
Inferon and cytokine receptors; signal transduction
Ronald D. Poretz, Professor of Biochemistry and Microbiology, CC; Ph.D.,
SUNY (Buffalo)
Inherited susceptibility to neurotoxins; intracellular targeting of drugs;
endotoxins; glycolipid conjugates and lycans
David Pramer, Professor Emeritus of Microbiology, CC; Ph.D., Rutgers
Biological control; biodegradation of natural and industrial compounds;
metamode-trapping fungi
Carl A. Price, Professor Emeritus of Genetics, FAS-NB; Ph.D., Harvard
Plant molecular biology; regulation of gene expression in plastics
Arnold R. Rahson, Associate Professor of Molecular Genetics and Microbiology, UMDNJ-RWJMS; M.D., Brown
Regulation of human retroviral gene expression and lymphomagenesis
Tanig Mahmood Rana, Associate Professor of Pharmacology, UMDNJ-RWJMS;
Ph.D., California (Davis)
RNA-protein interaction; regulation of HIV-1 gene expression; drug design;
artiﬁcial proteolysis
Kari Raska Jr., Professor of Pathology, Molecular Genetics, and Microbiology, UMDNJ-RWJMS;
and Chairperson of Laboratory Medicine and Pathology,
UMDNJ-NJMS; M.D., Charles; Ph.D., Czechoslavak Academy of Sciences
DNA tumor viruses; immunopathology and molecular mechanisms in human cancers
Yacov Rev, Associate Professor of Molecular Genetics and Microbiology, UMDNJ-RWJMS;
Ph.D., Weizmann Institute of Science
Autoimmunity; development of Band T cells; gene therapy
Amritk Sahota, Research Professor of Genetics, FAS-NB; Ph.D., London
Human inherited diseases and molecular diagnosis
Marilyn L. Sanders, Professor of Pharmacology, UMDNJ-RWJMS;
Ph.D., Washington
DNA topoisomerase as antifungal and antiprotosuran drug targets; the heat shock response in eukaryotic cells
Carlo P. Schaffner, Professor Emeritus of Microbial Chemistry, WIM; Ph.D., Illinois
Chemical and biological properties of microbial products
Donald W. Schaffner, Associate Extension Specialist in Food Science, CC;
Ph.D., Georgia
Food microbiology
Aaron J. Shatkin, Professor of Molecular Genetics and Microbiology, UMDNJ-RWJMS; University Professor of Molecular Biology, FAS-NB; Director of the Center for Advanced Biotechnology and Medicine; Ph.D., Rockefeller
Eukaryotic gene expression; viral cytopathogenesis
Leonard H. Sigal, Associate Professor of Medicine, UMDNJ-RWJMS;
M.D., Stanford
Immunopathogenesis of HIV, multiple sclerosis; cross-reactions between human axonal protein and flagella of Borrelia burgdorferi
Leo D. Simon, Associate Professor of Genetics, FAS-NB; Ph.D., Rochester
Molecular biology of protein degradation in prokaryotes
Navin K. Sinha, Associate Professor of Genetics, FAS-NB; Ph.D., Minnesota
Mechanisms of spontaneous and induced mutations
Peter Smouse, Professor of Marine and Coastal Studies, CC; Ph.D., North Carolina State
Mathematical representation of molecular phylogenetics
William Sofer, Professor of Genetics, FAS-NB/WIM; Ph.D., Miami
Genetic algorithms for predicting secondary structures of proteins
Ann C. St. John, Associate Professor of Genetics, FAS-NB; Ph.D., Wisconsin (Madison)
Regulation of protein catalytic; stress response proteins
Stanley Stein, Professor of Molecular Biology, CABM/UMDNJ-RWJMS;
Ph.D., CUNY
Protein analysis; synthesis of peptides and antisense DNA
Ruth Stewart, Professor of Molecular Biology and Biochemistry, FAS-NB;
Ph.D., Basel
NFKB signaling; establishment of embryonic polarity; nuclear migration, and RNA transport in Drosophila
Victor Stollar, Professor of Molecular Genetics and Microbiology, UMDNJ-RWJMS; M.D., C.M., Queen's (Ontario)
Viral replication in mammalian and insect cells
Roger Strait, Associate Professor of Medicine, CINJ/UMDNJ-RWJMS;
M.D., Ph.D., Albert Einstein
Hematopoietic malignancies; stem cell transplantation
Theresa Thomas, Associate Professor of Environmental and Community Medicine, UMDNJ-RWJMS; Ph.D., Indian Institute of Science (Bangalore)
Molecular biology of breast cancer: polyamines, estradiol, and cyclines
Moti L. Tiku, Associate Professor of Medicine, UMDNJ-RWJMS; M.D., Delhi
Immunobiology of autoimmune diseases; rheumatoid arthritis; and osteoarthritis
Immunology and cytokine biology; reactive oxygen radicals and aging
Jay Tischfield, Professor and Chair of Genetics, FAS-NB; Ph.D., Yale
Gene regulation, human genetic diseases
Robert Treistad, Professor of Pathology and Laboratory Medicine, UMDNJ-
RWJMS; M.D., Harvard
Matrix morphogenesis and macromolecular patterning
Nicolin A. Turner, Associate Professor of Plant Pathology, BCAE; Ph.D., Purdue
Mechanisms of virus resistance; mechanism of antiviral action of ribosome inactivating proteins, turfgrass transformation and improvement
Aurea C. Vasconcelos, Professor of Cell Biology and Neurosciences, FAS-NB;
Ph.D., Chicago
Cell biology: plant molecular biology; chloroplast development, function, and regulation; carbohydrate metabolism in plants
Andrew K. Venhor, Associate Professor of Molecular Biology and Biochemistry, WIM; Ph.D., Massachusetts Institute of Technology
Regulation of gene expression in yeast
Eileen P. White, Howard Hughes Medical Institute Professor of Molecular Biology and Biochemistry, FAS-NB; Ph.D., SUNY (Stony Brook)
Regulation of programmed cell death (apoptosis) by virus oncoproteins and tumor suppressor genes
Nancy A. Woychik, Assistant Professor of Molecular Genetics and Microbiology, UMDNJ-RWJMS; Ph.D., Wisconsin (Madison)
Regulation of RNA transcription; RNA polymerase II subunit function
Chung S. Yang, Professor of Chemical Biology, CP; Ph.D., Cornell
Molecular mechanisms of esophageal carcinogenesis and its prevention, and other agents. Genetic polymorphism and cancer risk
Lily Y. Young, Professor of Environmental Sciences, CC; Ph.D., Harvard
Anaerobic microbial metabolism of contaminated chemicals; microbial biodegradation; bioremediation
Peter D. Yurchenco, Professor of Pathology and Laboratory Medicine, UMDNJ-RWJMS; M.D., Ph.D., Albert Einstein College of Medicine
Basement membrane; self-assembly; three-dimensional structure; cellular interactions
Barbara A. Zilinski, Professor of Plant Biochemistry, CC; Ph.D., Illinois (Urbana)
Molecular biology of plant response to oxidative stress; photosynthesis
Gerben Zylishka, Associate Professor of Biochemistry and Microbiology, CC;
Ph.D., Michigan
Genetics and physiology of microbial aromatic hydrocarbon degradation

Associate Members of the Graduate Faculty
Hidetori Kawanishi, Professor of Medicine, UMDNJ-RWJMS; M.D.,
Ph.D., Kyoto
Gut mucosal immunology
Debra L. Laskin, Professor of Pharmacology and Toxicology, CP; Ph.D., Medical College of Virginia
Immunology; cytokines; nitric oxide; macrophages; inflammation
Jeffrey D. Laskin, Professor of Environmental and Community Medicine, UMDNJ-RWJMS; Ph.D., SUNY (Buffalo)
Effects of xenobiotics on growth and differentiation of epidermal cells; mechanisms of carcinogenesis; biology of nitric oxide
Michael A. Lawrence, Assistant Professor of Plant Pathology, CC; Ph.D., Oxford
Fungal pathogens; signal transduction during development and disease in plant cells
Abbas Rashidbaigi, Assistant Professor and Director of Cell Biology, Interferon Sciences; Ph.D., Wisconsin (Madison)
Isolation of interferon regulated genes; interferon mechanisms
W. Steven Ward, Associate Professor of Urology, UMDNJ-RWJMS;
Ph.D., Vanderbilt
Organization of DNA in the mammalian sperm nucleus

Adjunct Members of the Graduate Faculty
Marion Man-Ying Chan, Assistant Research Professor of Biological Sciences,
FAS-NB; Ph.D., Cornell Medical College
Inflammation, immunity, and chemotherapy for intracellular parasite—Leishmania
Roberto Rodriguez, Amersham Pharmacia Biotech; Ph.D., Rutgers
Genomics and microarrays

Programs
The graduate program in microbiology and molecular genetics offers advanced studies leading to the M.S. and Ph.D. degrees with specialized training and research opportunities in four central areas: Molecular genetics and microbial physiology; virology, immunology, and pathogenic microbiology; applied, environmental, and industrial microbiology; and computers in molecular biology. Admission is offered through the Consolidated Graduate Programs in Molecular Biosciences. For further information, refer to the molecular biosciences section.

Students entering the program usually participate in a selection of core courses, as described under the molecular biosciences heading in this chapter, in the chosen area of interest. Additional or alternate studies are designed to meet individual needs. Thus, graduate students have the opportunity to select additional study areas in their work.

Graduate study in microbiology and molecular genetics at Rutgers is organized as a coordinated program and involves the participation of faculty members from six principal and numerous auxiliary units. The six major coordinating units are: (1) the Division of the Sciences of the Faculty of Arts and Sciences—New Brunswick, (2) the Waksman Institute of Microbiology, (3) the Department of Molecular Genetics and Microbiology of the University of Medicine and Dentistry of New Jersey—Robert Wood Johnson Medical School, (4) the Department of Biochemistry and Microbiology of Cook College, (5) the Center of Advanced Biotechnology and Medicine of the University of Medicine and Dentistry of New Jersey, and (6) the Biotechnology Center for Agriculture and the Environment.

The Master of Science degree requires the satisfactory completion of a minimum of 24 course credits, 6 research credits, and a research thesis. In the nonthesis option, the thesis requirement is waived, and a minimum of 24 course credits is included) as full-time students in residence. As part of their graduate training, doctoral students may be required to fulfill certain teaching duties under faculty supervision. There is no language requirement.

Thirty-two course credits are required for the Doctor of Philosophy degree. Each Ph.D. student must pass a qualifying examination and complete a research project that culminates with the student’s oral defense of his or her dissertation. Candidates for the Ph.D. degree are required to complete 4 credits from courses 16:681:681–686. See further course requirements below. Candidates for the Ph.D. degree must spend a minimum of two consecutive terms (summer included) as full-time students in residence. As part of their graduate training, doctoral students may be required to fulfill certain teaching duties under faculty supervision. There is no language requirement.
General Microbiology 16:681:501 and 16:681:502 Molecular Genetics or 16:681:580 Fundamentals of Molecular Genetics are required courses. Exemptions may be granted for students transferring equivalent graduate credits.

The Master of Philosophy degree is available to doctoral candidates. All degrees in this program are conferred jointly between Rutgers University and the University of Medicine and Dentistry of New Jersey. For information about joint M.S. and Ph.D. degrees available in this program, see the beginning of this chapter. For more detailed description of the program faculty, degree requirements, and course offerings, refer to the Student Bulletin available from the program director.

Graduate Courses

The following courses have minimum prerequisites for undergraduate degrees in biochemistry, biology, chemistry, or microbiology with a concentration in genetics, organic chemistry, general biochemistry, or general microbiology.

16:681:501. (F) GENERAL MICROBIOLOGY (3)

Antoine, Passmore

Molecular aspects of origin of life, microbial evolution, properties and synthesis of the major biological polymers, protein synthesis, metabolic pathways and regulation, cellular control mechanisms, virology, applied immunology, microbiology, and food and industrial microbiology.

16:681:502. (S) MOLECULAR GENETICS (3)

Prokaryotic and eukaryotic molecular genetics. Bacteria, bacteriophage, yeast, Drosophila, and mammals.

16:681:515. (F) PRACTICAL MICROSCOPY (4)

Simon. Lec. 3 hrs., lab. 3 hrs. Prerequisites: 16:681:501 and permission of instructor.

Principles and techniques of light and electron microscopy. Application to the study of the fine structure of microorganisms.

16:681:517. (F) PROTEIN TECHNOLOGY (1)

Stein

Purifying, analyzing, and otherwise working with proteins.

16:681:520. (S) MICROBIAL BIOCHEMISTRY AND MOLECULAR BIOLOGY (3)

A survey of the biochemical activities unique to microorganisms emphasizing the similarities and differences between prokaryotic and eukaryotic organisms; consideration of the genetic regulation and practical importance of these biochemical capabilities. Topics include methanogenesis, toxins, biodegradation, microbial transformations, and secondary metabolites.

16:681:521. (S) MICROBIAL PHYSIOLOGY AND METABOLISM (3)

Microbial responses to environment with particular emphasis on nutrition and biochemistry. Enzymology and metabolic pathways of microorganisms. Metabolic diversity and regulation.

16:681:524. (S) INDUSTRIAL MICROBIOLOGY (3)

Eveleigh. Prerequisites: 16:681:501, one year of organic chemistry.

Industrial applications of microorganisms, including production of chemicals and antibiotics, transformations, product stability, protection from deterioration, impact on environment, continuous fermentations, and waste disposal.

16:681:530. (S) INTRODUCTION TO MOLECULAR MEDICINE (3)

Sanders

Application of molecular and cell biology to a wide variety of human diseases; recent advances in understanding basic mechanisms.

16:681:535. (F) IMMUNOLOGY (3)

Cellular basis of immunology; analysis, activation, and function of lymphoid cells; regulatory mechanisms, relevance to tumor and transplantation immunity.

16:681:544. (S) MEDICAL MICROBIOLOGY AND IMMUNOLOGY (4.5)

16:681:546. (F) INFECTIOUS DISEASES (5)

Dubin. Prerequisites: 16:681:544, 545, or equivalent; permission of instructor.

Open to advanced students who can demonstrate a need for a clinically oriented course in infectious diseases. Consists of sixteen three- or four-hour sessions (60 hours total) over a period of two months. Time varies; consult instructor.

16:681:548. CELL SURFACE RECEPTORS (3)

Stollar. Prerequisite: 16:681:501 or equivalent.

Detailed consideration of fundamental physical-chemical properties, schemes of classification, genetics, and modes of replication of selected animal viruses.

16:681:555. (F) MOLECULAR Virology (3)

Basic mechanisms of information storage in and retrieval from nucleic acids; organization of prokaryotic and eukaryotic genomes; mechanisms of DNA replication; transposable genetic elements; transcriptional and translational control of gene expression.

Designed to provide necessary background for advanced molecular genetics courses 16:681:581, 585, 586, 587, and 588.

16:681:581. (F) MOLECULAR GENETICS OF ORGANELLES (3)

Antoine. Prerequisite: 16:681:580 or permission of instructor.

Molecular analysis of genomes and of genetic and evolutionary processes in mitochondria and chloroplasts, both as unique systems and as model systems for molecular genetic studies.
16:681:585. (S) Cancer Molecular Biology (3)
Axelrod

16:681:586. (S) Plant Molecular Genetics (3)
Prerequisite: 16:681:580 or permission of instructor.
Topics include: nuclear genomes, genetic manipulations with Ti plasmids, mitochondrial and chloroplast genomes, molecular genetics of nitrogen fixation, plant viruses, transposable elements, and plant tissue culture techniques.

16:681:587. (S) Advanced Recombinant DNA Techniques (3)
Prerequisite: 16:681:580 or permission of instructor.
Use and properties of restriction endonucleases, prokaryotic and eukaryotic cloning vectors, construction and screening of recombinant DNA libraries, characterization of cloned DNA, and site-directed mutagenesis. Current NIH and FDA regulations governing recombinant DNA research.

16:681:588. (F) Cancer (3)
Axelrod. Prerequisite: 16:681:580 or permission of instructor.
Broad coverage of cancer as a family of diseases of humans and experimental animals. Malignant progression and metastasis, DNA and RNA tumor viruses, cancer genes, chemical carcinogenesis, tumor immunology, therapeutic modalities, epidemiology, and medical oncology.

16:681:601,602,603,604. Advanced Topics in Microbiology and Molecular Genetics (BA,BA,BA,BA)
Special topics of current interest.

16:681:607,608. Teaching Techniques in Microbiology and Molecular Genetics (2,2)
Passmore. Prerequisite: Open only to matriculated students in the graduate program in microbiology and molecular genetics.
Guidance and practical experience in the teaching of microbiology and molecular genetics.

16:681:611,612,613,614. (F) Laboratory Rotation in Microbiology and Molecular Genetics (2,2,2,2)
Prerequisite: Written approval of program director. Open only to matriculated students in the graduate program.
Half-term research projects of interest to the student in faculty laboratories.

Prerequisites: Permission of faculty adviser and program director.
Library research project normally leading to the nonthesis essay for master's degree candidates.

16:681:681,682. Seminar in Molecular Genetics and Microbial Physiology (1,1)
Informal critical description and discussion of current literature and concepts.

16:681:683,684. Seminar in Virology, Immunology, and Pathogenic Microbiology (1,1)
Informal critical description and discussion of current literature and concepts.

16:681:685,686. Seminar in Applied, Environmental, and Industrial Microbiology (1,1)
Katz, Zylstra
Informal critical description and discussion of current literature and concepts.

16:681:687,688. Seminar in Computational Molecular Biology (1,1)
Recent advances in computational molecular biology selected from the following areas: genomics, bioinformatics, structural biology, image analysis, pattern formation, and molecular evolution.

16:681:701,702. Research in Microbiology and Molecular Genetics (BA,BA)

MOLECULAR AND CELL BIOLOGY 695

Program Offered: Core Curriculum
Director of Interdisciplinary Core Curriculum: Professor Michael J. Leibowitz, Department of Microbiology, University of Medicine and Dentistry of New Jersey–Robert Wood Johnson Medical School, Piscataway, New Jersey 08854 (732/235-4795)

Core Curriculum Program

The Graduate School–New Brunswick and the Graduate School of Biomedical Sciences of the University of Medicine and Dentistry of New Jersey–Robert Wood Johnson Medical School offer a shared interdisciplinary core curriculum in molecular and cell biology. The core curriculum provides new course offerings and fellowship support to qualified students who want to pursue Ph.D. degrees in the Consolidated Graduate Programs in Molecular Biosciences. Students enrolled in molecular and cell biology are expected to follow the curriculum outlined below in their first year of study. Subsequently, they are expected to proceed in one of the participating degree-granting programs. The core curriculum courses are to be integrated into the requirements of the program in which the student earns the degree. This curriculum is followed by all students in the molecular biosciences programs.

Fall Term

16:115:501 Biochemistry (3)
16:315:502 Biochemistry (Molecular Biology) (3)
16:115:556 Ethical Scientific Conduct (1)
16:695:611 Special Topics in Molecular and Cell Biology (1)
16:695:615 Laboratory Rotation in Molecular and Cell Biology (4)

Spring Term

16:681:502 Microbial and Molecular Genetics (3)
16:695:601 Advanced Cell Biology (3)
16:695:612 Special Topics in Molecular and Cell Biology II (1)
16:695:616 Laboratory Rotation in Molecular and Cell Biology II (2 or 4)

Graduate Courses

16:695:601. Advanced Cell Biology (3)
Molecular analysis of eukaryotic cells, including cell structure, receptors, cell-cell interactions, cytoskeleton, growth, differentiation, and transformation.

16:695:611,612. Special Topics in Molecular and Cell Biology I, II (1,1)
First term: student seminars and discussions based on assigned literature readings in biochemistry and molecular genetics, with emphasis on structure and function of macromolecules. Second term: student seminars and discussions based on assigned literature readings in molecular cell biology, with emphasis on molecular approaches to cellular structures and activities in eukaryotic cells.

16:695:615,616. Laboratory Rotation in Molecular and Cell Biology I, II (4, 2 or 4)
Leibowitz
Students participate in research projects in the laboratories of selected faculty members.
MOLECULAR BIOPHYSICS 696

Program Offered: Core Curriculum

Director of Interdisciplinary Core Curriculum: Professor Wilma K. Olson, Center for Molecular Biophysics and Biophysical Chemistry, Wright-Rieman Laboratories, Busch Campus (732/445-6376)

Participating Faculty

The following members and associate members of the graduate faculty, identified more fully under their respective programs, represent part of the faculty who participate regularly in the core curriculum in molecular biophysics.

Stephen Anderson, Biochemistry and Chemistry
Edward Arnold, Biochemistry, Chemistry, and Microbiology and Molecular Genetics
Jean S. Baum, Biochemistry and Chemistry
Helen M. Berman, Biochemistry, Chemistry, and Microbiology and Molecular Genetics
Kenneth J. Breslauer, Biochemistry and Chemistry
Barbara M. Brodsky, Biochemistry
Bernard Coleman, Mechanics
Richard H. Elblight, Biochemistry, Chemistry, and Microbiology and Molecular Genetics
Martin Farach-Colton, Computer Science and Microbiology and Molecular Genetics
Marc Gartenberg, Biochemistry, Microbiology and Molecular Genetics, and Pharmacology
Millie M. Georgiadis, Biochemistry, Chemistry, and Microbiology and Molecular Genetics
Sarah E. Hitchcock-DeGregori, Biochemistry, Cell and Developmental Biology, and Microbiology and Molecular Genetics
Masayori Inouye, Biochemistry, Cell and Developmental Biology, and Microbiology and Molecular Genetics
Stephen S. Isied, Biochemistry and Chemistry
Roger A. Jones, Biochemistry and Chemistry
Karsten Krogh-Jespersen, Chemistry
Casimir Kulikowski, Computer Science and Microbiology and Molecular Genetics
Jeehun K. Lee, Chemistry
John Lenard, Biochemistry, Cell and Developmental Biology, Microbiology and Molecular Genetics, Pharmacology, and Physiology and Neurobiology
Ronald M. Levy, Biochemistry, Chemistry, and Microbiology and Molecular Genetics
Richard Ludescher, Chemistry and Food Science
Gerald S. Manning, Chemistry
Wilma K. Olson, Biochemistry, Chemistry, Mechanics, and Microbiology and Molecular Genetics
Tariq M. Rana, Chemistry, Microbiology and Molecular Genetics, and Pharmacology
Ann M. Stock, Biochemistry
John Taylor, Chemistry
T. J. Thomas, Biochemistry and Nutritional Sciences
Donald A. Winkelmann, Cell and Developmental Biology

Core Curriculum Program

The aim of the molecular biophysics core curriculum is to select and educate researchers who are capable of applying the tools and concepts of the physical sciences to the solution of significant biological problems. Many important contributions in molecular biophysics are a synthesis of biology, chemistry, mathematics, and physics not found in a single traditional discipline. The molecular biophysics core curriculum therefore goes beyond the curricula of individual academic disciplines and sets its own guidelines for courses and the character of dissertation research. The requirements are, nevertheless, consistent with those of existing graduate programs at Rutgers so that the students can earn a Ph.D. in one of the major academic disciplines with a concentration in molecular biophysics.

Supplemental work for molecular biophysics is designed to enable the students to do the following: (1) receive broad exposure to the principles and methods of molecular biophysics along with rigorous training in the relevant physical sciences, (2) combine course requirements with those in existing predoctoral programs, (3) choose from a wide range of courses in molecular biophysics not specifically included in the requirements, and (4) master a curriculum that meets his or her individual needs.

Because students in the program come from a variety of backgrounds and have different interests, the course structure is flexible. Formal course requirements are limited to a core program in biophysical chemistry and a choice of two advanced courses. All students are expected to complete a sequence of laboratory rotations and to register every term for the core curriculum seminar. The laboratory rotation is intended to provide students with broad exposure to the methods of molecular biophysics and to assist them in choosing dissertation advisers. The aim of the seminar course is to provide in-depth exposure to new developments in the field as well as to unify the molecular biophysics students and faculty. Students also work in depth with a faculty mentor on a dissertation problem. The emphasis of the research training is on the structures, interactions, and physicochemical properties of biological macromolecules. In addition, the program offers wide latitude in the choice of advanced electives, allowing students and faculty to design curricula to match individual needs. Students in the program are expected to have a common minimal background in the physical and biological sciences. Courses are taken to fill gaps in background as well as to provide intensive training in the particular area in which the student plans to carry out research. The departmental courses offered at Rutgers provide a rich resource for this purpose. Most students are expected to take four to five years to complete degree requirements.

Graduate Courses

Biophysical Chemistry I, II, 16:160:537,538, and 16:115:556 Ethical Scientific Conduct are required courses. Exemptions may be granted for students transferring equivalent graduate credits. The advanced electives in molecular biophysics can be selected from a long list of existing courses in several graduate programs.

16:696:601,602. SEMINAR IN MOLECULAR BIOPHYSICS (1,1) Oral presentations and discussions of the current literature in molecular biophysics.

16:696:611,612. LABORATORY ROTATION IN MOLECULAR BIOPHYSICS (BA,BA) Introduction to the techniques and research areas of molecular biophysics. Participation in the research projects of two to three faculty members. Students are encouraged to take rotations in different areas. At least one of the rotations should be involved with the structural investigation (either by experimental or theoretical means) of a biopolymer.

MOLECULAR BIOSCIENCES

The Consolidated Graduate Programs in Molecular Biosciences coordinates recruitment and admission for applicants to the doctoral programs in biochemistry, cell and developmental biology, microbiology and molecular genetics, and cellular and molecular pharmacology, and has established a common first-year doctoral core curriculum for those disciplines. The consolidated programs are conducted jointly by the Graduate School–New Brunswick of Rutgers University and the Graduate School of Biomedical Sciences of the University of Medicine and Dentistry of New Jersey–Robert Wood Johnson Medical School.

Participating students may study with any of the more than 200 faculty members affiliated with the programs, giving opportunities for doctoral study in a wide range of fields, including biochemistry, biotechnology, cell biology, computational molecular biology, developmental biology, macromolecular structure, microbiology, molecular biology, molecular biophysics, molecular genetics, molecular virology, and protein engineering.

Admission Requirements

The most appropriate preparations for the molecular biosciences are undergraduate degrees in biology (cellular, developmental, molecular, or microbiology), in biochemistry, or in chemistry (analytical, organic, or physical). Applicants must have adequate backgrounds in both calculus and physics, and all applicants are required to have earned an undergraduate cumulative grade-point average of 3.0 or better.
Faculty Affiliations

Rutgers, The State University of New Jersey
Faculty of Arts and Sciences—New Brunswick/Division of Life Sciences
 Department of Cell Biology and Neuroscience
 Department of Chemistry
 Department of Genetics
 Department of Molecular Biology and Biochemistry
 Department of Psychology

College of Pharmacy
 Department of Chemical Biology and Pharmacognosy

Cook College
 Department of Animal Sciences
 Department of Biochemistry and Microbiology
 Department of Food Science

University of Medicine and Dentistry of New Jersey—Robert Wood Johnson Medical School
 Department of Biochemistry
 Department of Cell and Molecular Pharmacology
 Department of Medicine (and other clinical departments)
 Department of Molecular Genetics and Microbiology
 Department of Neurosciences and Cell Biology
 Department of Pathology
 Department of Physiology and Biophysics

Academic Research Centers and Institutes
 Biotechnology Center for Agriculture and the Environment (BCAE)
 Cancer Institute of New Jersey (CINJ)
 Center for Advanced Biotechnology and Medicine (CABM)
 Center for Advanced Food Technology (CAFT)
 Center of Alcohol Studies (CAS)
 Center for Computer Aids for Industrial Productivity (CAIP)
 Center for Molecular Biophysics and Biophysical Chemistry (CMB)
 Center for Theoretical and Applied Genetics (CTAG)
 Environmental and Occupational Health Sciences Institute (EOHSI)
 Waksman Institute of Microbiology (WIM)

First-Year Core Curriculum

Fall Term
 16:115:501 Biochemistry (3)
 16:115:502 Biochemistry (Molecular Biology) (3)
 16:115:556 Ethical Scientific Conduct (1)
 16:695:611 Special Topics in Molecular and Cell Biology I (1)
 16:695:615 Laboratory Rotation in Molecular and Cell Biology I (4)

Spring Term
 16:681:502 Microbial and Molecular Genetics (3)
 16:695:601 Advanced Cell Biology (3)
 16:695:612 Special Topics in Molecular and Cell Biology II (1)
 16:695:616 Laboratory Rotation in Molecular and Cell Biology II (2 or 4)
 one elective course (3)

For information regarding specific areas of study as well as course listings, see the program descriptions for biochemistry, cell and developmental biology, cellular and molecular pharmacology, and microbiology and molecular genetics within this chapter of the catalog and in related materials from UMDNJ-RWJMS.

MUSIC 700

Degree Programs Offered: Master of Arts, Doctor of Philosophy
Director of Graduate Program: Professor Floyd Grave, Chapel Drive, Douglass Campus (732/932-9256)

Members of the Graduate Faculty
Irene Alm, Associate Professor of Music, MGSA; Ph.D., California (Los Angeles)
Baroque music: organ
William Berz, Associate Professor of Music, MGSA; Ph.D., Michigan State
Music education; instructional technology
Antonius Bittmann, Assistant Professor of Music, MGSA; Ph.D., Eastman School of Music (Rochester)
Performance practice; organ
Gerald C. Chenoweth, Professor of Music, MGSA; Ph.D., Iowa
Music composition; theory and analysis
Richard Chrisman, Associate Professor of Music, MGSA; Ph.D., Yale
Contemporary music theory
Nancy Cooper, Associate Professor of Music, MGSA; D.M.E., Indiana
Music education
Noel G. DaCosta, Professor of Music, MGSA; M.A., Columbia
Music theory; composition
Nanette de Jong, Assistant Professor of Music, MGSA; Ph.D., Michigan
Ethnomusicology; flute
Floyd Grave, Associate Professor of Music, MGSA; Ph.D., New York
Eighteenth-century music; history of music; theory
Douglas Johnson, Professor of Music, MGSA; Ph.D., California (Berkeley)
Eighteenth- and nineteenth-century music; Beethoven
George Jones, Professor of Music, MGSA; Ph.D., New York
Renaissance music; wind instruments
Andrew Kirkman, Assistant Professor of Music, MGSA; Ph.D., Kings College (London)
Renaissance music; early vocal music performance
Nancy Rao, Assistant Professor of Music, MGSA; Ph.D., Michigan
Music theory and analysis
Marilyn F. Somville, Dean of MGSA and Professor of Music; Ph.D., Stanford
Performance practice; aesthetics, and criticism
Floyd G. Sumner, Professor of Music, MGSA; Ph.D., Rutgers
Music history; Renaissance instrumental music
Charles Waorinen, Professor of Music, MGSA; M.A., Columbia
Music composition; electronic sound synthesis; theory and analysis

Programs

Areas of concentration in graduate music programs encompass music scholarship on one hand and composition on the other. Both areas incorporate extensive study of music theory. Thus, for the M.A. degree, candidates specialize either in music history and theory or composition and theory. Similarly, the Ph.D. program involves specialization either in musicology or in composition and theory.

Requirements for the M.A. degree include a minimum of 30 credits. For students specializing in composition, the following courses are required: 16:700:501, 502, 525, 526, 531, 532, 601, and 602. Those concentrating in music history must take 16:700:501, 502, 519, 520, 525, 526, and 602. A reading knowledge of one foreign language (German, French, Italian, or Latin), to be demonstrated by the second year of residency, is also required for the M.A. degree. For those planning to continue toward the Ph.D. degree, a reading knowledge of two foreign languages should be demonstrated before completion of the program. German (required for the Ph.D.) is strongly recommended as the first language. All candidates must pass a written comprehensive examination. Candidates in music history submit a master’s essay; candidates in composition submit a work for chamber ensemble.

For admission to the Ph.D. program, applicants should have satisfied requirements for the M.A. degree or their equivalents. Applicants in musicology should submit an essay giving evidence of their ability to engage in scholarly research. Applicants in composition should submit (1) a work based on a traditional procedural model such as motet, chorale prelude, invention, or fugue, and (2) a portfolio of recent representative compositions. Ph.D. candidates in composition must take 16:700:631, 632, 651, and 9 elective credits. Ph.D. candidates in musicology must take...
16:700:619, 620, 651, and 9 elective credits. In addition, a minimum of 24 credits in individual research is required. Language requirements to be fulfilled by written examination are: for students in musicology, a working knowledge of German and French and an additional language to be chosen with the approval of the graduate director (all of these language requirements should be met by the third year of graduate study); for students in composition, a working knowledge of German and one Romance language to be chosen with the approval of the graduate director (both requirements should be met by the third year of graduate study). As part of their graduate training, doctoral students are also required to fulfill certain teaching duties under faculty supervision. Before admission to candidacy for the Ph.D. degree, all students must pass a written and oral comprehensive examination. For students in musicology, a dissertation is required. Candidates in composition must submit an original work of substantial proportions, along with an appropriate critical or theoretical essay.

The Master of Philosophy degree is available to doctoral candidates. The faculty also cooperates with the M.A. program in theology, with a major in music, offered by the New Brunswick Theological Seminary.

All students of composition (both M.A. and Ph.D. candidates) are expected to participate in the Composer Forum, a periodic meeting of students and faculty that provides a setting for the performance and discussion of students’ music.

In addition to courses listed below, a student may, with approval of the graduate director, receive credit for certain upper-level undergraduate or graduate classes offered by other departments (for example, 01:730:365 Philosophy of Music, offered by the philosophy department) whose content is relevant to the student’s interests.

Graduate Courses
16:700:501. (F) INTRODUCTION TO MUSIC RESEARCH (3)
Survey of bibliographic materials for research in music.

16:700:502. (S) TECHNIQUES OF MUSIC RESEARCH (3)
Prerequisite: 16:700:501.
Application of research techniques to the transcription, editing, and interpretation of musical sources.

16:700:509,510. MUSIC HISTORY—INTENSIVE REVIEW (3,3)
Review of major historical periods of music from antiquity to the modern era with emphasis on the development of musical styles.

16:700:511,512. MUSIC THEORY—INTENSIVE REVIEW (3,3)
Review of counterpoint (two- and three-part species counterpoint, including imitation); harmony (part-writing and progressions); sight-reading and analysis.

16:700:515,516. SOUND SYNTHESIS AND COMPUTER-ASSISTED COMPOSITION (3,3)
Prerequisite: Permission of instructor.
Analysis of sound and timbre. Use of the computer for musical composition.

16:700:517. THE HISTORY OF MUSICAL STYLE (3)
Prerequisite: Permission of instructor.
Aspects of convention and innovation in composers’ approach to sonority, harmony, melody, rhythm, and form in representative vocal and instrumental compositions from different historical periods, ca. 1600–1950.

16:700:519,520. PROSEMINAR IN MUSIC HISTORY (3,3)
Prerequisites: 16:700:501,502.
Intensive study of selected areas in the history of music, with guided research leading to oral and written reports.

16:700:522. CANON AND FUGUE (3)
Exercises in polyphonic technique based on practices from the Renaissance to the tonal period.

16:700:525,526. STUDIES IN MUSIC ANALYSIS (3,3)
Study of styles and structures in compositions from the Middle Ages to the present and their relationship to ideas on composition held by composers and theorists.

16:700:527. STUDIES IN OPERA (3)
Prerequisite: Permission of instructor. Offered in alternate years.
Study of selected operas. Historical background, sources, editions, textual criticism, analysis, performance practice.

16:700:528. STUDIES IN CHORAL LITERATURE (3)
Prerequisite: Permission of instructor. Offered in alternate years.
Study of selected works for chorus and vocal ensemble from the sixteenth century to the present. Historical background, sources, editions, textual criticism, analysis, performance practice.

16:700:529. STUDIES IN INSTRUMENTAL ENSEMBLE LITERATURE (3)
Prerequisite: Permission of instructor. Offered in alternate years.
Study of selected chamber and orchestral works from the seventeenth century to the present. Historical background, sources, editions, textual criticism, analysis, performance practice.

16:700:530. STUDIES IN KEYBOARD LITERATURE (3)
Prerequisite: Permission of instructor. Offered in alternate years.
Study of selected works for keyboard instruments. Historical background, sources, editions, textual criticism, analysis, performance practice.

16:700:531,532. PROSEMINAR IN COMPOSITION (3,3)
Prerequisite: Permission of instructor.
Practice in the techniques of creative composition. Includes participation in the Composer Forum.

16:700:541,542. SPECIAL TOPICS IN MUSIC THEORY AND ANALYSIS (3,3)
Prerequisite: Permission of instructor.
Study of selected musical repertories and styles from a variety of theoretical perspectives.

16:700:551. JAZZ RESEARCH AND ANALYSIS (3)
Prerequisite: 16:700:501. Recommended: 16:700:525 (as pre- or corequisite).
Introduction to scholarly research in jazz. Covers research methods, transcription, and analysis of recorded jazz performances, pertinent African-American cultural issues, and questions of performance practice.

16:700:552. INTRODUCTION TO ETHNOMUSICOLOGY (3)
Prerequisite: Permission of instructor.
Theory and methodology of ethnomusicology, current issues, and intellectual history of the discipline.

16:700:557,568. PROSEMINAR IN PERFORMANCE PRACTICE (3,3)
Prerequisite: Permission of instructor.
Problems of performance technique and interpretation from the Renaissance to the present.

16:700:571,572. SCHENKERIAN ANALYSIS (3,3)
Prerequisite: Permission of instructor. Offered in alternate years.
Premises, terminology, and analytical procedures derived from Heinrich Schenker’s theory of linear structure, with emphasis on verification of analysis through critical listening.

16:700:573,574. TWENTIETH-CENTURY THEORY (3,3)
Prerequisite: Permission of instructor. Offered in alternate years.
Analysis of selected compositions from ca. 1910 to the present. Theoretical strategies and perspectives.

16:700:601. INDEPENDENT STUDY (BA)
For those specializing in musicology: individual research leading to an essay demonstrating command of the techniques of historical or analytical research. For those specializing in music composition: individual research leading to a composition of substantial size, demonstrating command of the techniques of composition.
16:700:601. MASTER’S PROJECT (BA)
Prerequisite: 16:700:601.
Completion of the essay or composition required for the M.A. degree.

16:700:619,620. SEMINAR IN MUSICOLOGY (3,3)
For students pursuing the doctoral program.
Individual research in selected areas of music history and musicology.
16:700:631,632. SEMINAR IN COMPOSITION (3,3)
For students pursuing the doctoral program.
Advanced study in the techniques of creative composition.
Includes participation in the Composer Forum.

16:700:651. HISTORY OF MUSIC NOTATION (3)
Prerequisite: Permission of instructor. Offered in alternate years.
Intensive study of transcription from selected representative sources.

16:700:652. TOPICS IN THE HISTORY OF MUSIC THEORY (3)
Prerequisite: Permission of instructor.
Close examination of selected theoretical writings from antiquity to the twentieth century, with emphasis on the study of tuning systems, modes, tonality, and acoustics.
16:700:701,702. RESEARCH IN MUSIC (BA,BA)
Individual research leading either to a musical composition, an extended essay in an area of music history or theory, or toward completion of the Ph.D. degree.

MUSIC
(See the catalog of the Mason Gross School of the Arts for information about programs that lead to the M.M., A.Dipl., and D.M.A. in music.)

NUTRITIONAL SCIENCES 709
Degree Programs Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Professor Susan K. Fried,
132 Thompson Hall, Cook Campus (732/932-9039)
Members of the Graduate Faculty
Robert E. Brolin, Professor of Surgery, UMDNJ-RWJMS; M.D., Michigan
Treatment of medically severe obesity; intestinal ischemic disease
Wendie S. Cohick, Assistant Professor of Animal Sciences, CC; Ph.D., Cornell
Hormonal regulation of mammary gland biology and lactational physiology
Julie M. Fagan, Associate Professor of Animal Sciences, CC; Ph.D., Arizona
Oxidative damage; antioxidant defense on aging and disease processes
Ronaldo P. Ferraris, Associate Professor of Physiology, UMDNJ-NJMS; Ph.D., Hawaii (Manoa)
Gastrointestinal physiology; membrane transport of nutrients; intestinal function / dysfunction imaging
Hans Fischer, Professor of Nutritional Sciences, CC; Ph.D., Illinois
Tryptophan and serotonin metabolism in the brain, with special reference to alcoholism and behavior
Susan K. Fried, Professor of Nutritional Sciences, CC; Ph.D., Columbia
Obesity; adipose tissue metabolism; leptin
Peter J. Guarnaccia, Associate Professor of Human Ecology, CC; Ph.D., Connecticut
Anthropology of foods and health
Michael W. Hamm, Associate Professor of Nutritional Sciences, CC; Ph.D., Minnesota
Local food supplies; nutrition and environment; urban ecology and nutrition
Bernadette G. Janas, Assistant Professor of Nutritional Sciences, CC; Ph.D., Cornell
Nutrition education and dietary change
Barry W. Jesse, Associate Professor of Animal Sciences, CC; Ph.D., Michigan State
Nutritional biochemistry of ruminant livestock
Debra P. Keenan, Assistant Professor of Nutritional Sciences, CC; Ph.D., Pennsylvania State
Nutrition education
Paul A. Lachance, Professor of Food Science, CC; Ph.D., Ottawa
Applied human nutrition; nutrition and food processing; nutraceuticals
Debra L. Laskin, Associate Professor of Pharmacology and Toxicology, CP; Ph.D., Medical College of Virginia
Mechanisms of immune cell activation; role of inflammatory cells in the pathogenesis of tissue injury
Patricia A. Schoknecht, Assistant Professor of Animal Sciences, CC; Ph.D., Cornell
Nutritional physiology of pregnancy and neonatal growth; postnatal growth
Sue A. Shaples, Associate Professor of Nutritional Sciences, CC; Ph.D., Columbia
Metabolism of bone and cartilaginous tissue; diet and human metabolism; osteoporosis
Adria R. Sherman, Professor of Nutritional Sciences, CC; Ph.D., Pennsylvania State
Trace elements; nutrition and immunity; developmental nutrition
T. Peter Stein, Professor of Surgery, UMDNJ-NJMS; Ph.D., Cornell
Parenteral nutrition; protein metabolism
Nancy R. Stevenson, Associate Professor of Physiology, UMDNJ-RWJMS; Ph.D., Rutgers
Nutrition and GI physiology; curricular development
Judith Storch, Professor of Nutritional Sciences, CC; Ph.D., Columbia
Cellular lipid transport; structure and function of fatty-acid-binding proteins; gastrointestinal lipid absorption
Beverly J. Tepper, Associate Professor of Food Science, CC; Ph.D., Tufts
Regulation of food intake; cognitive factors in food choice; taste perception; changes in taste in disease
T. J. Thomas, Associate Professor of Medicine, UMDNJ-RWJMS; Ph.D., Indian Institute of Science
Regulation of ornithine decarboxylase in autoimmune disease; phytochemicals and carcinogenesis
Malcolm Watford, Associate Professor of Nutritional Sciences, CC; D.Phil., Oxford
Glutamine metabolism; regulation of glutaminase gene expression
G. Terence Wilson, Professor of Psychology, GSAPP; Ph.D., SUNY (Stony Brook)
Assessment and treatment of weight and eating disorders
James E. Wohlt, Associate Professor of Animal Sciences, CC; Ph.D., Illinois
Nutrient requirements for growth and lactation
John Worobey, Associate Professor of Nutrition, UMDNJ-RWJMS; Ph.D., Pennsylvania State
Diet and behavior; infant and child nutrition and activity; eating disorders
Chung S. Yang, Professor of Chemical Biology and Pharmacognosy, CP; Ph.D., Cornell
Mechanisms of cancer prevention by dietary constituents, with particular interest in tea
Associate Members of the Graduate Faculty
Elaine A. Leventhal, Associate Professor of Medicine, UMDNJ-RWJMS; M.D., Wisconsin (Madison); Ph.D., Yale
Geriatrics; chronic and acute illnesses; occult malnutrition in the elderly
Sarah L. Ralston, Associate Professor of Animal Sciences, CC; Ph.D., V.M.D., Pennsylvania State
Equine clinical nutrition; stress and immune function; aging metabolism
Vincent A. Rifici, Assistant Professor of Medicine, UMDNJ-RWJMS; Ph.D., Rutgers
Lipoprotein metabolism and atherosclerosis

Programs
Graduate work in nutrition is supervised by faculty members located in the departments of nutritional sciences, animal sciences, food science, human ecology, the College of Pharmacy, and the University of Medicine and Dentistry of New Jersey (UMDNJ). Areas of specialization include nutritional biochemistry; nutrient regulation of gene expression; nutrition and disease; sociological and behavioral aspects of nutrition; mineral, protein and amino acid, and lipid metabolism; community nutrition; and developmental nutrition.

Applicants are expected to have an undergraduate major in a biological science, chemistry, or other field relevant to advanced training in nutritional sciences. The Graduate Record Examination must be taken. Prerequisites for admission include one year of general chemistry, one year of organic chemistry (or one term of organic chemistry and one term of biochemistry), and 12 additional credits of course work in advanced biology, chemistry, biochemistry, nutrition, food science, physics, or calculus.

The graduate program in nutritional sciences offers an M.S. with basic or applied emphasis and a Ph.D. in nutrition. All students complete course work that includes biochemical, physiological, molecular, and clinical aspects of nutrition; seminars; and electives
in the advanced life sciences. Students in the applied emphasis option also pursue advanced courses in community nutrition, public health, epidemiology, and psychology.

A joint program leading to an M.S./D.I. (dietetic internship with the University of Medicine and Dentistry of New Jersey–New Jersey Medical School [UMDNJ–NJMS]) also is offered. This program provides students with the scientific knowledge and critical thinking skills to become leaders in the field of dietetics. The program is open only to students who have completed a Didactic Program in Dietetics approved by the Commission on Accreditation/Approval for Dietetics Education. Students must be jointly accepted and simultaneously enrolled in the dietetic internship at UMDNJ–NJMS and the M.S. program at Rutgers.

The M.S. degree requires 24 credits of course work and 6 credits of research, including a thesis. The Ph.D. program requires 39 credits of course work in biochemistry, physiology, and nutrition and 33 credits of research. Candidates for the Ph.D. degree must spend a minimum of twelve consecutive months (two terms and a summer session) in residence and register for at least 24 credits of course work and 6 credits of research. Requests for exceptions to this policy are reviewed by the curriculum committee of the program. There is no language requirement. The Master of Philosophy degree is available to doctoral candidates.

Graduate Courses

16:709:503. **INTRODUCTION TO APPLIED NUTRITION RESEARCH** (3)
Prerequisites: 16:709:552,553, and statistics.

16:709:504. **(S) SEMINAR IN NUTRITION EDUCATION** (3)
Prerequisites: 11:709:400,401 or equivalent.

Investigation, discussion, and evaluation of current research in nutrition education.

16:709:506. **NUTRITIONAL ASPECTS OF DISEASE** (3)
Prerequisites: 16:709:552,553.

Advanced study of pathophysiological aspects of disease states and the relation to nutrition.

16:709:515. **PRINCIPLES OF NUTRITION RESEARCH** (3)
Prerequisites: 16:709:552,553.

Advanced topics in metabolic regulation including principles of experimental design as applied to nutrition research.

16:709:521. **(S) COMMUNITY NUTRITION** (3)
Prerequisites: 11:709:400,401 or equivalent.

Study of nutritional aspects of public health service and community agencies, and of programs designed to improve nutritional status of various population groups.

16:709:552,553. **NUTRITION: A BIOCHEMICAL AND PHYSIOLOGICAL BASIS** (4,4)
Prerequisites: 01:115:403; 16:115:511 or equivalent. Required of all students.

Digestion, function, and metabolism of proteins and amino acids, carbohydrates, lipids, minerals, and vitamins. Regulatory mechanisms, developmental changes, and species differences that influence the requirements and metabolism of nutrients. Effect of nutrient supply on metabolism at the molecular, cellular, and systemic levels, including special metabolic needs during growth, reproduction, stress, and senescence in animals and man.

16:709:601,602. **NUTRITIONAL SCIENCES SEMINAR** (1,2)
Student, faculty, and guest speakers. Student presentation required.

16:709:603,604. **ADVANCED STUDIES IN NUTRITION** (BA,BA)

16:709:621. **ADVANCED TOPICS: METABOLIC REGULATION** (1)
Prerequisites: 16:709:552,553.

Informal, critical discussion and directed study of current literature and concepts in nutrient metabolism.

16:709:622. **ADVANCED TOPICS IN MINERAL NUTRITION** (1)
Prerequisites: 16:709:552,553.

Informal, critical discussion and directed study of current literature and concepts in mineral nutrition.

16:709:623. **ADVANCED TOPICS: MOLECULAR NUTRITION** (1)
Prerequisites: 16:709:552,553.

Informal, critical discussion and directed study of current literature and concepts in the nutritional control of gene expression.

16:709:624. **ADVANCED TOPICS IN NUTRITIONAL SCIENCES** (1)
Prerequisites: 16:709:552,553.

Informal, critical discussion and directed study in current areas of nutrition research.

16:709:625. **RECENT ADVANCES IN NUTRITIONAL SCIENCES** (1)
Prerequisites: 16:709:552,553, or permission of instructor.

Informal, critical discussion and directed study in nutritional sciences, ranging from specialized research approaches and techniques to aspects of national and international nutrition policy.

16:709:687,688. **INDEPENDENT STUDIES IN NUTRITIONAL SCIENCES** (3,3)

16:709:701,702. **RESEARCH IN NUTRITIONAL SCIENCES** (BA,BA)

OCEANOGRAPHY 712

Degree Programs Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Professor Dale Haidvogel
Associate Director: Professor Gary Taghon, Marine Sciences Building, Cook Campus (732/932-6555)

Members of the Graduate Faculty

Kenneth W. Able, Professor of Marine and Coastal Sciences, CC; Ph.D., William and Mary

Ecology and behavior of fishes

Gail Ashley, Professor of Geological Sciences, FAS-NB; Ph.D., British Columbia

Sedimentology; geomorphology; environmental geology; modern processes

Roni Avisar, Professor of Meteorology, CC; Ph.D., Hebrew

Micrometeorology; boundary layer meteorology; atmospheric modeling

Paul G. Falkowski, Professor of Geological Sciences and Marine and Coastal Sciences, FAS-NB; Ph.D., British Columbia

Biogeochemical cycles; evolution; astrobiology

Scott M. Glenn, Professor of Marine and Coastal Sciences, CC; Sc.D., Massachusetts Institute of Technology; Woods Hole Oceanographic Institution

Physical oceanography; satellite remote sensing

J. Frederick Grassle, Professor of Marine and Coastal Sciences, CC; Ph.D., Duke

Marine ecology; oceanography

Judith P. Grassle, Professor of Marine and Coastal Sciences, CC; Ph.D., Duke

Population genetics; marine benthic ecology

Ximing Guo, Assistant Professor of Marine and Coastal Sciences, CC; Ph.D., Washington (Seattle)

Research in cytogenetics; genetic manipulation; and genomic mapping in molluscan aquaculture species

Dale B. Haidvogel, Professor of Marine and Coastal Sciences, CC; Ph.D., Massachusetts Institute of Technology; Woods Hole Oceanographic Institution

Physical oceanography; numerical ocean circulation modeling

Lee F. Kirkhof, Assistant Professor of Marine and Coastal Sciences, CC; Ph.D., California (San Diego) / Scripps Institution of Oceanography

Marine microbiology-molecular biology; microbial population dynamics

Uwe Kits, Associate Professor of Marine and Coastal Sciences, CC; Ph.D., Kiel

Behavior and microdistribution of juvenile fish; in situ optics

David S. Kosson, Professor of Chemical and Biochemical Engineering, SE; Ph.D., Rutgers

Hazardous waste control

Richard Lutz, Professor of Marine and Coastal Sciences, CC; Ph.D., Maine

Marine ecology and paleoecology; shellfish ecology; biology of deep-sea hydrothermal vents

George R. McGhee, Professor of Geological Sciences, FAS-NB; Ph.D., Rochester

Marine paleoecology; evolutionary theory; mass extinctions

James R. Miller, Professor of Marine and Coastal Sciences, CC; Ph.D., Maryland

Air-sea interactions; remote sensing; climate modeling; earth system science

Kenneth G. Miller, Sr., Professor of Geological Sciences, FAS-NB; Ph.D., Massachusetts Institute of Technology; Woods Hole Oceanographic Institution

Cenozoic stratigraphy and paleoceanography; integrated biostatigraphy; isotopes stratigraphy; and seismic stratigraphy

Michael R. Muller, Professor of Mechanical and Aerospace Engineering, SE; Ph.D., Brown

Fluid mechanics; internal gravity waves and thermals

Andreas Münchow, Assistant Professor of Marine and Coastal Sciences, CC; Ph.D., Delaware

Observational oceanography; dynamics of coastal oceans and estuaries
The M.S. and Ph.D. degrees are offered in physical oceanography, biological oceanography, chemical oceanography, and marine geology; preference in admission is given to candidates seeking a Ph.D. Applicants are required to demonstrate a commitment to interdisciplinary studies that includes study of the physical and dynamical behavior of ocean systems. Applicants to the physical oceanography sequence are expected to hold an undergraduate degree in mathematics, physical science, or engineering and to have completed two years of calculus (through differential equations) and one year each of physics and chemistry. Applicants in the area of biological oceanography are expected to hold an undergraduate degree in one of the biological sciences and have successfully completed courses (one year each) in calculus, physics, general chemistry, and organic chemistry. Applicants in the area of chemical oceanography are expected to hold an undergraduate degree in chemistry and have successfully completed courses (one year each) in calculus, physics, organic chemistry, and physical chemistry. Applicants should show proficiency in a high-level computer language.

The Ph.D. requires a minimum of 72 credits of work beyond the bachelor's degree, including a minimum of 42 credits of Ph.D. thesis research. Qualifying examinations for the doctorate include both written and oral components. A typical program of course work includes graduate-level courses within the Department of Marine and Coastal Sciences and related courses offered by other graduate programs, such as Ecology and Evolution, Environmental Sciences, Mechanical and Aerospace Engineering, and Meteorology.

A state-of-the-art research building on the Cook College campus includes a seawater flume, morphometrics, molecular biology, remote-sensing, ocean modeling, and cartography laboratories. The institute's resources include a satellite receiving station and a network of small, medium, and large computer platforms, including approximately eighty IBM and Mac FC systems, thirty Unix-based workstations, and three multiprocessor parallel computing platforms.

In addition to the central campus in New Brunswick, research opportunities are provided at three field stations. The Rutgers University Marine Field Station, located at the northern entrance to Great Bay, is the site of a large tract of pristine marsh and a major embayment that retains most of its natural character. An extensive program of long-term oceanographic and ecosystems research is underway at the station. Long-term ecosystem observatory sites (LEOs) have been established on the continental shelf, slope, and rise in conjunction with the New York Bight National Undersea Research Center. One of these sites (LEO-15) is connected to the Marine Field Station by electric/fiber optic cable, providing power and two-way communications with a variety of in-situ sensors.

The Rutgers University Haskins Shellfish Research Laboratory, located on Delaware Bay, has small boats and docking facilities. Research areas include microbiology, histopathology, shell structure, shellfish physiology, shellfish pathophysiology, analytical chemistry, cytogenetics, and biochemistry/physiology. Rutgers University Pineland Research Station, in Lebanon State Forest, is located near New Lisbon in the Pinelands National Reserve, where there is ready access to a diversity of upland and wetland habitats.

Graduate Courses
16:712:501. (F) PHYSICAL OCEANOGRAPHY (3)
Glenn, Miller. Prerequisites: One year of college calculus; one year of college physics.

Physical properties and basic equations for describing waves, tides, current, and the large-scale wind-driven and thermohaline circulation. Ekman, geostrophic, and inertial flows. Gulf Stream; air-sea interactions; El Niño.

Programs
The program has a diverse faculty representing the major oceanographic disciplines including physical, biological, and chemical oceanography, geology and geophysics, and engineering. The faculty are all members of the Institute of Marine and Coastal Sciences, established in 1989 to foster interdisciplinary research and coordinate Rutgers' marine and coastal programs.
Michael D. Grigoriadis, Professor of Computer Science, FAS-NB; Ph.D., Wisconsin
 Algorithms for network optimization
Peter L. Hammer, Professor of Mathematics and Computer Science Management and Director of the Center for Operations Research, RUTCOR/FM; Ph.D., Bucharest
 Boolean methods in operations research; discrete optimization
Ronald Harstad, Associate Professor of Management, FM; Ph.D., Pennsylvania
 Game theory; laboratory economics; auctions
Stephen J. Hershkorn, Assistant Professor of Management Science and Information Systems, FM; RUTCOR; Ph.D., California (Berkeley)
 Sequential decision making under uncertainty; stochastic modeling; stochastic optimization
Alan Hoffman, Visiting Professor of Mathematics, RUTCOR; Ph.D., Columbia
 Combinatorics and optimization; linear algebra
Douglas H. Jones, Associate Professor of Management, FM; Ph.D., Florida State
 Psychometrics; integer programming; application to test construction; optimal experimental design; Bayesian methods; optimal financial portfolios
Jeffry N. Kahn, Professor of Mathematics, FAS-NB; Ph.D., Ohio State
 Matroids; extremal problems in set theory and graph theory; finite geometries
Paul Kantor, Professor of Library and Information Studies, SCILS; Ph.D., Princeton
 Information and decision systems; information economics; library and information systems evaluation; system interfaces
Michael N. Katehakis, Associate Professor of Management, FM; Ph.D., Columbia
 Dynamic programming; reliability; queueing; sequential statistics; operations management
Leonid Khachiyan, Professor of Computer Science, FAS-NB; Ph.D., U.S.S.R.
 Academy of Sciences
 Mathematical programming; complexity; discrete optimization
Alexander Kogan, Associate Professor of Accounting and Information Systems, FM; RUTCOR; Ph.D., U.S.S.R. Academy of Sciences
 Expert systems; logical analysis of data; Boolean functions; combinatorial optimization; information systems
Chung-few Lee, Professor of Finance, FM; Ph.D., SUNY (Buffalo)
 Applying economics and economic theory in finance and accounting research
Lei Lei, Assistant Professor of Management Science, FM; Ph.D., Wisconsin (Madison)
 Vehicle scheduling and cyclic scheduling; convex resource allocation and production/planning algorithms
Richard McLean, Associate Professor of Economics, FAS-NB; Ph.D., SUNY (Stony Brook)
 Game theory and its applications
Benjamin Melamed, Professor of Management Science and Information Systems, FM; RUTCOR; Ph.D., Michigan
 Stochastic processes; modeling and simulation; telecommunications modeling; programming languages
Joseph I. Nauss, Chairperson and Professor of Statistics, FAS-NB; Ph.D., Harvard
 Applied probability; data quality control; clustering
Rosa Oppenheim, Professor of Operations Research, FM; Ph.D., Polytechnic Institute of Brooklyn
 Mathematical programming; graph theory; forecasting
Andras Prekopa, Professor of Operations Research and Statistics, FAS-NB; Ph.D., Budapest
 Stochastic processes; stochastic optimization; linear and nonlinear programming; inventory control; applications to engineering design
Fred S. Roberts, Professor of Mathematics, FAS-NB, and Director of the Center for Discrete Mathematics and Theoretical Computer Science (DIMACS); Ph.D., Stanford
 Discrete mathematical models; graph theory; decision making; measurement theory
Michael H. Rothkopf, Professor of Management and Operations Research, FM; RUTCOR; Ph.D., Massachusetts Institute of Technology
 Practice of operations research; models of bidding; energy economics
Andrzej Ruszczynski, Professor of Management Science and Information Systems, FM; RUTCOR; Ph.D., Warsaw
 Stochastic programming; financial modeling; and risk management
Michael E. Salcsa, Associate Professor of Mathematics, FAS-NB; Ph.D., Massachusetts Institute of Technology
 Combinatorial optimization and algorithms; extremal set theory; partially ordered sets
Glenn Shafer, Professor of Management, FM; Ph.D., Princeton
 Probability in statistical inference; expert systems; causal conjecture
David F. Shanno, Professor of Management and Operations Research, FM; RUTCOR; Ph.D., Carnegie-Mellon
 Linear and nonlinear programming; numerical analysis; parallel computing
Eduardo D. Sontag, Professor of Mathematics, FAS-NB; Ph.D., Florida
 System and control theory
William L. Steiger, Professor of Computer Science, FAS-NB; Ph.D., Australian National University
 Algorithms; parallel computations; computational geometry

William E. Strawderman, Professor of Statistics, FAS-NB; Ph.D., Rutgers
 Decision theory; inferential; multivariate statistics
Hector J. Sussmann, Professor of Mathematics, FAS-NB; Ph.D., New York System and control theory
Hiroti Tsurumi, Professor of Economics, FAS-NB; Ph.D., Pennsylvania
 Bayesian econometrics and statistical inference
Yehuda Vardi, Professor of Statistics, FAS-NB; Ph.D., Cornell
 Stochastic modeling; applied probability; statistical theory and methods
Robert Vichnevetsky, Professor of Computer Science, FAS-NB; Ph.D., Brussels
 Numerical analysis; modeling and simulation of systems
Charles A. Weibel, Professor of Mathematics, FAS-NB; Ph.D., Harvard
 Algebraic K-theory; homological algebra; algebraic topology; category theory

Programs

The field of operations research is by nature an interdisciplinary one. It has its origins in World War II, when scientists, engineers, and mathematicians were asked to develop ways to make the most effective use of limited military resources. Since then, operations research has found widespread application in industry and government, in problems involving decisions about the use of scarce resources and problems involving complex design, allocation, planning, or logistics elements. Modern operations research is essential to improve the efficiency of business and government.

The faculty represented in the program work on a variety of research problems, from the theoretical to the applied. Recent faculty research interests include combinatorial optimization, linear and nonlinear programming, network optimization and synthesis, Boolean functions, integer programming, dynamic programming, graph theory, matroid theory, artificial intelligence and expert systems, mathematical models of social and policy problems, measurement theory, utility and decision making, social choice, game theory, computational complexity, queueing theory, stochastic processes and stochastic optimization, competitive bidding, statistical decision theory, design and analysis of surveys, random algorithms, economics of uncertainty, natural resources, numerical analysis, simulation, reliability theory, production analysis, inventory theory, scheduling, performance analysis, system theory, dynamic systems, and optimal control problems.

The Ph.D. program in operations research emphasizes both the theory and the practice of operations research. Doctoral students are exposed to theoretical and computational aspects of operations research, as well as to its applications. They also are expected to specialize by taking a series of courses chosen to complement their individual strengths and interests. Students are encouraged to get involved in the research activities of the Rutgers Center for Operations Research (RUTCOR) from the time of their arrival on campus.

Specific features of the Ph.D. program in operations research include a strong research orientation and emphasis on the interdisciplinary nature of operations research. Many students are authors or coauthors of research reports presented at major conferences and published in internationally circulated journals. The interdisciplinary direction of the program derives both from its curriculum and from the faculty drawn from many different disciplines. Students are encouraged to include in their study plans courses offered by various departments in the mathematical sciences, engineering, business, etc. The program is particularly strong in optimization theory, discrete and stochastic operations research, logical analysis of data, etc. Additional innovative focus areas of applications to science, engineering, and finance are being developed.

Students pursuing studies leading to the M.S. degree in operations research prepare for careers in industry and government that apply methods of operations research to practical problems. Students in the M.S. program are encouraged to take as many practically oriented interdisciplinary operations research courses as possible and to participate in the various operations research programs at RUTCOR aimed at industrial and government applications.

The major requirements for the Ph.D. involve course work (48 credits), research work (24 credits), a Ph.D. qualifying examination, and a dissertation. There also is a seminar requirement.
The major requirements for the M.S. will involve course work (30 credits), an essay, and a final examination. The essay can be expository or it may involve the development of new theoretical results, software, computer implementation of algorithms, modeling, etc. There also is a seminar requirement.

A wide variety of courses related to operations research are given by the programs participating in RUTCOR and other departments at the university. In addition, students in the Ph.D. and M.S. programs may sign up for independent study courses for credit toward the 48-credit or 30-credit requirements. All students are expected to be regular attendees and participate in RUTCOR’s seminars and colloquia.

Admission to the M.S. and Ph.D. programs is awarded selectively by the admissions committee. Applicants to the M.S. program should have an undergraduate degree in one of the fields related to operations research, and applicants to the Ph.D. program should have either a bachelor’s or a master’s degree in one of these fields. Both programs are intended to be small and are aimed at a high-quality group of students. Applications should include transcripts, three letters of recommendation, and scores from the Graduate Record Examination, both the general test and a subject test in a field related to operations research. Foreign students should supply a score on the TOEFL. The official deadline for admission is May 1, although this deadline is waived whenever possible for qualified students.

Students entering the programs in operations research are expected to have knowledge of undergraduate probability, statistics, advanced calculus, linear algebra, and introductory computer science.

Financial support for graduate study in operations research at Rutgers is coordinated through RUTCOR. Students are supported through teaching, graduate, and research assistantships in the participating departments of RUTCOR or in RUTCOR itself, research on faculty members’ research projects, fellowships, and adjunct teaching jobs. Applications for financial support should be included with the application for admission, and are due by March 1 for the following academic year (beginning in September). Late applications for financial support are accepted as long as support is available.

Graduate Courses

16:711:513. (S) DISCRETE OPTIMIZATION (3)
Prerequisite: 16:198:521 or equivalent.
Develops the mathematical foundation of linear and nonlinear optimization procedures for problems in which the variables can only take on values in a finite set, usually (0,1). A variety of algorithms are presented, along with numerous applications.

16:711:517. (F) COMPUTATIONAL PROJECTS IN OPERATIONS RESEARCH (3)
Staff. Prerequisite: 01:640:350 or 354.
Individual and group assignments; intensive computer practice; coding; programming.

16:711:525. (S) STOCHASTIC MODELS OF OPERATION RESEARCH (3)
Staff. Prerequisites: 01:640:477 or 16:960:654.

16:711:531. (F) ACTUARIAL MATHEMATICS (3)
Prekopa. Prerequisite: 01:960:381.
Economics of insurance, life tables, life insurance, life annuities, benefit premiums and reserves, multiple life theory, multiple decrement models, risk theory, and population theory.

16:711:547, 548. CASE STUDIES IN APPLIED OPERATIONS RESEARCH (3,3)
Prerequisites: Linear programming, probability, and computer programming. Applications in operations research. Investigates the modeling process as it deals with economic uncertainties, missing information, risk, and priorities. The case study approach is used, with students writing “recommendation to management” reports. Guest lecturers from industry describe actual projects.

16:711:553. BOOLEAN AND PSEUDO-BOOLEAN FUNCTIONS (3)
Theory and applications of Boolean functions and of set (or, pseudo-Boolean) functions. Important classes of such functions, e.g., threshold functions, are examined. Applications to graph theory, integer programming, and decision making.

16:711:555. (F) STOCHASTIC PROGRAMMING (3)
Decision principles in stochastic programming: penalty models, probabilistic constrained models, dynamic type models. Convexity theory and solutions of the relevant optimization problems by mathematical programming techniques. Applications in economics, business, and engineering.

16:711:556. (S) QUEUEING THEORY (3)
Avi-Itzhak. Prerequisite: 16:960:680.

16:711:601, 602. SEMINAR IN OPERATIONS RESEARCH (0,0)
Prerequisite: Permission of instructor.
Regular participation in the colloquia and seminars run by RUTCOR is required of all M.S. and Ph.D. students.

16:711:611, 612, 613, 614. SELECTED TOPICS IN OPERATIONS RESEARCH (BA, BA, BA, BA)
Prerequisite: Permission of instructor.
Topics of current interest relevant to operations research.

16:711:631. (S) FINANCIAL MATHEMATICS II (3)
Prekopa. Prerequisites: 16:198:521 and 01:960:381.
Options, futures and other derivatives, arbitrage pricing, Black-Scholes theory, exotic options, interest rate models, stochastic programming models, and their applications to financial planning.

16:711:695, 696, 697, 698, 699. INDEPENDENT STUDY IN OPERATIONS RESEARCH (BA, BA, BA, BA, BA)
Prerequisite: Permission of instructor.
Focuses on a specialized topic in operations research individually designed with a supervising faculty member.

16:711:701, 702. RESEARCH IN OPERATIONS RESEARCH (BA, BA)
See also courses listed under computer science, economics, industrial and systems engineering, statistics, and mathematics (applied mathematics), and in the doctoral program in management at Graduate School–Newark, including the following courses:

16:198:503. DATA STRUCTURES AND ALGORITHMS (3)
16:198:510. NUMERICAL ANALYSIS (3)
16:198:513, 514. DESIGN AND ANALYSIS OF DATA STRUCTURES AND ALGORITHMS I, II (3,3)
16:198:521. LINEAR PROGRAMMING (3)
16:198:522. NETWORK AND COMBINATORIAL OPTIMIZATION ALGORITHMS (3)
16:198:524. NONLINEAR PROGRAMMING ALGORITHMS (3)
16:198:526. ADVANCED NUMERICAL ANALYSIS (3)
16:198:528. PARALLEL NUMERICAL COMPUTING (3)
16:198:535. Pattern Recognition Theory and Application (3)
16:198:538. Complexity of Computation (3)
16:198:541. Database Systems (3)
16:220:500. Mathematical Methods for Microeconomics (3)
16:220:501,502. Microeconomic Theory I,II (3,3)
16:220:507,508. Econometrics I,II (3,3)
16:220:545. Uncertainty and Imperfect Information (3)
16:220:546. Topics in Game Theory (3)
16:540:504. Operations Research in Marketing and Distribution (3)
16:540:510. Deterministic Models in Industrial Engineering (3)
16:540:515. Stochastic Models in Industrial Engineering (3)
16:540:520. Design and Physical Distribution Systems (3)
16:540:530. Forecasting and Time Series Analysis (3)
16:540:555. Simulation of Production Systems (3)
16:540:560. Production Analysis (3)
16:540:565. Facilities Planning and Design (3)
16:540:568. Automation and Computer Integrated Manufacturing (3)
16:540:585. System Reliability Engineering (3)
16:540:660. Inventory Control (3)
16:540:665. Theory of Scheduling (3)
16:642:573,574. Numerical Analysis (3,3)
16:642:577,578. Selected Mathematical Topics in System Theory (3,3)
16:642:581. Graph Theory (3)
16:642:582,583. Combinatorics I,II (3,3)
16:642:586. Theory of Measurement (3)
16:642:587. Selected Topics in Discrete Mathematics (3)
16:642:588. Introduction to Mathematical Techniques in Operations Research (3)
16:642:589. Topics in Mathematical Techniques in Operations Research (3)
16:960:540,541. Statistical Quality Control I,II (3,3)
16:960:542. Life Data Analysis (3)
16:960:563. Regression Analysis (3)
16:960:567. Applied Multivariate Analysis (3)
16:960:586,587. Interpretation of Data I,II (3,3)
16:960:590. Design of Experiments (3)
16:960:591. Advanced Design of Experiments (3)
16:960:593. Theory of Statistics (3)
16:960:654. Stochastic Processes (3)
16:960:663. Regression Theory (3)
16:960:680,681. Advanced Probability Theory I,II (3,3)
16:960:689. Sequential Methods (3)
26:390:571. Survey of Financial Theory (3)
26:390:662. Investment Analysis and Portfolio Theory (3)
26:711:561. Fundamentals of Optimization (3)
26:711:585. Control Models in Operations Management (3)
26:711:586. Planning Models in Operations Management (3)
26:711:652. Nonlinear Programming (3)
26:711:676. Statistical Aspects of Stochastic Simulation (3)
26:960:580. Stochastic Processes (3)

PACKAGING SCIENCE AND ENGINEERING

Programs

Academic and research training in the area of packaging science and engineering for master’s candidates is available at Rutgers, The State University of New Jersey, in the following programs of the Graduate School–New Brunswick: ceramic science and engineering, food science, industrial and systems engineering, materials science and engineering, and pharmaceutical science.

Degree requirements are set in accordance with the graduate program to which the student is admitted. The student electing this option enrolls in an interdisciplinary program that includes core courses in business, science, and engineering and a concentration in one of the six participating disciplines. Coordination among the five faculties sponsoring the packaging option provides maximum flexibility and variety in the arrangement of individual degree programs.

For a Master of Science degree, a student must be admitted to, and meet the requirement of, one of the following programs of the Graduate School–New Brunswick: ceramic science and engineering, food science, industrial and systems engineering, mechanics and materials science, or pharmaceutical science. This requires a minimum of 18 credits involving courses in the degree program unrelated to packaging. The student must also meet the following common core requirements: the courses in packaging engineering, 16:150:571,572; the seminars in packaging, 16:150:581,582; the materials and design in packaging courses, 16:150:577,578; and either the special problems in packaging courses, 16:150:587,588, or the research thesis on packaging as approached through the departmental specialization.

The interaction of packaging and the environment is a broad subject of common concern underlying all programs that feature the option in packaging. Within this area, students are expected initially to indicate which one of the following three concentrations they wish to explore: packaging science and technology, packaging and production engineering, or packaging and marketing/management. For further information, the interested student should contact the director of one of the above programs or Professor James D. Idol, School of Engineering, Busch Campus (732/445-3224).

PHARMACEUTICAL SCIENCE 720

Degree Programs Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Professor Edmond J. LaVoie,
College of Pharmacy, William Levine Hall, Busch Campus
(732/445-3831)

Members of the Graduate Faculty

Leonard C. Bailey, Professor Emeritus of Pharmaceutical Chemistry, CP; Ph.D., Rutgers
Pharmaceutical analysis

John L. Colaizzi, Professor of Pharmacy and Dean of the College of Pharmacy; Ph.D., Purdue
Applications pharmacokinetics and biopharmaceutics

Thomas J. Cook, Assistant Professor of Pharmaceutics, CP; Ph.D., Michigan
Drug/vaccine delivery systems, mechanisms of drug/antigen transport

Chi-Tang Ho, Professor of Food Science, CC; Ph.D., Washington (St. Louis)
Separation and structural elucidation of bioactive compounds in foods, spices, and herbs

John E. Kerrigan, Assistant Professor of Medicinal Chemistry, CP; Ph.D., Georgia Institute of Technology
Serine protease inhibitors, molecular modeling, and computational chemistry
Chemical Engineering, Food Science, Pharmacology, and Toxicology.

degrees in pharmaceutics, industrial pharmacy, pharmaceutical chemistry, and medicinal chemistry are available to full- and part-time students with undergraduate pharmacy degrees. Applicants who have degrees in the physical or biological sciences may be accepted with the proviso that certain undergraduate courses be satisfactorily completed during the first two years. Areas of research specialization include pharmacokinetics, controlled drug release technology, packaging and related problems, surface chemistry, percutaneous absorption, structure-activity relations, drug analysis, drug synthesis, and isolation and identification of natural products.

Degree requirements for the M.S. degree normally include a minimum of 24 credits of course work and completion of an original research problem and thesis (6 credits).

The Ph.D. program requires a minimum of 48 credits of course work and 24 credits of research beyond the baccalaureate degree. For the Ph.D., a residence requirement of one academic year must be satisfied, preferably after completion of most of the required course work.

In addition to the courses described below, students normally will draw upon courses offered in other graduate programs, such as chemistry, biochemical engineering, food science, pharmacology, and toxicology.

Programs

Programs leading to the Master of Science and Doctor of Philosophy degrees in pharmaceutics, industrial pharmacy, pharmaceutical chemistry, and medicinal chemistry are available to full- and part-time students with undergraduate pharmacy degrees. Applicants who have degrees in the physical or biological sciences may be accepted with the proviso that certain undergraduate courses be satisfactorily completed during the first two years. Areas of research specialization include pharmacokinetics, controlled drug release technology, packaging and related problems, surface chemistry, percutaneous absorption, structure-activity relations, drug analysis, drug synthesis, and isolation and identification of natural products.

Degree requirements for the M.S. degree normally include a minimum of 24 credits of course work and completion of an original research problem and thesis (6 credits).

The Ph.D. program requires a minimum of 48 credits of course work and 24 credits of research beyond the baccalaureate degree. For the Ph.D., a residence requirement of one academic year must be satisfied, preferably after completion of most of the required course work.

In addition to the courses described below, students normally will draw upon courses offered in other graduate programs, such as chemistry, biochemical engineering, food science, pharmacology, and toxicology.

Graduate Courses

16:720:507. ADVANCED PHARMACEUTICS (3)

Sinko. Prerequisites: Physical chemistry and associated math requirements. Application of physical-chemical principles to the study and evaluation of pharmaceutical systems: solubility phenomena, equilibria, complexation, phase transitions, and pharmaceutical stability, and the fundamentals of pharmacokinetics.

16:720:510. ADVANCED PHARMACOKINETICS (3)

Sinko. Prerequisites: 01:160:327, 328. Kinetics of drug absorption, distribution, and elimination; clearance concepts; compartmental, noncompartmental, and physiological models.

16:720:511, 512. PHARMACEUTICAL FORMULATIONS (4,4)

Lec. 2 hrs., con. 1 hr., lab. 3 hrs. Prerequisites: 16:720:507, 516. Design and development of pharmaceutical dosage forms.

16:720:515, 516. PHARMACEUTICAL PROCESSES AND EQUIPMENT (2,2)

Lec. 2 hrs., lab. 3 hrs. Various processes utilized in pharmaceutical manufacturing, including the basic principles involved and the equipment used.

16:720:517, 518. PHARMACEUTICAL PROCESSES AND EQUIPMENT LAB (1,1)

16:720:520. THERAPEUTIC PEPTIDES AND DELIVERY SYSTEMS (3)

Prerequisites: 01:160:327, 328. Study of biochemical, biopharmaceutical, and pharmacologic bases of peptide- and protein-based macromolecular drugs, and application of multidisciplinary approaches to their formulation, development, and systemic delivery.

16:720:522. CONTROLLED DRUG DELIVERY TECHNOLOGY (3)

Prerequisites: 16:720:507, 515, 516. Multidisciplinary approaches to concepts, fundamentals, and biomedical assessments in the research and development of novel drug delivery systems.

16:720:523. DERMACEUTICS (3)

Zatz. Prerequisite: 16:720:507 or permission of instructor. Design of topical drug delivery systems; theoretical and practical considerations in development of topical disperse systems; skin permeation of drugs and its optimization; dermatologic and cosmetic applications.

16:720:525. INTRODUCTION TO EXPERIMENTAL SURGERY (3)

Weyand. Prerequisite: Permission of instructor. Experimental surgical techniques commonly used in research laboratories. Emphasis on aseptic surgery techniques, survival surgery, and chronic cannulation procedures.

16:720:531. ADVANCED PHARMACOCOGNOSY I (4)

Lec. 3 hrs., lab. 3 hrs. Prerequisite: 30:717:405. Study of the natural occurrence and the chemistry of the major groups of alkaloids, including the isolation, purification, and characterization of alkaloids and alkaloid-like substances from natural sources.

16:720:532. ADVANCED PHARMACOCOGNOSY II (4)

Lec. 3 hrs., lab. 3 hrs. Prerequisite: 30:717:405. Study of the major occurrence and the chemistry of the major classes of nonalkaloids, including the isolation, purification, and characterization of nonalkaloid chemical compounds from natural sources.

16:720:540. INDEPENDENT RESEARCH PROPOSAL (3)

Enrollment limited to Ph.D. candidates with approval of their adviser. Develop a written research proposal using the standard HHS/NIH format as part of the Ph.D. degree requirements. Proposal is evaluated as to its originality, scientific merit, and quality.

16:720:581. ADVANCED PHARMACEUTICAL ANALYSES (3)

Kerrigan. Lec. 3 hrs. Prerequisites: 01:160:323, 324 or 327, 328 or 341, 342. Survey of instrumental design with emphasis on instrumental capabilities related to the parameter to be measured. Selected electrophoretic, spectrometric, and separation methods of interest in pharmaceutical analysis.

16:720:582. ADVANCED PHARMACEUTICAL ANALYSES LABORATORY (1)
16:720:591. ADVANCED MEDICINAL CHEMISTRY I (3)
Charles O. Broström, Rice, Weyand
Qualitative and quantitative structure-biological activity relationships and their utility in drug design.

16:720:592. ADVANCED MEDICINAL CHEMISTRY II (3)
Jeffrey D. Laskin, Rice, Perrigan, LaVoie
Strategy-based approach to synthetic organic medicinal chemistry.

16:720:601,602. SEMINAR IN PHARMACEUTICAL SCIENCE (1,1)
Presentation and discussion of recent developments in the pharmaceutical sciences.

16:720:607,608. SPECIAL TOPICS (3,3)
Selected topics in pharmaceutical science.

16:720:610,611. INDEPENDENT STUDY IN PHARMACEUTICAL SCIENCE (BA,BA)
No more than 3 credits may be taken as part of a student's program. Independent library and/or laboratory research into special aspects of pharmaceutical science; arranged under the supervision of a specific faculty member.

16:720:612,613. CURRENT TOPICS IN PHARMACEUTICAL SCIENCE (1,1)
Seminar with lectures by scientists from the pharmaceutical industry on advanced topics within a particular area of pharmaceutical science, such as medicinal chemistry, pharmaceutical analysis, and pharmacoeconomics.

16:720:701,702. RESEARCH IN PHARMACEUTICAL SCIENCE (BA,BA)
Graduate research programs.

PHARMACOLOGY, CELLULAR AND MOLECULAR 718

Degree Programs Offered: Doctor of Philosophy
Director of Graduate Program: Professor Tariq Rana, Department of Pharmacology, University of Medicine and Dentistry of New Jersey—Robert Wood Johnson Medical School (732/235-4590)

Members of the Graduate Faculty
Charles O. Broström, Professor of Pharmacology, UMDNJ-RWJMS; Ph.D., Illinois
Intracellular signaling systems; regulation of protein synthesis
Margaret A. Broström, Professor of Pharmacology, UMDNJ-RWJMS; Ph.D., Illinois
Stress responses of excitable cells
Edward T. Brown, Professor of Pharmacology, UMDNJ-RWJMS; Ph.D., Illinois
Pharmacology of the glial cell; biochemistry of synaptic transmission
Kheov-Voon Chin, Assistant Professor of Pharmacology, UMDNJ-RWJMS; Ph.D., Rutgers
Drug resistance; gene amplification; regulation of gene expression
Allan H. Conney, Professor of Pharmacology, CP; Ph.D., Wisconsin
Cytochromes P-450 and drug metabolism; chemical carcinogenesis
Marc R. Gartenberg, Assistant Professor of Pharmacology, UMDNJ-RWJMS; Ph.D., Yale
Nuclear organization of DNA; chromosomal structure; yeast plasmid segregation
Herbert M. Geiser, Professor of Pharmacology and Neurology, UMDNJ-RWJMS; Ph.D., Case Western Reserve Developmental and cellular neurobiology
William N. Halt, Professor of Medicine and Pharmacology, UMDNJ-RWJMS; M.D., Ph.D., Medical College of Pennsylvania
Calcium-calmodulin-mediated signal transduction and drug resistance; cancer pharmacology
Barton A. Kamen, Professor of Pediatrics, CNJ; M.D., Ph.D., Case Western Reserve University
Chemotherapy of cancer in children
Frederick C. Kaufman, Professor of Pharmacology, CP; Ph.D., Illinois
Influence of intermediary metabolism on xenobiotic metabolism; neurotoxicity
Jeffrey D. Laskin, Professor of Environmental and Community Medicine, UMDNJ-RWJMS; Ph.D., SUNY (Buffalo)
Carcinogenesis and differentiation in cell culture
John Lenard, Professor of Physiology, UMDNJ-RWJMS; Ph.D., Cornell
Enveloped RNA viruses; transcription, replication, entry, and assembly
Fang Liu, Assistant Professor of Chemical Biology, CP; Ph.D., Harvard
Signal transduction and gene regulation; growth and differentiation control
Leroy F. Liu, Professor and Chairperson of Pharmacology, UMDNJ-RWJMS; Ph.D., California (Berkeley)
DNA topoisomerases and control of cell division; cancer pharmacology
Peter Lobel, Associate Professor of Pharmacology, UMDNJ-RWJMS; Ph.D., Columbia
Intracellular targeting of proteins; mannose-6-phosphate receptors
Randall D. McKinnon, Assistant Professor of Neurosurgery, UMDNJ-RWJMS; Ph.D., McMaster
The role of polypeptide growth factors in oncogenesis and neuroblastoma
N. Ronald Morris, Professor of Pharmacology, UMDNJ-RWJMS; M.D., Yale
Molecular genetics of nuclear migration, mitosis, and microtubules
Robert G. Nangle, Associate Professor of Pediatrics, UMDNJ-SOM; Ph.D., Rutgers
Structural and functional organization of the cell nucleus
William J. Nicklas, Professor of Neurology and Pharmacology, UMDNJ-RWJMS; Ph.D., Fordham
Neurotoxicity; CA amino acid metabolism; neuronal-glial interactions
Larissa A. Pohorecky, Professor of Neuropharmacology, CAS; Ph.D., Chicago
Alcohol and psychological stress on brain monoamines and behavior
Tariq M. Rana, Associate Professor of Pharmacology, UMDNJ-RWJMS; Ph.D., California (Davis)
Drug design; artificial protein synthesis; RNA-protein interactions in HIV
Eric H. Rubin, Assistant Professor of Medicine, UMDNJ-RWJMS; M.D., South Florida
Clinical and molecular approaches to inhibition of DNA topoisomerases
Alexey G. Ryazanov, Assistant Professor of Pharmacology, UMDNJ-RWJMS; D.Sc., Moscow State
Regulation of protein synthesis and the cell cycle
Marilyn M. Sanders, Professor of Pharmacology, UMDNJ-RWJMS; Ph.D., Washington
Fungal topoisomerases; stress-altered translation and gene expression
Stephen M. Shea, Professor of Pathology, UMDNJ-RWJMS; Ph.D., National University of Ireland (Galway)
Transport systems of endothelial surfaces; glomerular filtration
Tetsuo Shimamura, Professor of Pharmacology, UMDNJ-RWJMS; M.D., Yokohama
Structure and function of the renal medulla; urine-concentrating mechanisms
Patrick K. Somsilla, Associate Professor of Neurology, Psychiatry, and Pharmacology, UMDNJ-RWJMS; Ph.D., Utah
Neurotoxicology; monoamines and CNS function
Kevin S. Sweder, Assistant Professor of Chemical Biology, CP; Ph.D., California Institute of Technology
Repair of DNA damage
Nancy C. Walworth, Assistant Professor of Pharmacology, UMDNJ-RWJMS; Ph.D., Yale
Control of cell cycle progression in yeast
Donald J. Wolf, Professor of Pharmacology, UMDNJ-RWJMS; Ph.D., Wisconsin
Pharmacology of nitric oxide synthesis; calcium/calmodulin-dependent processes
Chung S. Yang, Professor of Pharmacognosy, CP; Ph.D., Cornell
Nitrosamines; carcinogenesis; molecular biology of cytochrome P-450
Peter D. Yurchenco, Professor of Pathology and Laboratory Medicine, UMDNJ-RWJMS; M.D., Albert Einstein College of Medicine
Extracellular matrix
Renping Zhou, Assistant Professor of Chemical Biology, CP; Ph.D., California (Berkeley)
Molecular mechanisms of neural development

Associate Member of the Graduate Faculty
Jerome Parness, Assistant Professor of Anesthesiology, Pharmacology, and Pediatrics, UMDNJ-RWJMS; M.D., Ph.D., Yeshiva (Einstein)
Regulation of intracellular calcium pools

Programs
Graduate studies in pharmacology are conducted by faculty of Rutgers, The State University of New Jersey, and of the University of Medicine and Dentistry of New Jersey—Robert Wood Johnson Medical School. Areas of research specialization currently emphasized are molecular, cellular, and neuropharmacology. Investigations focus on drug metabolism, intracellular signaling systems, protein synthesis and processing, carcinogenesis, and the control of cell growth, division, differentiation, and DNA replication; and the biochemical basis of Parkinson's disease, addiction, and adverse drug reactions.

Applicants who have completed a bachelor's degree in biology, chemistry, or neuroscience are viewed as optimal candidates for admission. However, those with undergraduate training in related areas also are acceptable candidates provided deficiencies are eliminated during the first year of study.
The Ph.D. program requires a minimum of 72 credits, including 32 credits of course work. At least 24 credits of advanced research must be conducted during one year of residence. Admission to candidacy for the Ph.D. requires the satisfactory completion of course work and a qualifying examination that includes the defense of a detailed research proposal. The doctoral dissertation is based on original laboratory research.

Joint Ph.D. degrees are awarded in this program. See related information at the beginning of this chapter.

In addition to the courses listed below, students draw upon courses offered in other graduate programs, such as biochemistry and molecular biology, computer science, microbiology, neuroscience, physiology, and toxicology. Students are encouraged to participate in seminar programs and journal clubs.

Students other than transfers or M.D./Ph.D. candidates will generally enter the program through the recruitment process of the core curriculum in molecular biosciences. Upon completing the requirements of the core (one year), students opting to specialize in cellular and molecular pharmacology must select a faculty adviser from the program.

Graduate Courses

16:718:522. (S) Pharmacology (6)
Prerequisites: Permission of graduate director and instructor.

The principles of drug action illustrated by study of basic actions and properties of established therapeutic agents. Demonstrations, clinical case studies, and problem sessions supplement lecture material.

16:718:562. Advanced Pharmacology Laboratory (3)
Prerequisite: Permission of instructor.

16:718:564. (S) Advanced Topics in Pharmacology (3)
Prerequisites: Permission of graduate director and instructor.

Macrospects of pharmacology, with emphasis on the interaction of drugs with physiological and pathological processes.

16:718:565,566. Advanced Problems in Pharmacology (BA,BA)
Prerequisites: Permission of graduate director and instructor.

Independent research with a faculty member on some aspect of a research problem. With minimum supervision, student is expected to analyze, interpret, and report the experimental data.

16:718:571,572. Special Topics in Cellular and Molecular Pharmacology (2,2)
Prerequisite: One year of biochemistry. Required of all degree candidates.

Literature review of specialized aspects of molecular, cellular, and neuropharmacology. Subject matter changes each term.

16:718:573. Receptor Ligand-Protein Interactions (2)
Lehner, Label. Prerequisite: Permission of instructor.

Readings, seminars, and discussions based on the primary literature emphasize current understanding of and methodology for investigating membrane structure, receptor classification, and the principles of ligand-receptor interactions. Emphasis on the mathematics used to analyze receptor-binding experiments.

Dopamine receptor serves as a focus for much of the discussion.

16:718:574. Pharmacology of Neurotransmission (2)
Geller, Nicklas. Prerequisite: Permission of instructor.

Seminar presentations consider the mechanisms of synaptic transmission in the nervous system, role of voltage- and ligand-gated ion channels, and G-protein coupled receptors in information transmission. Material includes the regulation of the synthesis, storage, release, and destruction of neurotransmitters.

16:718:575. Intracellular Signaling Systems (2)
Wolff. Prerequisite: Permission of instructor.

Seminar presentations consider intracellular second messenger systems that mediate hormonally induced cellular responses; the role of G-proteins, tyrosine kinases, cAMP, Ca++, and phosphoinosites in transducing regulatory signals and promoting posttranslational modification of proteins.

16:718:576. Pharmacology of Growth Control (2)
Liu, Walworth. Prerequisite: Permission of instructor.

Agents that promote or retard cell division including anticancer treatments, oncogenes, tumor suppressors, and growth factors. Alteration of cellular growth by carcinogenesis.

16:718:577. Pharmacology of Subcellular Organelles (2)
C. Brostrom, M. Brostrom. Prerequisite: Permission of instructor.

Readings, seminars, and discussions emphasize selected papers from the primary literature pertaining to subcellular organelle structure, function, and responses to pharmacologic substances. Topics include the structure and function of the endoplasmic reticulum, its role in calcium homeostasis and protein processing for secretion, and the Golgi system.

16:718:578. Metabolism of Foreign Substances (2)
Conney, Kaufman. Prerequisite: Permission of instructor.

Readings, seminars, and discussions emphasize selected papers from the primary literature pertaining to the metabolism of foreign chemicals. Critical discussions of publications that describe the properties and regulation of foreign compound-metabolizing enzymes in microorganisms, plants, insects, lower mammals, and humans. Consideration of the significance of these enzymes for the metabolism and action of foreign chemicals and endogenous substrates in intact cells and organisms.

16:718:602. Seminar in Pharmacology (1)
Faculty and student presentations.

16:718:603. Cancer Pharmacology (2)
Chin. Prerequisite: Permission of instructor.

Pharmacological aspects of oncogenes and tumor suppressor genes, regulation of gene expression, carcinogenesis and tumor genesis, drug target interaction and the consequential development of resistance to cytotoxic chemotherapeutic drugs in cancer.

16:718:604. Pharmacology of the Cell Cycle (2)
Morris, Ryazanov. Prerequisite: Permission of instructor.

Biology, pharmacology, and molecular biology of the cell cycle.

16:718:605. Nucleic Acids (2)
Gartenberg, Rana. Prerequisite: Permission of instructor.

Basic principles of the secondary and tertiary structures of nucleic acids used to explore aspects of nucleic acid biology such as protein-nucleic acid interactions, RNA-catalyzed reactions, and nucleic acid pharmacology.

16:718:606. Pharmacology of Local Cell Interactions (2)
Browning. Prerequisite: Permission of instructor.

Local cellular interactions that mediate processes of development, function, and pathophysiology of mammalian tissues. Strategies for pharmacological modulation of these interactions.

16:718:701,702. Research in Pharmacology (BA,BA)

PHARMACY

(See the catalog of the College of Pharmacy for information about programs leading to the professional Doctor of Pharmacy [Pharm.D.] degree. For further information about the Pharm.D. degree, contact Dr. Joseph Barrone at 732/445-3285.)
PHILOSOPHY 730

Degree Programs Offered: Master of Arts, Doctor of Philosophy
Director of Graduate Program: Professor Frank Arntzenius, Davison Hall, Douglass Campus (732/932-9181)

Members of the Graduate Faculty

Frank Arntzenius, Associate Professor of Philosophy, FAS-NB, Ph.D., London School of Economics

Philosophy of science; metaphysics; philosophy of physics

Martha Bolton, Professor of Philosophy, FAS-NB, Ph.D., Michigan

Early modern philosophy

Robert H. Bolton, Professor of Philosophy, FAS-NB, Ph.D., Michigan

Ancient philosophy; philosophy of language; metaphysics

Martin R. Burzí, Professor of Philosophy, FAS-NB, Ph.D., Minnesota

Philosophy of science

Ruth Chang, Assistant Professor of Philosophy, FAS-NB/SL-C; J.D., Harvard; D.Phil., Oxford

Philosophy of law; ethics

Frances Egan, Associate Professor of Philosophy, FAS-NB, Ph.D., Western Ontario

Philosophy of psychology; philosophy of mind; philosophy of science

Seymour Feldman, Professor Emeritus of Philosophy, FAS-NB, Ph.D., Columbia

Medical and seven teenth-century philosophy; philosophy of religion

Jerry A. Fodor, Professor of Philosophy, FAS-NB, Ph.D., Princeton

Philosophy of mind; cognitive psychology

Richard Foley, Dean of the Faculty of Arts and Sciences—New Brunswick, Dean of the Graduate School—New Brunswick, and Professor of Philosophy, FAS-NB, Ph.D., Brown

Epistemology

Jorge Garcia, Professor of Philosophy, FAS-NB, Ph.D., Yale

Ethics; philosophy of law

Mary B. Gibson, Associate Professor of Philosophy, FAS-NB, Ph.D., Princeton

Social/political/feminist/Marxist philosophy; reproductive autonomy

Richard Henson, Professor Emeritus of Philosophy, FAS-NB, Ph.D., Yale

Ethics; social and political philosophy

Nancy Holstom, Associate Professor of Philosophy, FAS-NB, Ph.D., Michigan

Social and political philosophy; Marxism; feminist theory

Douglas N. Husak, Professor of Philosophy, FAS-NB, Ph.D., D.J.D., Ohio State

Philosophy of law; social and political philosophy; ethics

Peter Kivy, Professor of Philosophy, FAS-NB, Ph.D., Columbia

Aesthetics; early modern philosophy

Peter D. Klein, Professor of Philosophy, FAS-NB, Ph.D., Yale

Epistemology

Ernest P. LePore, Professor of Philosophy, FAS-NB, Ph.D., Minnesota

Philosophy of language

Brian Loar, Professor of Philosophy, FAS-NB, D.Phil., Oxford

Philosophy of mind; philosophy of language; metaphysics

Barry M. Loewer, Professor of Philosophy, FAS-NB, Ph.D., Stanford

Philosophy of science; logic; philosophy of mind

Robert Matthews, Professor of Philosophy, FAS-NB, Ph.D., Cornell

Philosophy of psychology and language; theoretical psycholinguistics

Tim Maudlin, Professor of Philosophy, FAS-NB, Ph.D., Pittsburgh

Philosophy of science; ancient philosophy; epistemology

Howard McGary, Jr., Professor of Philosophy, FAS-NB, Ph.D., Minnesota

Social and political philosophy; ethics; Afro-American philosophy

Colin McGinn, Professor of Philosophy, FAS-NB, B.Phil., Oxford

Philosophy of mind; metaphysics; Wittgenstein

Brian P. McLaughlin, Chairperson and Professor of Philosophy, FAS-NB, Ph.D., North Carolina

Metaphysics; epistemology

Stephen Neale, Professor of Philosophy, FAS-NB, Ph.D., Stanford

Logic; philosophy of language

Kenneth J. Safir, Professor of Linguistics, FAS-NB, Dr., Massachusetts Institute of Technology

Learnability theory

Frederic Schick, Professor Emeritus of Philosophy, FAS-NB, Ph.D., Columbia

Decision theory; social and political philosophy

Fadiou A. Shehadi, Professor Emeritus of Philosophy, FAS-NB, Ph.D., Princeton

Islamic philosophy; aesthetics; phenomenology; existentialism

Ernest Sosa, Professor of Philosophy, Brown University, and Professor of Philosophy, FAS-NB, Ph.D., Pittsburgh

Epistemology; metaphysics

Laurent Sturm, Professor of Philosophy, FAS-NB, Ph.D., Zurich

Aesthetics; phenomenology; modern philosophy

Stephen P. Stich, Professor of Philosophy, FAS-NB, Ph.D., Princeton

Epistemology; philosophy of psychology

Albert Sweet, Professor of Philosophy, FAS-NB, Ph.D., Emory

Logic; philosophy of science

Larry Temkin, Professor of Philosophy, FAS-NB, Ph.D., Princeton

Normative ethics; metaethics; social and political philosophy

Simon Thomas, Professor of Mathematics, FAS-NB, Ph.D., London

Model theory; infinite groups

Pheroze S. Wadia, Professor of Philosophy, FAS-NB, Ph.D., New York

Philosophy of religion; theory of knowledge

Renee Weber, Professor Emerita of Philosophy, FAS-NB, Ph.D., Columbia

Existentialism; interdisciplinary and comparative philosophy

Bruce Wilshire, Professor of Philosophy, FAS-NB, Ph.D., New York

Aesthetics; American philosophy; phenomenology; and existentialism

John W. Yolton, Professor Emeritus of Philosophy, FAS-NB, Ph.D., Oxford

Epistemology; early modern philosophy

Associate Members of the Graduate Faculty

Pierre Pellegrin, Visiting Professor of Philosophy, FAS-NB, Professor of Philosophy, CREA (France); Ph.D., Paris I

Aesthetics

Michael D. Robb, Associate Professor of Philosophy, FAS-NB, Ph.D., Stanford

Ancient philosophy; theory of knowledge

Andrew von Hirsch, Professor of Criminal Justice, SCJ; L.L.B., Harvard

Philosophy of criminal law; criminal sentencing theory and policy

Robert L. Woolfolk, Professor of Psychology, FAS-NB, Ph.D., Texas (Austin)

Behavioral therapy

Programs

The faculty in philosophy offers a comprehensive program of doctoral studies in the principal branches of the subject, organized to encourage breadth of background prior to specialization, providing a wide range of special options in the later stages of study and research, and complemented by advanced studies in the related humanities and sciences offered by other faculties in the Graduate School—New Brunswick. A normal program leading to the Ph.D. requires 48 credits (sixteen courses) to be pursued four courses per term (or three courses per term for students appointed to teaching assistantships) and 24 credits of research. There is no additional residency requirement.

Applicants with distinguished undergraduate records who lack certain prerequisites for graduate study in philosophy may be accepted with the stipulation that they remedy such deficiencies with undergraduate courses taken without graduate credit.

There are five requirements in the doctoral program: the course requirement, the distribution requirement, the area of concentration requirement, a literature review, and the dissertation. Successful completion of both the area of concentration requirement and the literature review constitute the graduate school’s requirement for passing a qualifying examination.

To complete the course requirement, students are required to pass sixteen courses (48 credits) that have been approved by the department.

To complete the distribution requirement, students are required to pass, with a grade of B or better, one designated 500-level course in each of six specific areas and at least two 500- or 600-level courses in four of these same areas. The areas of distribution are:

1. ancient/medieval philosophy (up until 1600 A.D.);
2. modern philosophy;
3. logic and philosophy of language;
4. epistemology and philosophy of science;
5. metaphysics and philosophy of mind; and
6. ethics and value theory.

To complete the area of concentration requirement, students must demonstrate that they have competence in one of the six areas of distribution listed above by passing a comprehensive examination for that area.

As soon as possible after passing the area examination, the student chooses a pre-dissertation adviser and then meets with the graduate director to initiate the process of satisfying the pre-dissertation requirements. The graduate director, in consultation with the student, appoints a pre-dissertation committee of three members of the graduate faculty, including the adviser. By successfully completing the pre-dissertation requirements, the student qualifies to advance to candidacy. The pre-dissertation requirements are: A pre-dissertation paper ("proto-chapter"), a dissertation proposal, and a pre-dissertation oral examination.

After all of the above requirements have been completed, the final requirement is a dissertation judged to be publishable so far as scholarship, style, and originality are concerned. When a student has reached the dissertation stage, the director of the graduate program, in consultation with the student, appoints a dissertation committee, with one member designated as dissertation adviser,
to direct the student’s work on the dissertation. Before proceeding with the dissertation, the student must submit a dissertation proposal for formal approval by the committee. The completed dissertation must be approved by all members of the committee.

To obtain a Master of Arts degree, a student must: a) satisfy all of the master’s degree area distribution course requirements (this includes nine courses in philosophy); b) pass with grades of B or better 30 credits of courses approved by the philosophy department; and c) pass the area of concentration requirement. The latter requirement constitutes the comprehensive examination.

The Master of Arts in Philosophy normally is not offered as a “terminal” degree, and normally is taken only by students enrolled in the Ph.D. program.

Graduate Courses

16:730:510. (F) **MATHEMATICAL LOGIC** (3)
Introduction to the basic results of mathematical logic including completeness, indecidability, and Godel’s theorems.

16:730:513. (F) **LOGIC AND NATURAL LANGUAGE** (3)
Prerequisite: 16:730:510.
Logic as a tool in the semantic analysis of natural language; relation between symbolic and natural languages.

16:730:520. **SEMINAR IN PLATO** (3)
Study of representative works from the main periods of Plato’s thought.

16:730:521. **SEMINAR IN ARISTOTLE** (3)
Study of some main works of central importance in the Aristotelian Corpus.

16:730:526. **SEMINAR IN MEDIEVAL PHILOSOPHY** (3)
Medieval metaphysics; philosophy of nature and epistemology; time and eternity; the infinite; creation; causality; skepticism.

16:730:530. **SEMINAR IN SEVENTEENTH-CENTURY PHILOSOPHY** (3)
Examination of a major philosopher, work, or topic of the period. Emphasis on metaphysics and epistemology; connections with other problems in philosophy and the natural sciences.

16:730:533. **SEMINAR IN EIGHTEENTH-CENTURY PHILOSOPHY** (3)
Examination of a major philosopher, work, or topic of the period. Emphasis on metaphysics and epistemology; connections with other problems in philosophy and the natural sciences.

16:730:536. **SEMINAR IN NINETEENTH-CENTURY PHILOSOPHY** (3)
From post-Kantian idealism to the early stages of phenomenology.

16:730:550. **SEMINAR IN EPPEEPEMOLOGY** (3)
Nature of justification, belief, and truth; rival accounts of knowledge; traditional and contemporary perspectives on empiricism, rationalism and pragmatism, and skepticism.

16:730:553. **SEMINAR IN METAPHYSICS** (3)
The problem of universals. Concepts of the infinite, time, causality, notions of possibility and necessity, and counterfactuals.

16:730:556. **SEMINAR IN PHILOSOPHY OF SCIENCE** (3)
Philosophical problems connected with modern science.

16:730:570. **SEMINAR IN PHILOSOPHY OF LANGUAGE** (3)
The nature and varieties of linguistic meaning; signs and symbols; speech acts criteria of meaningfulness.

16:730:575. **SEMINAR IN PHILOSOPHY OF MIND** (3)
Contemporary discussions of cognitive and noncognitive mental activities and their influences on behavior; analyses of self-knowledge and self-deception; theories of mind-body identity.

16:730:580. **SEMINAR IN ETHICS** (3)
Typically concerned with several philosophers, e.g., Aristotle, Hume, Kant, Mill, or problems, e.g., rights, justice, virtue, relativism, nihilism, utilitarianism.

16:730:583. **SEMINAR IN SOCIAL AND POLITICAL PHILOSOPHY** (3)
Some recent philosophical theories and their relevance to contemporary issues in social science and politics.

16:730:585. **SEMINAR IN PHILOSOPHY OF LAW** (3)
The concept of law and criteria of legal validity. Relation of these issues to questions of political obligation and the limits of judicial discretion.

16:730:590. **SEMINAR IN AESTHETICS** (3)
Study of representation, interpretation, and evaluation. The definition and the ontology of art. Expressive properties, artistic qualities, metaphorical expressions.

16:730:595. **SEMINAR ON TEACHING** (N3)
Techniques and problems of teaching philosophy to undergraduates.

16:730:601,602. **SPECIAL STUDIES IN PHILOSOPHY** (BA,BA)

16:730:620. **ADVANCED TOPICS IN PLATO** (3)
Intensive study of selected dialogues or topics in Plato’s philosophy.

16:730:621. **ADVANCED TOPICS IN ARISTOTLE** (3)
Intensive study of selected works or topics in Aristotle’s philosophy.

16:730:624. **ADVANCED TOPICS IN ANCIENT PHILOSOPHY** (3)
Detailed examination of selected central issues or writers, such as Parmenides and the early pluralists, theories of language, early Stoics, ancient Scepticism.

16:730:626. **ADVANCED TOPICS IN MEDIEVAL PHILOSOPHY** (3)
Detailed examination of selected central topics in metaphysics, philosophy of nature, and epistemology. Readings in translations from original sources.

16:730:630. **ADVANCED TOPICS IN SEVENTEENTH-CENTURY PHILOSOPHY** (3)
Detailed examination of a problem, e.g., Descartes’ theory of method, Spinoza’s doctrine of substance and attributes, controversies about the nature of time and space.

16:730:633. **ADVANCED TOPICS IN EIGHTEENTH-CENTURY PHILOSOPHY** (3)
Detailed examination of a problem, e.g., Berkeley’s and Hume’s attack on abstract ideas, Kant’s refutation of idealism, issues in the theory of perception.

16:730:636. **ADVANCED TOPICS IN NINETEENTH-CENTURY PHILOSOPHY** (3)
Post-Kantian philosophy from Fichte to Nietzsche. The new social sciences; theories of interpretation; anticipations of twentieth-century philosophy.

16:730:640. **ADVANCED TOPICS IN AMERICAN PHILOSOPHY** (3)
Reception and transformation of European world views by American philosophers from Peirce to Dewey. Emphasis on notions of meaning, truth, freedom, and education.

16:730:645. **ADVANCED TOPICS IN CONTINENTAL PHILOSOPHY** (3)

16:730:648. **ADVANCED TOPICS IN ANALYTIC PHILOSOPHY** (3)
Writings of such authors as Russell, Moore, Carnap, Wittgenstein, Ryle, and Strawson.
16:730:650. **ADVANCED TOPICS IN EPSEMOLGY** (3)
Detailed examination of selected central issues or writers, such as scepticism, causal theories of perception and knowledge, epistemic rationality, Wittgenstein’s On Certainty.

16:730:653. **ADVANCED TOPICS IN METAPHYSICS** (3)
Intensive examination of one or two selected issues in contemporary metaphysics.

16:730:656. **ADVANCED TOPICS IN PHILOSOPHY OF SCIENCE** (3)
Intensive examination of one or two selected issues in contemporary philosophy of science.

16:730:658. **ADVANCED TOPICS IN PHILOSOPHY OF PHYSICS** (3)
Philosophical issues related to particular areas of both classical and modern physics. Discussions of relativity and quantum theory.

16:730:660. **ETHICS AND LITERATURE** (3)
Examination of ethical issues as they arise within literary texts, focusing on the nature of evil, questions of character and motivation, and the way such matters are treated by literary works.

16:730:664. **ADVANCED TOPICS IN PHILOSOPHY OF SOCIAL SCIENCE** (3)
Intensive examination of one or two selected issues in contemporary philosophy of social science.

16:730:667. **ADVANCED TOPICS IN PHILOSOPHY OF HISTORY** (3)
Conceptions of historical knowledge from the early nineteenth century to the present; explanation and understanding; narration and description in historical writings; limits of historical understanding.

16:730:670. **ADVANCED TOPICS IN PHILOSOPHY OF LANGUAGE** (3)
Intensive examination of one or two selected issues in contemporary philosophy of language.

16:730:675. **ADVANCED TOPICS IN PHILOSOPHY OF MIND** (3)
Intensive examination of one or two selected issues in contemporary philosophy of mind.

16:730:676. **ADVANCED TOPICS IN THE PHILOSOPHY OF PSYCHOLOGY** (3)
Examination of selected topics in the philosophy of psychology, focusing especially on issues in the foundations of cognitive/computational psychology. Topics include representationalism, learnability theory, the innateness controversy.

16:730:678. **ADVANCED TOPICS IN DECISION THEORY** (3)
The logic of choice and of action; valuation and probability; risk and uncertainty; coherence and rationality. Survey of current theories and of outstanding problems.

16:730:679. **TOPICS IN LOGIC** (3)
Survey of a variety of topics in logic.

16:730:680. **ADVANCED TOPICS IN ETHICS** (3)
Intensive examination of one or two selected issues in contemporary ethics.

16:730:683. **ADVANCED TOPICS IN SOCIAL AND POLITICAL PHILOSOPHY** (3)
Intensive examination of one or two selected issues in contemporary social and political philosophy.

16:730:685. **ADVANCED TOPICS IN PHILOSOPHY OF LAW** (3)
Limits of state authority in the context of criminal law. Conduct beyond criminal sanction. Discussions of paternalism, obscenity, negligence, strict liability, mistake, excuses, justifications, harm.

16:730:690. **ADVANCED TOPICS IN AESTHETICS** (3)
Study of representation, interpretation, and evaluation. The definition and ontology of art. Expressive properties, artistic qualities, metaphorical expressions.
Charles M. Glashausser, Professor of Physics and Astronomy, FAS-NB; Ph.D., Princeton
Experimental condensed-matter physics
Sheldon Goldstein, Professor of Mathematics, FAS-NB, Ph.D., Yeshiva University
Foundations of quantum mechanics, mathematical physics
Torgny Gustafsson, Professor of Physics and Astronomy, FAS-NB; D.Sc., Chalmers (Sweden)
Theoretical condensed-matter physics
David R. Harrington, Professor of Physics and Astronomy, FAS-NB; Ph.D., Carnegie-Instituted of Technology
Experimental condensed-matter physics
Herbert Neuberger, Associate Professor of Chemistry, FAS-NB; Ph.D., Cambridge University
Surface studies using atomic and molecular scattering
George K. Horton, Professor of Physics and Astronomy, FAS-NB; Ph.D., Birmingham University
Theoretical condensed-matter physics
John Hughes, Assistant Professor of Physics and Astronomy, FAS-NB; Ph.D., Columbia University
Observational astrophysics
Lev Ioffe, Associate Professor of Physics and Astronomy, FAS-NB; Ph.D., Landau Institute for Theoretical Physics
Condensed-matter theory
Charles L. Joseph, Assistant Research Professor of Physics and Astronomy, FAS-NB; Ph.D., Colorado State University
Observational astronomy and detector development
Mohsen S. Kalantar, Associate Chairperson and Professor of Physics and Astronomy, FAS-NB; Ph.D., Columbia University
Experimental elementary particle physics
Vladimir Kryukov, Assistant Professor of Physics and Astronomy, FAS-NB; Ph.D., Princeton University
Experimental condensed-matter physics
Willem M. Kloet, Professor of Physics and Astronomy, FAS-NB; Ph.D., Utrecht University
Theoretical nuclear physics
Harrison Kojima, Professor of Physics and Astronomy, FAS-NB; Ph.D., California (Los Angeles)
Experimental condensed-matter physics
Noemie Koller, Professor of Physics and Astronomy, FAS-NB; Ph.D., Columbia University
Experimental nuclear physics
Arthur Kosowsky, Assistant Professor of Physics and Astronomy, FAS-NB; Ph.D., Chicago University
Theoretical astrophysics
B. Gabriel Kotliar, Professor of Physics and Astronomy, FAS-NB; Ph.D., Princeton University
Theoretical condensed-matter physics
Antti Kupiainen, Distinguished Visiting Professor of Mathematics, FAS-NB; Ph.D., Helsinki University
Statistical mechanics theory; mathematical physics
David C. Langreth, Professor of Physics and Astronomy, FAS-NB; Ph.D., Illinois University
Theoretical condensed-matter physics
Paul L. Leith, Chairperson and Professor of Physics and Astronomy, FAS-NB; Ph.D., Missouri University
Theoretical condensed-matter physics
Joel L. Lebowitz, George William Hill Professor of Mathematics and Physics and Astronomy, FAS-NB, Ph.D., Syracuse University
Mathematical physics and statistical mechanics
Peter Lindenfeld, Professor of Physics and Astronomy, FAS-NB; Ph.D., Columbia University
Experimental condensed-matter physics
Claud W. Lovelace, Professor of Physics and Astronomy, FAS-NB; B.S., Capetown University
Theoretical elementary particle physics
Sergei Lukyanov, Assistant Professor of Physics and Astronomy, FAS-NB; Ph.D., Landau Institute for Theoretical Physics (Moscow)
Theory
Reuven R. Maimon, Professor of Physics and Astronomy, FAS-NB; Ph.D., Tel Aviv University
Theoretical condensed-matter physics
Joesch-Peter, Professor of Physics and Astronomy, FAS-NB; Ph.D., Illinois University
Experimental condensed-matter physics
Richard J. Plano, Professor of Physics and Astronomy, FAS-NB; Ph.D., Chicago University
Experimental elementary particle physics
Carlton P. Pryor, Associate Professor of Physics and Astronomy, FAS-NB; Ph.D., Harvard University
Observational astrophysics
Ronald D. Ransome, Associate Professor of Physics and Astronomy, FAS-NB; Ph.D., Texas (Austin)
Theoretical condensed-matter physics
Ronald M. Rockmore, Professor of Physics and Astronomy, FAS-NB; Ph.D., Columbia University
Theoretical condensed-matter physics
Stephan R. Schuster, Professor of Physics and Astronomy, FAS-NB; Ph.D., California (Berkeley)
Theoretical condensed-matter physics
Noémie Koller, Professor of Physics and Astronomy, FAS-NB; Ph.D., Columbia University
Experimental condensed-matter physics
Michael J. Stephen, Professor of Physics and Astronomy, FAS-NB; Ph.D., Oxford University
Theoretical condensed-matter physics
Gordon Thomson, Professor of Physics and Astronomy, FAS-NB; Ph.D., Harvard University
Experimental elementary particle physics
David Vanderbilt, Professor of Physics and Astronomy, FAS-NB; Ph.D., Massachusetts Institute of Technology
Theoretical condensed-matter physics
Russell E. Walsh, Distinguished Visiting Scientist in Physics and Astronomy, FAS-NB; Ph.D., California (Berkeley) University
Experimental condensed-matter physics
Terence L. Watts, Professor of Physics and Astronomy, FAS-NB; Ph.D., Yale University
Experimental elementary particle physics
Theodore Williams, Professor of Physics and Astronomy, FAS-NB; Ph.D., California Institute of Technology
Observational astrophysics
Larry Zamick, Professor of Physics and Astronomy, FAS-NB; Ph.D., Massachusetts Institute of Technology
Theoretical nuclear physics
Alexander Zamolodchikov, Professor of Physics and Astronomy, FAS-NB; Ph.D., Institute of Theoretical and Experimental Physics (Moscow)
Theoretical condensed-matter physics
Harold S. Zapolsky, Professor of Physics and Astronomy, FAS-NB; Ph.D., Cornell University
Theoretical astrophysics
Frank M. Zimmermann, Assistant Professor of Physics and Astronomy, FAS-NB; Ph.D., Cornell University
Experimental condensed-matter physics
Experimental surface-science physics
Programs
The research activities of the program are both theoretical and experimental and cover the main areas of interest in contemporary physics, including astrophysics, condensed matter and statistical physics, surface physics, elementary particle physics, and nuclear physics. Experimental facilities are located on campus in Serin, a modern research laboratory. The surface modification and interface dynamics laboratory houses 1.7 MeV tandetron and 400-keV ion accelerators as well as scanning tunneling microscopes and other surface analytical equipment. There also are several mK-range dilution refrigerators available that are used in low-temperature physics studies. Nuclear structure experiments are carried out at accelerators at Yale University and the Argonne Lawrence Berkeley National Laboratories. Intermediate energy experiments are done at the continuous electron beam facilities at Mainz and Jefferson Laboratory in Virginia. Elementary particle physics experiments are carried out at the Fermi National Accelerator Laboratory and the Stanford Linear Accelerator Center. Rutgers astrophysicists use the observatory facilities at Kitt Peak and Cerro-Tololo (Chile).
The program for the master’s degree requires a minimum of 30 credits and includes either a critical essay or a thesis on a research problem.

The program for the Ph.D. degree requires a dissertation and an appropriate combination of course work and research credits. The qualifying examination is given in two parts, written and oral. Courses in other programs may be added to those conducted by the graduate program in physics and astronomy with the approval of the graduate director. Ph.D. candidates normally are expected to spend at least one year in full-time residence, although this requirement may be waived by the graduate studies committee. There is no language requirement. The Master of Philosophy degree is available to doctoral candidates.

Teaching assistantships or research fellowships are available for both first-year and advanced graduate students; virtually all students receive financial support. Assistants spend no more than fifteen hours per week on their duties and normally take 6 to 10 credits of graduate courses each term; fellowships normally do not entail special duties, and those who hold fellowships can devote their entire time to course work and to research related to their Ph.D. dissertation.

Applications should include the results of the general aptitude test and the advanced physics test of the Graduate Record Examination. Applicants whose native language is not English are required to take the TOEFL examination. Further information about these and other matters may be found in the Graduate Program in Physics, a brochure available from the program director or at the program’s web site.

Graduate Courses

16:750:501,502. QUANTUM MECHANICS (3,3)
Coleman. Prerequisite: 01:750:417 or equivalent.

16:750:508. PHYSICS APPLICATION OF COMPUTERS (3)
Kotliar. Prerequisite: 16:750:382 or equivalent.

Introduction to computer programming; applications to data processing. Basic numerical methods. Monte Carlo techniques. Statistics and data fitting. Basic numerical methods. Laboratory: programming on several computers. Broadens knowledge of applications and facilitates development of techniques.

16:750:551. TECHNIQUES IN EXPERIMENTAL PHYSICS (3)
Kloet. Prerequisite: Programming experience.

Advanced treatment of some topics discussed in 16:750:607, together with additional topics chosen in consultation with students.

16:750:507. (F) CLASSICAL MECHANICS (3)
Shapiro. Prerequisite: 01:750:382 or equivalent.

16:750:509. (F) PHYSICS APPLICATION OF COMPUTERS (3)
Kotliar. Lect. 2 hrs., lab. 3 hrs. Prerequisite: Programming experience.

16:750:509. (F) PHYSICS APPLICATION OF COMPUTERS (3)
Kotliar. Lect. 2 hrs., lab. 3 hrs. Prerequisite: Programming experience.

16:750:511. (F) MATHEMATICAL PHYSICS (3)
Prerequisite: 01:640:403,422 or equivalent.

Physical applications of linear algebra, the exterior calculus, differential forms, complex, and cohomology. Applications include Hamiltonian dynamics, normal mode analysis, Markov processes, thermodynamics, Schrödinger’s equation, special relativity, electrostatics, magnetostatics, Maxwell’s equations, and wave equations.

16:750:523. (F) TOPICS IN EXPERIMENTAL PHYSICS (3)
Prerequisite: Elementary physics laboratory. Not intended for students in the Ph.D. program.

Introduction to experimental physics. Transistors and their equivalent circuits, amplifiers, networks, digital logic, light and particle detectors, low-level measurements including quantum interference devices.

16:750:524. (S) TOPICS IN PHYSICS (3)
Prerequisite: 16:750:601 or equivalent.

Introduction to experimental physics. Transistors and their equivalent circuits, amplifiers, networks, digital logic, light and particle detectors, low-level measurements including quantum interference devices.

16:750:541. (S) INTRODUCTORY ASTROPHYSICS (3)
Prerequisite: 16:750:601 or equivalent.

Introduction to stellar astrophysics and modern astronomy. Stellar interiors, nucleosynthesis, energy transport, stellar evolution, white dwarfs, neutron stars, and black holes. Other topics of current interest from astrophysics.

16:750:601,602. (F) SOLID-STATE PHYSICS (3,3)
Prerequisite: 16:750:382,386 or equivalent.

Introduction to crystal lattices, scattering of radiation, lattice dynamics, electron bands, interaction among elementary excitations, disordered systems, transport properties, superconductivity and superfluidity, magnetism, crystal-field effects, phase transitions, optical properties.

16:750:603. (S) SOLID-STATE PHYSICS (3)
Prerequisite: 16:750:601 or equivalent.

Advanced treatment of the areas surveyed in 16:750:601 and their extension to topics of current interest in solid-state physics.

16:750:605. (F) NUCLEAR PHYSICS (3)
Prerequisite: 16:750:502 or equivalent.

Survey of essential topics: properties of ground states, shell model, collective model, electromagnetic properties, sample excitations, compound-nucleus and direct reactions, beta decay. Additional topics may include alpha decay, fission, applications of nuclear physics, topics of current interest.

16:750:606. (S) NUCLEAR PHYSICS (3)
Prerequisite: 16:750:502 or equivalent.

Survey of essential topics: properties of ground states, shell model, collective model, electromagnetic properties, sample excitations, compound-nucleus and direct reactions, beta decay. Additional topics may include alpha decay, fission, applications of nuclear physics, topics of current interest.

16:750:608. (F) MATH PHYSICS (3)
Prerequisite: 02:021:212 or equivalent.

Survey of essential topics: properties of ground states, shell model, collective model, electromagnetic properties, sample excitations, compound-nucleus and direct reactions, beta decay. Additional topics may include alpha decay, fission, applications of nuclear physics, topics of current interest.

16:750:609. (S) NUCLEAR PHYSICS (3)
Prerequisite: 16:750:382 or equivalent.

Survey of essential topics: properties of ground states, shell model, collective model, electromagnetic properties, sample excitations, compound-nucleus and direct reactions, beta decay. Additional topics may include alpha decay, fission, applications of nuclear physics, topics of current interest.
16:750:607. (F) GALACTIC DYNAMICS (3)
Merritt. Prerequisite: 01:750:341-342, or equivalent.
Equilibrium and stability of stellar systems and the dynamical evolution of galaxies. Modern approach to dynamics with a few practical examples of chaotic systems.

16:750:608. (F) COSMOLOGY (3)
Kosowsky. Prerequisites: 01:750:341-342, 16:750:307, or equivalent.
Models of the universe, their fundamental parameters, and their estimation from observations. Evolution of the universe from soon after its formation to the present. Growth of structure and the formation of galaxies.

16:750:609. (F) FLUID AND PLASMA PHYSICS (3)
Stephen. Prerequisite: 16:750:307 or equivalent.
Fundamental physical properties of liquids, gases, and ionized systems. Includes selected topics from compressible and incompressible flow, electromagnetic interactions, instabilities, turbulence, nonequilibrium phenomena, kinetic, superfluid mechanics, related experimental techniques, and other topics of current interest in fluid and plasma research.

16:750:610. (S) INTERSTELLAR MATTER (3)
Prerequisite: 16:750:341 or equivalent.
Structure of the interstellar medium: its molecular, neutral atomic, and plasma phases. Radiative transfer, dust, particle acceleration, magnetic fields, and cosmic rays. Effects of supernovae, shock fronts, and star formation.

16:750:611. (S) STATISTICAL MECHANICS (3)
Prerequisites: 16:750:301 and 307.
Statistical methods and probability: the statistical basis for irreversibility and equilibrium; ensemble theory; statistical thermodynamics; classical and quantum statistics; the density matrix; applications of statistical mechanics to nonideal gases, condensed matter, nuclei and astrophysics; fluctuations, nonequilibrium statistical mechanics; kinetic theory.

16:750:612. (H) HIGH-ENERGY ASTROPHYSICS (3)
Hughes. Prerequisites: 01:750:341-342 or equivalent.
Origin and detection of high energy photons and particles in the universe. Radiation processes in low density media. Sites of high energy phenomena in astrophysics, such as supernovae, pulsars, active galactic nuclei and quasars, and processes, such as accretion and shocks.

16:750:613. (S) PARTICLES (3)
Prerequisite: 16:750:302 or equivalent.
Neuberger. Prerequisite: 16:750:302 or equivalent.

16:750:615. (F) OVERVIEW OF QUANTUM FIELD THEORY (3)
Prerequisite: 16:750:302 or equivalent.
N. Andrei. Prerequisite: 16:750:302 or equivalent.
Lorentz group; relativistic wave-equations; second quantization; global and local symmetries; QED and gauge invariance; spontaneous symmetry breaking; nonabelian gauge theories; Standard Model; Feynman diagrams; cross sections, decay rates; renormalization group.

16:750:616. (S) FIELDS I (3)
Banks. Prerequisite: 16:750:615.
Path integral quantization; perturbation theory: dimensional regularization, renormalization; the renormalization group; spontaneous symmetry breaking and effective potential; critical behavior of ferromagnets; * field theory; Yang-Mills perturbation theory.

16:750:617. (F) GENERAL THEORY OF RELATIVITY (3)
Zapolsky. Prerequisite: 16:750:304, 307, or equivalent.
Equivalence principle, tensor analysis with differential forms; review of special relativity and electromagnetism, affine connection and geodesic equation; curvature and geodesic deviation; Einstein field equations; Schwarzschild and Kerr solutions, homogeneous isotropic cosmologies; experimental and observational tests.

16:750:618. (S) APPLIED GROUP THEORY (3)
Prerequisite: 16:750:302 or equivalent.
Renormalization group applied to Yang-Mills; asymptotic freedom; spontaneous symmetry breaking applied to Yang-Mills; Weinberg-Salam theory; lattice gauge theory; grand unified theories; supersymmetry; strings.

16:750:620. (F) INTRODUCTION TO MANY-BODY THEORY (3)
Prerequisite: 16:750:302 or equivalent.

16:750:621. (S) ADVANCED MANY-BODY PHYSICS (3)
Prerequisite: 16:750:620 or equivalent.
Prerequisite: 16:750:620 or equivalent.

16:750:623,624. ADVANCED STUDIES IN PHYSICS (3,3)
Prerequisite: Permission of graduate director.
Individual studies supervised by a member of the faculty.

16:750:627. (F) SURFACE SCIENCE I (3)
Mady. Prerequisite: 16:750:304, 307, or equivalent.
Introduction to structure and dynamics of clean surfaces, atoms and molecules on surfaces, and interfaces. Topics include: atomistic description of geometrical structure, surface morphology, electronic structure, surface composition, and theoretical and experimental bases of modern experimental methods.

16:750:628. (S) SURFACE SCIENCE II (3)
Mady. Prerequisite: 16:750:304, 307, or equivalent.
Kinetics and dynamics of processes at surfaces; structure and reactivity of molecules at surfaces; thermal and nonthermal excitations; magnetic properties. Surfaces of metals, oxides, and semiconductors, as well as solid-solid and solid-liquid interfaces.

16:750:629. (S) OBSERVATIONAL TECHNIQUES (3)
Prerequisite: 16:750:304, 307, or equivalent.
Williams. Prerequisite: 16:750:304, 307, or equivalent.
Introduction to tools and techniques of modern observational astronomy. Survey of instruments and capabilities at current telescope sites around the world and in space. Data reduction methods. Practical experience with Serin Observatory.

16:750:633,634. SEMINAR IN PHYSICS (1,1)
Prerequisite: Permission of instructor.
Seminars in fields of investigations of current interest.
16:750:636,637. BASICS OF TEACHING PHYSICS (1,1)
Prerequisite: permission of instructor. Concurrent teaching assignment in
physics or astronomy recommended.

Intended for graduate students interested in improving their skills
for teaching physics. Topics include teaching goals, results of recent
research, lecturing, demonstrations, teaching problem solving,
testing, active learning, course development, and teaching difficult
concepts in selected areas of physics. The instructor observes the
students teaching.

The following courses may be taken in any order.
Offered in alternate years.

16:750:681,682. ADVANCED TOPICS IN SOLID-STATE PHYSICS
II (3,3)
16:750:685,686. ADVANCED TOPICS IN NUCLEAR PHYSICS II (3,3)
16:750:689,690. ADVANCED TOPICS IN ASTROPHYSICS II (3,3)
16:750:693,694. ADVANCED TOPICS IN HIGH ENERGY PHYSICS
II (3,3)
16:750:695. ADVANCED TOPICS IN MATH PHYSICS (3)
16:750:699. NONTHESIS STUDY (1)
16:750:701,702. RESEARCH IN PHYSICS (BA,BA)

PHYSIOLOGY AND
NEUROBIOLOGY 761

Degree Program Offered: Doctor of Philosophy
Director of Graduate Program: Professor Ira B. Black, Room 342,
CABM, Busch Campus (732/235-5388)

Members of the Graduate Faculty
Cory Abate-Shen, Associate Professor of Neuroscience and Cell Biology,
UMDNJ-RWJMS/CABM; Ph.D., Cornell Medical College
Molecular processes that control gene expression during mammalian
neural development
Kurt F. Amsler, Assistant Professor of Physiology and Biophysics, UMDNJ-
RWJMS; Ph.D., Tennessee
Signal transduction and control of epithelial growth and differentiation
Sidney B. Auerbach, Associate Professor of Biological Sciences, FAS-NB;
Ph.D., Wisconsin (Madison)
Control of neurotransmitters in the brain
Ira B. Black, Chairperson and Professor of Neuroscience and Cell Biology,
UMDNJ-RWJMS/CABM; M.D., Harvard
Environmental regulation of brain gene expression: role of growth and trophic
factors; synaptic plasticity
Timothy M. Casey, Professor of Entomology, CC; Ph.D., California (Los Angeles)
Respiration; bioenergetics; thermoregulation
Kuang-Yu Chen, Professor of Chemistry, FAS-NB; Ph.D., Yale
Protein kinase pathway in neuronal development: neoblastoma differentiation
Robert E. Davis, Associate Professor of Biological Sciences, FAS-NB;
Ph.D., Stanford
Regeneration and electrophysiology of peripheral auditory neurons
Emanuel M. DiCicco-Bloom, Associate Professor of Neuroscience and
Cell Biology, UMDNJ-RWJMS/CABM; M.D., Cornell Medical College
Cellular and molecular regulation of neurogenesis in vivo and in vitro
Cheryl F. Dreyfus, Professor of Neuroscience and Cell Biology, UMDNJ-RWJMS;
CABM; Ph.D., Cornell
Role of environmental factors on brain neuron ontogeny
Monica Driscoll, Associate Professor of Molecular Biology and Biochemistry,
FAS-NB/CABM; Ph.D., Harvard
Molecular genetics of neurodegeneration; mechanotransduction
Isaac E. Edery, Assistant Professor of Molecular Biology and Biochemistry, FAS-NB;
CABM; Ph.D., McGill
Molecular mechanisms underlying biological clocks
Michael E. Fager, Professor of Neuroscience and Cell Biology, UMDNJ-RWJMS;
Ph.D., Yale
Neurophysiology; neuroanatomy; neurogenetics
Julie M. Fagan, Associate Professor of Animal Sciences, CC; Ph.D., Arizona
Muscle growth mechanisms; growth and breakdown in mammalian cells in health
and disease
Allahverdi Farmanfarmaian, Professor of Biological Sciences, FAS-NB;
Ph.D., Stanford
Membrane transport; comparative physiology
Herbert M. Geller, Professor of Pharmacology and Neurology, UMDNJ-RWJMS;
Ph.D., Case Western Reserve
Developmental and molecular neurobiology
Bijan K. Ghosh, Professor of Physiology and Biophysics, UMDNJ-RWJMS;
D.Sc., Calcutta
Protein transport; membrane differentiation
Lindsey Grandison, Associate Professor of Physiology and Biophysics,
UMDNJ-RWJMS; Ph.D., Michigan State
Neuroendocrine functions
Shu-Chan Hsu, Assistant Professor of Cell Biology and Neurosciences, FAS-NB;
Ph.D., British Columbia
Membrane mechanisms of synaptic development and function
Arnold G. Hyndman, Professor of Biological Sciences, FAS-NB; Ph.D.,
California (Los Angeles)
Development of CNS neurons
William G. Johnson, Professor of Neurology, UMDNJ-RWJMS; M.D., Columbia
Locating and cloning genes for human nervous system traits and disorders
Bela Julesz, Professor of Psychology, FAS-NB; Ph.D., Hungarian Academy
of Sciences
Visual perception
Joseph Kedem, Associate Professor of Physiology and Biophysics,
UMDNJ-RWJMS; Ph.D., Hebrew
Quantitative relation between cardiac function and metabolism
George M. Krauthamer, Professor of Neuroscience and Cell Biology,
UMDNJ-RWJMS; Ph.D., New York
Neurophysiology; neuroanatomy
John Lenard, Professor of Physiology and Biophysics, UMDNJ-RWJMS;
Ph.D., Cornell
Insulin actions in fungi; virus membrane assembly and disassembly
John K-J. Li, Professor of Biomedical Engineering, SE; Ph.D., Pennsylvania
Cardiovascular dynamics and hypertension; instrumentation
Gordon J. Macdonald, Professor of Neuroscience and Cell Biology, UMDNJ-
RWJMS; Ph.D., Rutgers
Reproductive endocrine functions
Sasha Malamed, Professor of Neuroscience and Cell Biology, UMDNJ-RWJMS;
Ph.D., Columbia
Ultrastucture and function of endocrine cells
Randall D. McKinnon, Associate Professor of Surgery, UMDNJ-RWJMS;
Ph.D., McMaster
Growth factors and glia
Gary F. Merrill, Professor of Biological Sciences, FAS-NB; Ph.D., Michigan State
Regulation of coronary blood flow
Judith A. Neuhaus, Associate Professor of Medicine, UMDNJ-RWJMS;
Ph.D., Rutgers
Neuroendocrine regulation of respiratory control: Neuronal responses to hypoxia and CO
d Richard S. Nowakowski, Associate Professor of Neuroscience and Cell Biology,
UMDNJ-RWJMS; Ph.D., Harvard
Development of central nervous system
Timothy Otto, Associate Professor of Psychology, FAS-NB; Ph.D., New Hampshire
Neurobiology of memory; synaptic plasticity; rodent olfactory learning
Charles H. Page, Professor of Biological Sciences, FAS-NB; Ph.D., Illinois
Cellular and molecular neurobiology and motor control
Thomas V. Papathomas, Associate Professor of Biomedical Engineering,
FAS-NB; Ph.D., Columbia
Mechanisms and models for stress, motion, and texture perception
Isaac Peng, Assistant Professor of Neuroscience and Cell Biology, UMDNJ-
RWJMS; Ph.D., Temple
Actin structure-function relationships; actin monomer-polymer equilibrium
Claudio W. Fiksel, Assistant Professor of Neuroscience and Cell Biology,
UMDNJ-RWJMS; Ph.D., Brandeis
Molecular genetics of odors in Drosophila
John E. Fantz, Professor of Neuroscience and Cell Biology, UMDNJ-RWJMS/
CABM; Ph.D., Oregon
Role of insulin growth factors during embryogenesis; development biology
of the pituitary gland
Mark R. Flammer, Associate Professor of Biological Sciences, FAS-NB;
Ph.D., Stanford
Modulation and regulation of calcium channels in mammalian CNS neurons
Jamshid Rabii, Associate Professor of Biological Sciences, FAS-NB; Ph.D.,
California (San Francisco)
Neuroendocrine regulation of prolactin, LH, and other pituitary hormones
David J. Riley, Professor of Medicine, Adjunct Professor of Physiology and
Biophysics, UMDNJ-RWJMS; M.D., Maryland
Respiratory physiology
Michael M. Shen, Assistant Professor of Pediatrics, UMDNJ-RWJMS/CABM /
CINJ; Ph.D., Cambridge
Analyses of growth factor signaling in vertebrate neural development
Tetsuo Shimamura, Professor of Pathology, UMDNJ-RWJMS; M.D.,
Ph.D., Yokohama
Renal structure and function
Arabinda K. Sinha, Associate Professor of Physiology and Biophysics,
UMDNJ-RWJMS; Ph.D., California (San Francisco)
Metabolic alterations between sleep and wakefulness
Judith M. Stern, Professor of Psychology, FAS-NB; Ph.D., Rutgers
Sexual and maternal behaviors in animals and women

163
be knowledgeable in the areas of biochemistry and cellular, enzymology; signal transduction mechanisms in cytokine-induced differentiation.

Carol A. Tozzi, Assistant Professor of Medicine, UMDNJ-RWJMS; Ph.D., Rutgers
- Hypertension; matrix turnover; signaling factors in vascular remodeling
- William C. Wadsorth, Assistant Professor of Pathology, UMDNJ-RWJMS; Ph.D., Missouri
- Extracellular matrix and axonal guidance in C. elegans

George Wagner, Professor of Psychology, FAS-NB; Ph.D., Chicago
- Neurochemical mechanisms underlying behavior
- Harvey R. Weiss, Professor of Physiology and Biophysics, UMDNJ-RWJMS; Ph.D., Duke
- Circulatory and cardiac physiology
- Mark O. West, Professor of Psychology, FAS-NB; Ph.D., Bowman Gray
- Analysis of basal ganglia and limbic circuits in the rat during behavior and in electrophysiological response to drugs

Kuo Wu, Associate Professor of Neuroscience and Cell Biology, UMDNJ-RWJMS/CAIBM; Ph.D., SUNY (Brooklyn)
- Elucidation of molecular mechanisms that regulate synaptic structure
- Wise Young, Professor of Cell Biology, Developmental Biology, and Neurobiology, FAS-NB; Ph.D., Iowa; M.D., Stanford
- Spinal cord regeneration
- Edward J. Zambraski, Associate Professor of Biological Sciences, FAS-NB; Ph.D., Iowa
- Renal and exercise physiology
- James Q. Zheng, Assistant Professor of Neuroscience and Cell Biology, UMDNJ-RWJMS; Ph.D., Tsinghua
- Molecular/cellular mechanisms underlying the formation of neuronal circuitry
- Renping Zhou, Associate Professor of Chemical Biology, CP; Ph.D., California (Berkeley)
- Development of the brain: function of growth factors and their receptors

Associate Members of the Graduate Faculty
- Juan P. Advis, Associate Professor of Animal Sciences, CC; Ph.D., Texas D.V.M., Austral (Chile)
- Neuroendocrinology of reproduction
- Alan Gelperin, Lucent Technologies–Bell Laboratories; Ph.D., Pennsylvania
- Offactory information processing and learning in Limax maximus
- Joseph V. Martin, Associate Professor of Zoology; FAS-C; Ph.D., Southern California
- Mechanisms of action of hypnotic drugs
- William M. Saidel, Associate Professor of Zoology; FAS-C; Ph.D., Massachusetts Institute of Technology
- Vision in fishes and the evolution of vision
- Michael V.K. Sukhdeo, Associate Professor of Animal Sciences, CC; Ph.D., McGill
- Behavioral ecology of parasitic helminths in the host environment

Comparative, mammalian, and environmental physiology, while those concentrating in neurobiology should be knowledgeable in neural anatomy, neurophysiology, neural chemistry, neuropharmacology, neuroendocrinology, neural development, and the neural bases of behavior. The program has no foreign language requirement. To meet the residency requirements in the program, a student must be registered for 24 credits of course work or research or some combination of both within one period of twelve consecutive months during his or her doctoral training.

For more information about joint Ph.D. degrees available in this program, see the beginning of this chapter.

Graduate Courses

16:761:501-502. MAMMALIAN PHYSIOLOGY (3,3)
- Prerequisite: Physiology. Prerequisite to 16:761:501-502: 16:761:501.
- Functions of organs and organ systems in the mammal.

16:761:507. (F) COMPARATIVE PHYSIOLOGY (3)
- Prerequisite: Physiology. Prerequisite to 16:761:507-508: 16:761:507.
- Topics of current interest in physiology from a comparative point of view using subject matter derived entirely from recent, original papers.

16:761:508. (S) MOLECULAR AND CELL PHYSIOLOGY (3)
- Prerequisite: Course in physiology or cell biology, and biochemistry, permission of instructor.
- Lectures on membrane structure, transport phenomena, muscle, nerve, and cell organelles.

16:761:513. (S) CARDIOVASCULAR PHYSIOLOGY (3)
- Prerequisite: Physiology. Prerequisite to 16:761:513-514: 16:761:513.
- Comprehensive study of the cardiovascular system in mammals. Special consideration given to coronary circulation, myocardial oxygen consumption, and cardiac arrhythmias.

16:761:515. (S) MEDICAL PHYSIOLOGY (7)
- Prerequisite: Permission of instructor.
- Study of human physiology from the molecular to the systems level. Emphasis is on the integration of the systems within the healthy individual. Teaching modalities include lectures, small discussion groups, and laboratories in pulmonary and cardiovascular physiology.

16:761:517. (S) MOLECULAR NEUROTRANSMISSION (2)
- Prerequisite: Neuroscience. Emphasis on current topics on molecular mechanisms that govern neuron-to-neuron communication through chemical pathways in the mammalian brain; pharmacological and pathological conditions.

16:761:520. (F) ENVIRONMENTAL PHYSIOLOGY (3)
- Prerequisite: Physiology. Prerequisite to 16:761:520-521: 16:761:520.
- Examination of the physiological responses associated with an acute exercise stress, in addition to the effects of repeated exercise or training. Emphasis on the control mechanisms involved in these processes. Laboratory involves students making measurements on themselves at rest and during exercise. Experiments utilizing animals are conducted to demonstrate muscle-neural and endocrine functions during exercise.

16:761:540. (S) TROPHIC MECHANISMS IN THE NERVOUS SYSTEM (2)
- Prerequisites: Cell biology, neurobiology, and biochemistry. Prerequisite: 16:761:501-502.
- Introduction to neurotropic factor field. In particular, the critical nature of trophic agents in the establishment and maintenance of a functioning nervous system.
PLANT BIOLOGY 765

Degree Programs Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Professor Thomas Leustek,
Foran Hall, Cook Campus (732/932-9375, ext. 358)
Website: http://aesop.rutgers.edu/~plantbio/

Members of the Graduate Faculty

Faith C. Belanger, Associate Professor of Plant Pathology, CC; Ph.D., Illinois
Plant molecular biology; hormone-induced secretion

Raul I. Cabrera, Assistant Extension Specialist in Plant Sciences, CC; Ph.D., California (Davis)
Nursery crops production/management; mineral nutrition of woody ornamentals

Tseh Ar Chen, Professor of Plant Pathology, CC; Ph.D., New Hampshire
Plant morphology and plant biotechnology/plant nematology; nematode ultrastructure

Xuemei Chen, Assistant Professor of Genetics, WIM; Ph.D., Cornell
Identity specification and morphogenesis of stamens and carpels in Arabidopsis flowers

Chee-kok Chin, Professor of Plant Sciences, CC; Ph.D., Alberta
Plant cell and tissue culture

Bruce B. Clarke, Associate Professor of Plant Pathology and Associate Extension Specialist in Plant Pathology, CC, and Director, Center for Turfgrass Science;
Ph.D., Rutgers
Turfgrass pathology; soilborne diseases; disease forecasting and control; mycology

Bill D. Davis, Associate Professor of Biological Sciences, FAS-NB; Ph.D., Purdue
Tissue culture; cell and developmental physiology

Peter Rodney Day, University Professor of Genetics and Director of the Biotechnology Center for Agriculture and the Environment; Ph.D., London
Genetic engineering; genetics of host-pathogen interaction

Hugo K. Dooner, Professor of Genetics, CC; WIM; Ph.D., Wisconsin
Transposons; gene tagging; molecular analysis of meiotic recombination in plants

Edward F. Durner, Associate Research Professor of Plant Sciences, CC; Ph.D., North Carolina
Low-temperature stress resistance in tree fruit

Joan G. Ehrenfeld, Professor of Ecology, Evolution, and Natural Resources, CC;
Ph.D., CUNY
Plant community ecology; ecosystem ecology; pollution impacts

Joseph A. Fiola, Associate Extension Specialist in Plant Sciences, CC;
Ph.D., Maryland
Tissue culture; breeding, and cultural practices; studies of small fruits

James C. French, Associate Professor of Biological Sciences, FAS-NB;
Ph.D., Cornell
Comparative and developmental anatomy; experimental morphology

Chaim Freund, Professor of Plant Sciences, CC; Ph.D., Washington State
Postharvest biology; senescence, fruit ripening, and stress

Cyril R. Funk, Research Professor of Plant Sciences, CC; Ph.D., Rutgers
Turfgrass breeding

Stephen A. Garrison, Professor of Plant Sciences, CC; Ph.D., Illinois
Production techniques for vegetables

Randy Gaugler, Professor of Entomology, CC; Ph.D., Wisconsin
Invertebrate pathology; nematology; biological control

Gene Giacomelli, Professor of Biosource Engineering, CC; Ph.D., Rutgers
Controlled environment agriculture; crop production techniques

Thomas J. Gianfagna, Associate Research Professor of Plant Sciences, CC;
Ph.D., Cornell
Plant growth regulators; physiology of fruit crops

Joseph C. Goffreda, Associate Professor of Plant Sciences, CC; Ph.D., Cornell
Genetics and breeding; pest resistance in solanaceous crops

Ann B. Gould, Associate Extension Specialist in Plant Pathology, CC;
Ph.D., Kentucky
Ornamental pathology

Steven N. Handel, Professor of Ecology, Evolution, and Natural Resources, CC;
Ph.D., Cornell
Plant population ecology; pollination biology; ecological genetics

Jean Marie Hartman, Associate Professor of Landscape Architecture, CC;
Ph.D., Connecticut
Plant ecology; community ecology; restoration ecology; land planning

Joseph B. Heckman, Associate Extension Specialist in Soil Fertility, CC; Ph.D., North Carolina
Plant nutrition

Melvin R. Henninger, Professor of Plant Sciences, CC; Ph.D., Pennsylvania State
Cropping systems of potatoes

Bradley I. Hillman, Associate Research Professor of Plant Pathology, CC; Ph.D., California (Berkeley)
Viral infections of plants and fungi

Harry W. James, Research Professor of Plant Sciences, CC; Ph.D., Rutgers
Photosynthetic efficiency and source-sink relationships

Goko Jelenkovic, Professor of Plant Sciences, CC; Ph.D., California (Davis)
Genetic manipulation of plants

Stephen A. Johnston, Associate Extension Specialist in Plant Pathology, CC;
Ph.D., Rutgers
Vegetable crop pathology

Edward G. Kirby, Associate Professor of Botany, FAS-N; Ph.D., Florida
Developmental physiology; tissue culture

Daniel F. Klissig, Professor of Molecular Biology, FAS-NB; and Associate Director of the Waksman Institute of Microbiology; Ph.D., Harvard
Signal transduction in plant-pathogen interactions

Donald Y. Kobayashi, Associate Professor of Plant Pathology, CC; Ph.D., California (Riverside)
Plant-bacteriology; host-pathogen interaction; molecular biology

John E. Kuser, Associate Professor of Ecology, Evolution, and Natural Resources, CC;
Ph.D., Oregon State
Genological variant; provenance and progeny testing; forest tree propagation

Eric Lam, Associate Professor of Plant Sciences, CC; Ph.D., California (Berkeley)
Generegulating mechanisms in plant development and photomorphogenesis

Michael A. Lawton, Associate Professor of Plant Sciences, CC; Ph.D., Oxford
Molecular biology; protein kinases

Thomas Leustek, Associate Professor of Plant Sciences, CC; Ph.D., Rutgers
Stress proteins and cell molecular biology

Bradley A. Majek, Associate Professor of Plant Sciences, CC; Ph.D., Cornell
Weeds and weedicides
The graduate faculty is composed of members from several units, including the Departments of Plant Science; Biochemistry and Microbiology; Plant Pathology; Ecology, Evolution, and Natural Resources; and Environmental Sciences at Cook College and the Department of Biological Sciences of the Faculty of Arts and Sciences—New Brunswick. Faculty also may be affiliated with the Biotechnology Center for Agriculture and the Environment, the Center for Theoretical and Applied Genetics, the Waksman Institute of Microbiology, and the Center for Interdisciplinary Studies in Turgar Grass Science.

Courses in the plant biology program may choose from four research and curriculum tracks: 1) molecular and cellular biology, 2) organismal and population biology, 3) horticulture and plant technology, and 4) plant pathology. The core curriculum draws on courses from the four tracks. Additional curriculum requirements are tailored to students’ individual interests. The tracks are interwoven in that members of the graduate faculty may be members of more than one track, and students are encouraged to take courses in more than one track area.

Students in the molecular and cellular biology track may specialize in photosynthesis, carbon metabolism and partitioning, developmental physiology and genetics, growth regulation, nitrogen metabolism, ion uptake and electrophysiology, molecular biology of subcellular organelles, regulation of gene expression, genetic transformation of plants, senescence, ripening of fruit, seed germination, water relations, tissue culture, comparative or developmental anatomy and morphology, or ultrastructure. Students in the organismal and population biology track may emphasize physiological ecology, population ecology, species interactions, community organization and dynamics, ecosystem dynamics, pollination and reproductive biology, and evolutionary biology. The horticulture and plant technology track focuses on course work and research activity associated with plant biology relating to agriculture. A wide diversity of student interests are served by this track, from fundamental investigations of plant function at the molecular level to studies of how environment and biotic stress affect crop production. Students with interests in agricultural biotechnology, plant breeding and genetics, plant physiology, growth and development, and plant interaction with the environment are supported by this track. Among the issues that students in the plant pathology track may address are host/pathogen interactions, epidemiology and control of plant disease, plant virology, bacteriology, mycoplasmology, mycology, molecular biology of plant pathogenic or endophytic microorganisms, and biotechnology.

For the master’s degree without thesis, 31 course credits and 1 credit for a paper are required. For the master’s degree with thesis, 26 course credits, 6 research credits, and a research thesis are required. For the doctoral degree, 72 credits with a minimum of 32 course credits and a minimum of 34 research credits, a research thesis, and one academic year in residence are required. There is no language requirement. Prospective students are invited to visit the program’s web site or write the program director for A Guide to Graduate Study in Plant Biology and the Faculty Research Interests books, which provide additional information.

In addition to the graduate courses described below, consult those courses listed under biochemistry, ecology and evolution, environmental sciences, microbiology and molecular genetics, and statistics. Many advanced undergraduate courses (400 level) listed in the New Brunswick Undergraduate Catalog, the Camden Undergraduate Catalog, and the Newark Undergraduate Catalog may be used for graduate credit.
Graduate Courses
16:765:501. (F) INTRODUCTION TO PLANT BIOLOGY (3)
Survey of research topics in plant biology related to faculty
research programs.

16:765:502. (S) PLANT PHYSIOLOGY (3)
Prerequisite: Undergraduate plant physiology or equivalent; chemistry.
Survey of modern aspects of plant physiology with emphasis on
recent literature. Topics covered include mineral nutrition, develop-
ment, stress physiology, crop physiology, photosynthesis, light
responses, water relations, and plant growth regulators.

16:765:506. (S) ELECTRON MICROSCOPY FOR CELL AND
MOLECULAR BIOLOGY (3)
Prerequisite: Molecular biology of cells, cell biology, or equivalent.
Principles and techniques of biological electron microscopy. Use
and operation of the transmission electron microscope in studying
macromolecules, viruses, cells, and tissues.

16:765:507. (F) PLANT-WATER RELATIONS (3)
Prerequisite: 16:765:501 or equivalent.
Whole plant and cell response to water deficits from a physiological
perspective. Focus on agronomic plants. Topics include movement
of water in the soil-plant-air continuum, water deficit effects on
transpiration, photosynthesis, osmotic adjustment, ion and nitrogen
metabolism, hormones, and growth. Techniques involve thermo-
couple psychrometry, gas exchange, and porometry.

16:765:508. (S) FOREST GENETICS (3)
Long breeding cycle of trees, distribution of variation, selection
and progeny testing, establishment of seed orchards, clonal and
seed propagation. Objectives in breeding programs.

16:765:510. (F) ADVANCED PLANT GENETICS (3)
Pre-requisite: Undergraduate course in genetics. It is
strongly recommended that students have had a course in biochemistry or
molecular biology.
Classical and molecular genetics of higher plants, including
breeding systems, linkage analysis, recombination, gene and
chromosomal mutations, epigenetics, genetics-based approaches
to cloning, genetic analysis of metabolic pathways, biochemical
genetics of storage compounds.

16:765:511. (F) ANGIOSPERM REPRODUCTION AND
EMBRYOLOGY (4)
Lec. 3hrs., lab. 3hrs. Prerequisite: General botany; plant anatomy and/or
morphology or written permission of instructor.
Detailed study of reproduction in the flowering plants; floral
development; vascular anatomy of the flower; meiosis, meiosis
and pollen; ovule development, megasporogenesis and megagame-
tophyte; fertilization, embryogenesis, and endosperm development;
apomixis; seed and fruit.

16:765:512. (S) ANGIOSPERM DIVERSITY (3)
Pre-requisite: Introductory botany course.
Structural and phylogeny, vegetative structure, physiology, diversity,
plant development, ecology of highly specialized angiosperms.

16:765:513. (S) PLANT MOLECULAR BIOLOGY (3)
Prerequisite: Undergraduate genetics or equivalent.
Fundamental and applied aspects of plant molecular biology,
including isolation, structure, and regulation of nuclear and
organelle genes, molecular biology of plant-microbe interactions,
molecular biology of plant development, and plant biotechnology.

16:765:514. (F) PLANT DEVELOPMENTAL AND CELL BIOLOGY (3)
Lawton, Raskin. Prerequisites: Undergraduate courses in plant physiology,
Genetic and cellular aspects of plant development. Regulation of
cell division and differentiation; hormones and signaling mecha-
nisms; stress physiology and cell architecture.

16:765:517. (F) SECONDARY METABOLISM IN PLANTS (2)
Prerequisite: 16:765:501 or equivalent.
Secondary metabolism enzymes and pathways. Metabolites
in economic botany, medicine, industry, and plant taxonomy.
Naturally occurring pesticides.

16:765:518. (S) TOPICS IN PLANT MICROBE INTERACTIONS (2)
Prerequisite: General biology. Recommended: Microbiology.
Comprehensive examination of the interactions between plants and
microorganisms at the molecular, cellular, and organismal levels
in both pathogenic and beneficial interactions.

16:765:520. (S) PLANT BIOCHEMISTRY AND METABOLISM (3)
Prerequisite: Plant physiology or equivalent.
Physiological significance of principal metabolic systems, including
photosynthesis, phloem transport, sulfate and nitrate reduction,
hexose metabolism; synthesis of lipids and lipid pigments, pho-
tochemical and hormonal controls, chloroplast development and
biochemistry of secondary plant products.

16:765:521. (F) PLANT SCIENCE TECHNIQUES (3)
Experimental systems and assays used for the investigation of plant
functions. Applications, advantages, and limitations of individual
techniques used in plant laboratory research.

16:765:522. (F) APPLIED PLANT SCIENCE STATISTICS (3)
Statistical methods such as experimental design, regression,
ANOVA, covariance, field plot techniques, sampling, factorial
experiments, treatment comparisons, and estimates of effects.

16:765:523. GENETICS OF SEXUALITY (4)
Prerequisite: Introductory genetics and cytology.
Sex-determining mechanisms in selected plants and animal
species; incompatibles and sterilities; developmental and
evolutionary aspects.

16:765:524. (S) PLANT GROWTH REGULATORS IN AGRICULTURE (3)
Prerequisite: 16:765:501 or equivalent.
The chemistry, physiology, and use of the naturally occurring and
synthetic plant growth substances employed in the management of
horticultural and agronomic crops. Action of auxins, gibberellins,
ethylene-release agents, and growth retardants in relation to the
control of rooting, flowering, fruit ripening, abscission, and the
enhancement of yield.

16:765:525. (S) PLANT MINERAL NUTRITION (3)
Role of the essential nutrients in plant growth and development
with emphasis on the critical levels in plants, yield formation,
crop quality.

16:765:526. (S) FRUIT R IPENING AND PLANT SENESCENCE (3)
Measurements of plant senescence manifestations including
fruit ripening.

16:765:527. (F) ADVANCED FRUIT CULTURE (3)
Discussion of efficient growing systems for major fruit crops
including small fruits.

16:765:528. (F) ADVANCED PLANT BREEDING (3)
Prerequisite: A course in genetics.
Breeding, self-pollinated, cross-pollinated, and apomictic plants;
role of mutation, polyploidy, and interspecific hybridization
in plant improvement; inheritance of adaptive plant characters;
developing and maintaining improved varieties.

16:765:531. (F) PRINCIPLES OF PLANT PATHOLOGY (3)
Prerequisite: 16:765:501 or equivalent.
Comprehensive examination of the interactions between plants and
microorganisms at the molecular, cellular, and organismal levels
in both pathogenic and beneficial interactions.

16:765:540. (F) NITROGEN FIXATION AND SOIL MICROBES (3)
Prerequisite: Undergraduate plant physiology.
Fundamental concepts elucidating the nature, cause, diagnosis,
dissemination, and control of plant diseases. Includes an overview
of all plant disease agents.

16:765:551. (F) ADVANCED PLANT PATHOLOGY (3)
Prerequisite: 16:765:531 or equivalent.
Control and epidemiology of plant disease. Properties, activities,
and physical considerations of fungicides and nematocides and
their application and labeling.
PLANT PATHOLOGY

16:765:533. (F) ADVANCED MYCOLOGY (3)
Lec. 2 hrs., lab. 3 hrs. Prerequisite: General mycology or equivalent.
Detailed study of the filamentous and fleshy fungi, with emphasis on identification, mycological literature, reproduction, and other special topics.

16:765:535. (F) PLANT VIROLOGY (3)
Lec. 2 hrs., lab. 3 hrs. Prerequisite: 16:765:531 or equivalent.
Current concepts concerning the history, transmission, detection, identification, biochemistry, classification, ecology, epidemiology, and control of plant viruses. Special topics or techniques covered.

16:765:536. PLANT DISEASE CLINIC (3)
Lec., lab. 6 hrs. Prerequisite: General plant pathology or equivalent. Offered only during the summer session.
Workshop in diagnosing both pathogenic and nonpathogenic plant disorders, isolation and identification of causal organisms, and current disease control measures.

16:765:537. PLANT PATHOGENIC BACTERIA (3)
Lec. 2 hrs., lab. 3 hrs. Prerequisite: General plant pathology.
Basic concepts of phytobacteriology, including diagnosis and identification of plant bacterial diseases, ecology and control of bacteria, pathogenicity, disease physiology, and molecular biology of pathogenicity factors.

16:765:538. (S) PLANT PATHOGENESIS (3)
Prerequisite: 16:765:531 or equivalent.
Mechanisms of pathogenesis; responses of plants to pathogens in terms of structure, function and metabolism; disease resistance, mechanisms, and genetics of pathogenesis.

16:765:589. (F) COMMUNITY DYNAMICS (4)
Lec., sem. 3 hrs., lab. 3 hrs. Includes field investigations. Prerequisite: Ecology or written permission of instructor.
Theory of and evidence for the ecological processes that control inter-specific interactions; the structure of plant and animal communities.

16:765:591. (F) DEVELOPMENTAL PHYSIOLOGY (3)
Prerequisites: General botany, plant physiology.
Chemical, physical, biological factors in growth and differentiation; correlative and compensatory factors in flowering, fruit development, tuber and bulb formation; morphology and physiology of root, stem, leaf differentiation; growth and form.

16:765:601,602. PROBLEMS IN PLANT BIOLOGY (BA,BA)
Lec. 2 hrs., lab. 3 hrs. Prerequisite: Permission of instructor.
A laboratory and conference course for special problems.

16:765:603,604. SELECTED TOPICS IN PLANT BIOLOGY (BA,BA)
Application of basic concepts of plant growth and development to the understanding of production problems and their in-depth study for selected significant topics.

16:765:609,610. SEMINAR IN PLANT BIOLOGY (1,1)
Required of all graduate students.
Advanced topics investigated and presented by students.

16:765:699. NONTHESIS STUDY (1)
For students writing their theses for a nonthesis master’s degree.

16:765:701,702. RESEARCH IN PLANT BIOLOGY (BA,BA)
For students working on an experimental research problem for their dissertation.

POLITICAL SCIENCE 790

Degree Programs Offered: Master of Arts, Doctor of Philosophy
Director of Graduate Program: Professor Milton Heumann,
Hickman Hall, Douglass Campus (732/932-9261)

Members of the Graduate Faculty

Myron J. Aronoff, Professor of Political Science and Anthropology, FAS-NB; Ph.D., Manchester; Ph.D., California (Los Angeles)

Comparative politics (Middle East); political anthropology

Ross K. Baker, Professor of Political Science, FAS-NB; Ph.D., Pennsylvania

Political institutions; Congress; U.S. foreign policy

Benjamin R. Barber, Wall Witman professor of Political Science, FAS-NB;
Ph.D., Harvard

Political theory; democratic institutions

P. Dennis Bathory, Associate Professor of Political Science, FAS-NB;
Ph.D., Harvard

Political theory (ancient and medieval); political leadership

Stephen E. Bronner, Professor of Political Science, FAS-NB; Ph.D.,
California (Berkeley)

Political theory; political economy

Philip H. Burch, Jr., Research Professor of Public Policy, EJRSPP;
Ph.D., Rutgers

American political institutions; political economy

Pedro A. Cabán, Associate Professor of Political Science, FAS-NB;
Ph.D., Columbia

State formation; alternative economic growth models; role of multinational
Corporations; multilateral financial institutions in the Caribbean and
Central America

Barbara J. Callaway, Professor of Political Science, FAS-NB; Associate Provost
for Academic Affairs in the Social Sciences; Ph.D., Boston

Comparative politics (Africa); women and politics

Susan J. Carroll, Professor of Political Science, EIP; Ph.D., Indiana
Women and politics; mass politics

Michael R. Curtis, Professor of Political Science, FAS-NB; Ph.D., Cornell
Comparative Politics (Western Europe)

Cynthia R. Daniels, Associate Professor of Political Science, FAS-NB; Ph.D.,
Massachusetts (Amherst)

Women and public policy; productive politics; political economy of gender

Eric Davis, Associate Professor of Political Science, FAS-NB; Ph.D., Chicago
Comparative politics (Middle East); political economy

Yale H. Ferguson, Professor of Political Science, FAS-NB; Ph.D., Columbia
International relations theory; history; Latin America

Frank Fischer, Professor of Political Science, FAS-NB; Ph.D., New York
Policy analysis

Mary Hawkesworth, Professor of Political Science and Director of the Center for
The American Woman and Politics, CAWP/FAS-NB; Ph.D., Georgetown
Feminist theory; women and politics; contemporary political philosophy;
Social policy

Milton Heumann, Professor of Political Science, FAS-NB; Ph.D., Yale
Public law; legal processes; criminal justice and civil liberties

Robert R. Kaufman, Professor of Political Science, FAS-NB; Ph.D., Harvard
Comparative politics (Latin America); political economy

Jan Kubik, Associate Professor of Political Science, FAS-NB; Ph.D., Columbia
East European politics; transitions from communism; politics and culture; local
Politics; forms of social protest

Richard R. Lau, Professor of Political Science, FAS-NB; Ph.D.,
California (Los Angeles)
Mass politics

Susan E. Lawrence, Associate Professor of Political Science, FAS-NB;
Ph.D., Johns Hopkins
Public Law

C. Richard Lehman, Professor of Political Science, FAS-NB; Ph.D., Syracuse
American political institutions

Jack S. Levy, Professor of Political Science, FAS-NB; Ph.D., Wisconsin (Madison)
International relations; foreign policy; decision making; causes of war

Barbara C. Lewis, Associate Professor of Political Science, FAS-NB;
Ph.D., Northwestern
Comparative politics (Africa); women and politics

Roy E. Licklider, Professor of Political Science, FAS-NB; Ph.D., Yale
International relations; foreign policy; military policy

Wilson C. McWilliams, Professor of Political Science, FAS-NB; Ph.D.,
California (Berkeley)
Political theory; American political thought

Manus I. Midlarsky, Back Professor of International Peace and Conflict
Resolution, FAS-NB; Ph.D., Northwestern
International relations with emphasis on causes of political violence including
War and revolution
politics, public law, and American politics. Candidates for the Ph.D. program must submit applications with scores, three letters of recommendation, and a writing sample by March 1. Transcripts, Graduate Record Examination (GRE) scores from the Graduate Record Examination, and strong letters of recommendation are required. However, each case is considered individually.

The graduate program in political science is directed toward the formulation and implementation of a governmental program. A variety of approaches are used in comparative analysis.

Programs

The graduate program in political science is directed toward attainment of the Ph.D. Exceptional applicants may be admitted to this program directly upon completion of their bachelor's degree; others enter after completion of a master's degree either at Rutgers or another institution. As a rule, applicants to the graduate program are more likely to be accepted if they have a 3.5 cumulative grade-point average or better, particularly in the social sciences, high scores from the Graduate Record Examination, and strong letters of recommendation. However, each case is considered individually.

In awarding financial aid to entering students, preference is given to those students who have been admitted directly to the Ph.D. program.

Applications for September admission should be submitted no later than February 1 by students seeking financial assistance; otherwise by March 1. Transcripts, Graduate Record Examination scores, three letters of recommendation, and a writing sample are required.

The graduate program offers concentrations in six areas: political theory, international relations, comparative politics, women and politics, public law, and American politics. Candidates for the Ph.D. select a major area of study from among the six concentrations.

Graduate Courses

16:790:501. PROSEMINAR IN AMERICAN POLITICS (3)
Overview of American politics. Topics include individual and institutional levels, the relationship between citizens and institutions, and the relationships between institutions.

16:790:503. PROSEMINAR: APPROACHES TO COMPARATIVE ANALYSIS (3)
Scope and practice of the field: nature of comparison; approaches to comparison; examples of current research on selected topics.

16:790:505. CONSTITUTIONALISM AND JUDICIAL POLITICS (3)
Role of the federal courts in the American system of democracy. Normative and empirical assessments of the foundations of judicial review and the alleged counter-majoritarian problem; interactions between courts and the other politically accountable branches; the role of litigants and mobilization processes in the judicial development of doctrine and policy.

16:790:506. (S) CONTEMPORARY CONSTITUTIONAL ISSUES (3)
Current public policy questions explored in the judicial forum, both national and state. A variety of research methods employed.

16:790:507. (S) COMPARATIVE STATE POLITICS (3)
Comparative analysis of the problems of all fifty states. Major factors and political processes that shape the outcomes of state politics. A variety of approaches used in comparative analysis.

16:790:510. PUBLIC POLICY (3)
Introduction to the formulation and implementation of public policy with an emphasis on federal policy-making, models for policy choice, and intergovernmental policy problems. A major portion of the course devoted to student projects that analyze the formulation and implementation of a governmental program.

16:790:511,512. PROSEMINAR IN POLITICAL THOUGHT: PLATO TO MARX (3,3)
Corequisites: 01:790:371,372. Intensive study of the history of Western political thought from Plato to J.S. Mill.
16:790:513. PHILOSOPHY OF POLITICAL INQUIRY (3)
Prerequisites: 16:790:511, 512, or permission of instructor.
Introduction to major issues in political and social inquiry in the
broad perspective of the philosophy of the social sciences.
Epistemology, methodology, and historiography in political theory
and political science.

16:790:514. AMERICAN POLITICAL THOUGHT (3)
Corequisites: 01:790:375, 376, or permission of instructor.
Major themes in American political thought from the seventeenth
century to the present; emphasis on contemporary movements and
ideas, including the new left, the new right, and black thought.

16:790:517. DEMOCRACY, VALUES, AND PUBLIC POLICY:
THEORETICAL FOUNDATIONS (3)
Theoretical foundations of public policy in a democracy. Complementarity
and conflict between such fundamental values as liberty,
equality, justice, security, efficiency, quality (of life), planning,
community, fraternity, individuality, and privacy; theoretical
implications of distinctions between public and private goods,
interests, and values.

16:790:521. PROSEMINAR: THEORIES OF INTERNATIONAL
POLITICS (3)
Contemporary approaches to the study of international systems
and the behavior of their national subsystems.

16:790:522. THEORIES OF WAR AND PEACE (3)
Survey of the existing theories and explanations of the causes of
war and the conditions of peace.

16:790:523. POLITICS OF AFRICA (3)
Problems particular to African political development; colonial
experience, one-crop economies, traditional social arrangements,
ethnic particularism, and party organization.

16:790:524. MASS MEDIA AND POLITICS (3)
The role, structure, and effects of mass media. Topics include
models of mass communication, government regulation, the media
as information sources and agents of socialization, media influence
on candidate evaluation and voting.

16:790:527. ANCIENT AND MEDIEVAL POLITICAL PHILOSOPHY (3)
Representative primary texts and significant secondary literature,
emphasizing major controversies in the interpretation of classical
or medieval political philosophy. Readings selected from the
works of Plato, Aristotle, Cicero, Augustine, Aquinas, and their
respective contemporaries.

16:790:530. EXPLANATIONS OF FOREIGN POLICY (3)
Systematic analysis of factors influencing the foreign policies
of states; patterns of relationships.

16:790:531. PROBLEMS IN AMERICAN POLITICS (3)
Selected specific problems in American politics, currently
emphasizing state and local elections and campaigning.

16:790:532-533. RESEARCH DESIGN IN POLITICAL SCIENCE (3,3)
Research techniques, an introduction to probability and statistics,
the logic of political inquiry, and the philosophy of the social sciences.

16:790:534. THE PRESIDENCY (3)
Introduction to the historical development of the presidency, as
well as significant dimensions of contemporary presidential politics.
Contending approaches to studying the presidency. Topics include
presidential selection; popular leadership; party politics; interest
groups and social movements; and relations with Congress,
the courts, and the bureaucracy.

16:790:539. POLITICS OF THE MIDDLE EAST (3)
Prerequisite: 16:790:503.
Comparative analysis of nationalist movements, problems of
social and cultural change, the Arab-Israeli dispute, and inter-Arab
politics. Historical and contemporary perspectives.

16:790:541. POLITICAL CULTURE (3)
Strengths and weaknesses of different political culture approaches;
importance of cultural variables for understanding political change.

16:790:542. POLITICAL ANTHROPOLOGY: COMPARATIVE
CULTURAL APPROACHES (3)
Approaches to the analysis of culture, e.g., semiotics, phenomenology,
hermeneutics, structuralism, and critical theory; applications.
Meaning in politics: the roles of symbol, myth, metaphor, rhetoric,
ritual, religion, and performance.

16:790:544. COLLECTIVE IDENTITY: ETHNICITY AND
NATIONALISM (3)
Approaches to conceptualizing collective political identity;
comparative analysis of different types of nationalism and its
ethnic origins and modernity.

16:790:545. THEORIES IN POLITICAL ECONOMY (3)
Survey of the classical and contemporary literature from Smith
and Marx to Lindblom and O’Connor. Normative, theoretical,
and empirical implications of competing schools of thought.

16:790:547. FOUNDATIONS OF CAPITALISM AND THE
MODERN STATE (3)
Comparative historical development of Euro-American capitalism
and state structures, from 1450 through the industrial revolution.
The role of class relations, state elites, international economic
and geopolitical forces.

16:790:548. ADVANCED INDUSTRIAL SOCIETIES (3)
State and economy in Western Europe and North America.
Cross-national variations in the relationship between state, class,
and public policy.

16:790:551. COMMUNIST AND POST-COMMUNIST POLITICS (3)
Theories of communism (state socialism) and its rise and fall.
Dialogues among Western Sovietology, mainstream comparative
political science, and theories produced by the “natives” of
state-socialist countries.

16:790:552. BUSINESS, POWER, AND POLITICS (3)
Relationship between economic and political power in the United
States and other advanced industrial societies. Impact of business
interest groups, economic elites, and governmental recruitment
on policy making. Issues in power structure analysis.

16:790:553. SPECIAL TOPICS IN POLITICAL ECONOMY (3)
Specialized studies in political economy for advanced students.
Topics vary by year and instructor.

16:790:554. COLLECTIVE PROTEST AND SOCIAL MOVEMENTS (3)
Introduction to the literature on collective action, protests, and
social movements; recent examples in Eastern Europe; relationships
between structure and agency and between structure and culture.

16:790:555. COMPARATIVE POLITICAL ECONOMY (3)
Special reference to the third world. Major periods of sociopolitical
transformation: the breakdown of precapitalist social formations,
imperialism, decolonization, and revolutionary change. Theories
of political economy stemming from the developing world.

16:790:556. PROSEMINAR IN PUBLIC LAW (3)
Introduction to the major literature of the field; recent theories and
methods in the study of the judicial process.

16:790:557. RENAISSANCE AND REFORMATION
POLITICAL THOUGHT (3)
Prerequisites: 16:790:511, 512, or permission of the instructor.
Western political thought from the fourteenth to the sixteenth
centuries. Machiavelli, his predecessors and contemporaries,
and the relationships between politics and religion in the
Protestant Reformation.
16:790:558. THE BRITISH TRADITION (3)
Prerequisites: 16:790:511,512.
Social contract theory, utilitarianism, and empiricism in English political thought, with emphasis on the political sources and meanings of works by Hobbes, Locke, Smith, Burke, Hume, and John Stuart Mill.

16:790:559. METROPOLITAN POLITICS (3)
Conflict and consensus with respect to major urban problems: race, schools, housing, transportation, planning, renewal.

16:790:560. SEMINAR IN DOCTRINAL ANALYSIS (3)
Contemporary doctrinal issues; modes of conflict resolution, substantive law findings, and judicial craftsmanship; the interplay of forces at different stages in the adjudicatory process.

16:790:561. POLITICAL ECONOMY OF LATIN AMERICA (3)
Relation between models of capital accumulation and the development of democratic and authoritarian regimes. Special reference to Brazil, Argentina, Chile, and Mexico.

16:790:563. AMERICAN POLITICAL ECONOMY (3)
The organization of American capitalism. Sources and limits of reform. Consideration of American "exceptionalism": impact of party structure, federalism, separation of powers, ethnic and racial cleavages on class formation, and public policy.

16:790:564. COMPARATIVE LEGAL SYSTEMS (3)
Transnational approaches to judicial policy making with emphasis on mechanisms for the protection of basic freedoms; notions of equality under law; federal versus unitary systems in the distribution of powers; and the nature of the regulatory function in diverse societies.

16:790:565. (S) STUDIES IN ADMINISTRATIVE LAW (3)
Inquiry into the lawmaking and judicial function of administrative agencies; critical examination of selected cases drawn from federal and state practice.

16:790:567. EMPIRICAL STUDIES OF PEACE AND WAR (3)
Prerequisites: Theories of War and Peace.
Examination of the empirical evidence on the onset of war, its expansion, the impact of war, and of factors associated with peace.

16:790:569. AMERICAN FOREIGN POLICY (3)
The institutions and events that have shaped American foreign policy in the postwar era. Roles of the president, Congress, the bureaucracy, the military, and public opinion. The influence of partisan, economic, and social pressures on the formulation and implementation of policy.

16:790:571. ELECTIONS AND PARTICIPATION (3)
Determinants and consequences of various forms of political participation. Relationship between structures such as electoral systems and citizen behavior. Theories of democracy in light of empirical findings.

16:790:572. POLITICAL PARTIES (3)
Structure and functioning of political parties. Emphasis on empirical studies of membership, nominations, party competition, campaigning, and finance.

16:790:578. FEMINISM IN POSTMODERNITY (3)
Political strategies for achieving gender equality in the context of contemporary feminist debates about the category of women, foundationalism, humanism, identity politics, and essentialism.

16:790:579. THE ENLIGHTENMENT: THE PHILOSOPHERS AND THEIR CRITICS (3)
Prerequisites: 16:790:511,512, or permission of instructor.
Political thought of Kant, Rousseau, and their contemporaries. Emphasis on Enlightenment responses to the political, educational, and moral problems of modernity.

16:790:580. THE NINETEENTH CENTURY: CONTINENTAL POLITICAL THOUGHT FROM HEGEL TO MARX TO NIETZSCHE (3)
Prerequisites: 16:790:511,512, or permission of instructor.
Topics in the political thought of selected theorists from sequences including Hegel, Herder, Marx, and Nietzsche; and de Maistre, Bonald, Comte, and Fourier.

16:790:581. TRANSNATIONAL PUBLIC POLICY (3)
New phenomena that defy the basic assumptions of the dominant realist, state-centric model of the global system, including nonstate actors, transnational issues, and new forms of influence.

16:790:582. PUBLIC OPINION (3)
Sources and consequences of public knowledge, beliefs, and attitudes about politics. The measurement of public opinion. Political ideology. Linkages between public opinion and public policy.

16:790:584. (S) THEMES IN FEMINIST THEORY IN POLITICS (3)
In-depth study of a particular tradition or key debate within contemporary feminist theory. Themes vary.

16:790:585. SOCIAL CLASS AND IDEOLOGY (3)
Effects of changes in the organization of work and labor markets on political behavior and consciousness. Consequences of race, gender, and ethnicity for class formation.

16:790:586. PSYCHOLOGY OF POLITICAL BEHAVIOR (3)
Introduction to basic explanatory theories at the individual level of analysis. Topics may include personality, attitudes, political cognition, group influences, political socialization, and behavioral decision theory.

16:790:587. PROSEMINAR IN WOMEN AND POLITICS (3)
Introduction to approaches, methods, and debates in interdisciplinary feminist scholarship that are useful in analyzing politics.

16:790:588. GENDER AND MASS POLITICS (3)
Gender-related influences on political attitudes, voting behavior, and other forms of political participation. Effects of feminist consciousness on attitudes and behavior.

16:790:589. WOMEN AND POLITICAL LEADERSHIP (3)
History, background, recruitment, and performance of women in leadership positions. Women leaders' relationship to power and their impact on public policy and public institutions.

16:790:590. GENDER AND POLITICAL THEORY (3)
Analysis of political theory as a signifying practice. The discursive uses of gender in delineating the public sphere, constituting the citizen-subject, and articulating the relations of nation and class.

16:790:591. GENDER AND PUBLIC POLICY (3)
Theoretical and policy questions raised by issues related to gender inequality including: welfare and poverty, reproductive rights, violence against women, women and work, health policy, and women and militarism.

16:790:592. POLITICS, DEVELOPMENT, AND WOMEN (3)
Political, social, and cultural impact of developmental processes on women. Theories of development and feminist critiques.

16:790:594. WOMEN'S MOVEMENTS IN COMPARATIVE PERSPECTIVE (3)
Development and impact of women's movements in cross-cultural perspective. Analysis of the conditions and implications of women's participation in movements such as nationalist, labor, and independent women's movement.

16:790:595. ADVANCED SURVEY RESEARCH (3)
Sample design, questionnaire construction, interviewer training and evaluation, analysis of survey data, and preparation of proposals for potential users.
16:790:596. **ADVANCED TOPICS IN WOMEN AND POLITICS (3)** Seminar offered on occasion on topics of special interest to students of women and politics.

16:790:597,598. **EMERGING TRENDS IN POLITICAL SCIENCE** (1,1) Seminars by eight visiting scholars, each presenting an unpublished paper. Topics vary, but papers are chosen for their empirical and theoretical contributions to the field.

16:790:599. **RESEARCH SEMINAR IN POLITICAL SCIENCE APPLICATIONS OF QUANTITATIVE METHODS (3)** Intensive study and research application of selected methods.

16:790:605. **PHILOSOPHY OF LAW AND JURISPRUDENCE (3)** The nature of law and its relation to other normative systems; major legal philosophies. Other topics include legal reasoning, the enforcement of morality, and the justification of punishment.

16:790:607. **CONTEMPORARY PHILOSOPHY AND POLITICS (3)** Recent developments in philosophy and their implications for politics and political theory.

16:790:610. **RESEARCH TOPICS IN POLITICAL PHILOSOPHY (3)** Intensive research seminar for advanced students. Topics vary from year to year.

16:790:611. **ADVANCED RESEARCH IN POLITICAL ECONOMY (3)** Working faculty-graduate student seminar. Presentations of original research.

16:790:612. **SEMINAR IN LAW AND POLITICS (3)** Intensive study of selected problem areas that may include issues in criminal justice, law and society, and judicial decision making.

16:790:613. **LAW, COURTS, AND THE POLITICS OF SOCIAL REFORM (3)** Role of law and courts in the politics of social reform in the U.S. Various ways of understanding and investigating the interplay of law and politics in reform projects, with an emphasis on recent developments in the legal academy (e.g., feminist legal theory, critical race theory), as well as in political science.

16:790:614. **ADVANCED TOPICS IN PUBLIC LAW (3)** Open only to upper-level Ph.D. candidates. Advanced research seminar in public law provides an opportunity for the design of doctoral research projects and the investigation of their feasibility.

16:790:616. **THE UNITED STATES CONGRESS (3)** Introduces students to the major components of Congress: congressional elections; the committee; congressional leadership; the legislative process, interest groups, and the relations of Congress with the president and the courts.

16:790:623. **SEMINAR IN CONSTITUTIONAL LAW (3)** Advanced seminar with emphasis on individual research projects assessing judicial craftsmanship and doctrinal lines of inquiry.

16:790:626. **MORALITY AND WAR (3)** The realism-moralism debate, explored through such authors as Niebuhr, Morgenthau, and Osgood; the role of moral considerations in international affairs examined through cases such as the use of force across national borders and the human rights issue.

16:790:627. **TOPICS IN INTERNATIONAL POLITICS (3)** Open only to advanced students. Specialized studies and research in international politics. Topics include mathematical models in international politics and peace research methods and literature.

16:790:630. **INTERNATIONAL POLITICAL ECONOMY (3)** Topics that develop the theory of the structure and dynamic of the global political economy. Current emphasis is on the development of the post-Depression World War II international economy, especially relations among OECD countries.

16:790:633. **MULTIVARIATE TECHNIQUES (3)** Focus on multiple regression, but may also include categorical regression, factor analysis, causal modeling, analysis of variance, etc. Heavy emphasis on computer applications.

16:790:634. **GAME THEORY FOR POLITICAL SCIENTISTS (3)** Introductory course in game theory for political science graduate students.

16:790:651. **SEMINAR IN PUBLIC ADMINISTRATION AND POLICY ANALYSIS (3)** Readings in the specialized literature on bureaucracy, followed by the presentation and discussion of individual design for research on a special topic.

16:790:654. **QUANTITATIVE APPROACHES TO INTERNATIONAL RELATIONS (3)** Major current attempts to build an empirically based theory of international politics. Data-generation techniques, methods of testing, and substantive findings.

16:790:667. **RESEARCH SEMINAR IN POLITICAL PSYCHOLOGY (3)** Advanced seminar examining in depth, through individual research, selected topics in political psychology.

16:790:670. **INDEPENDENT STUDY IN INTERNATIONAL RELATIONS (3)**

16:790:671. **INDEPENDENT STUDY IN PUBLIC LAW (3)**

16:790:672. **INDEPENDENT STUDY IN WOMEN AND POLITICS (3)**

16:790:673. **INDEPENDENT STUDY IN POLITICAL THEORY (3)**

16:790:674. **INDEPENDENT STUDY IN POLITICAL ECONOMY (3)**

16:790:676. **INDEPENDENT STUDY IN AMERICAN INSTITUTIONS AND POLICY (3)**

16:790:677. **INDEPENDENT STUDY IN COMPARATIVE POLITICS (3)**

16:790:678. **INDEPENDENT STUDY IN METHODOLOGY (3)**

16:790:680. **ADVANCED TOPICS IN INTERNATIONAL RELATIONS (3)** Open only to upper-level Ph.D. students. Advanced research seminar in international relations, intended to provide an opportunity for the design of doctoral research projects and the investigation of their feasibility.

16:790:701,702. **RESEARCH IN POLITICAL SCIENCE (BA,BA)** Designed to provide students working on M.A. and Ph.D. theses with credit for their research.
PSYCHOLOGY 830

Degree Programs Offered: Master of Science *, Doctor of Philosophy

Director of Graduate Program: Professor G. Terence Wilson, Psychology Building, Busch Campus (732/445-2356)

Vice Chair, Graduate Studies: Professor Ronald Gandelman, Psychology Building, Busch Campus (732/445-2355)

Members of the Graduate Faculty

John R. Aiello, Professor of Psychology, FAS-NB; Ph.D., Michigan State University
Industrial and organizational psychology, environmental stress, nonverbal communication

Clayton P. Alderfer, Professor of Psychology, GSAPP; Ph.D., Yale University
Group and interpersonal relations, organizational diagnosis, career development

Phipps Arabie, Professor of Marketing, GSAPP; Ph.D., Stanford University
Multivariate database analysis, social networks

Richard D. Ashmore, Professor of Psychology, FAS-NB; Ph.D., California State University, Los Angeles
Intergroup relations, female and male roles

George E. Atwood, Professor of Psychology, FAS-NB; Ph.D., Oregon State University
Theories of personality, psychobiography and psychotherapy

Sandra L. Harris, Professor of Psychology, FAS-NB/GSAPP; Dean of the Graduate School; Ed.D., Stanford University
Assessment; locus of control in the elderly

Arnold L. Glass, Associate Professor of Psychology, FAS-NB; Ph.D., Stanford University
Clinical psychology, adult development and aging

John L. Falk, Professor of Psychology, FAS-NB; Ph.D., Illinois University
Cognitive development, adoption and foster care

Brent H. Brey, Professor of Psychology, GSAPP; Ph.D., Missouri (Columbia) University
Prevention of substance abuse and other adolescent problems

J. Douglas Carroll, Board of Governors' Professor of Management, GSAPP; Ph.D., Princeton University
Theory and methods of multidimensional scaling and related techniques

Donald R. Peterson, Professor Emeritus of Psychology, GSAPP; Ph.D., Stanford University
Motivation and personality

Robert J. Pandina, Professor of Psychology and Director of the Center for Alcohol and Drug Research, FAS-NB; Ph.D., Dartmouth College
Cortical-hypocampal interactions and memory

Nathaniel J. Pallone, University Professor of Psychology; Ph.D., New York University
Educational psychology, social psychology, and social cognition

Timothy Otto, Associate Professor of Psychology, FAS-NB; Ph.D., New Hampshire University
Mathematical theories of cognitive representation, shape perception

Edith D. Neimark, Professor Emerita of Psychology, FAS-NB; Ph.D., Indiana University
Neuropsychology and personality

Stanley Messer, Professor of Psychology, FAS-NB; Ph.D., Harvard University
Cognitive architecture in development, child's theory of mind, cognitive neuropsychology

Howard Leventhal, Board of Governors Professor of Psychology, FAS-NB/HHCF; Ph.D., North Carolina (Chapel Hill) University
Behavioral, cognitive, and emotional factors in health and health decisions

Michael Lewis, Professor of Psychology, UMDNJ-RWJMS; Ph.D., Pennsylvania State University
Socioemotional development, infancy

Richard L. Lau, Associate Professor of Psychology, FAS-NB; Ph.D., Southern California University
Hormonal and drug modulation of GABA receptor function in sleep and waking

Ivan Z. Holowinsky, Professor of Educational Psychology, GSE; Ed.D., Temple University
Mental retardation, comparative psychology

Judith Hudson, Associate Professor of Psychology, FAS-NB; Ph.D., Rutgers University
Cognitive, language, and memory development in children; autobiographical memory

Carlton J. James, Associate Professor of Psychology, FAS-NB; Ph.D., Indiana University
Clinical psychology

Edward E. Johnson, Professor of Psychology, UMDNJ-RWJMS; Ph.D., Colorado State University
Assessment; locus of control in the elderly

Bela Julesz, State of New Jersey Professor of Psychology, FAS-NB; Ph.D., Hungarian Academy of Sciences
Visual perception of depth, movement, texture, and form

Lee Jessup, Professor of Psychology, FAS-NB; Ph.D., Michigan State University
Social interaction, person perception, the self, expectations, and stereotypes

Robert A. Karlin, Associate Professor of Psychology, FAS-NB; Ph.D., Rutgers University
Hypnotizability, psychotherapies; psychopharmacology

Eileen Konway, Professor of Psychology, FAS-NB; Ph.D., Maryland University
Eye movements and visual information processing; attention

Richard L. Lau, Associate Professor of Psychology, FAS-NB; Ph.D., Southern California University
Decision making in medicine and psychiatry

Stanley Messer, Professor of Psychology, GSE; Ph.D., Harvard University
Psychosocial and cognitive psychology; cognitive style

Edith D. Neimark, Professor of Psychology, FAS-NB; Ph.D., Indiana University
Thinking and cognitive development

Daniel Ogilvie, Professor of Psychology, FAS-NB; Ph.D., Harvard University
Identity structure and personality; aging

Timothy Otto, Associate Professor of Psychology, FAS-NB; Ph.D., New Hampshire University
Cortical-hypocampal interactions and memory

Robert J. Pandina, Professor of Psychology and Director of the Center for Alcohol Studies, GSAPP; Ph.D., Nevada State University
Alcoholism

Thomas V. Papadomas, Professor of Biomedical Engineering, SE; Ph.D., Columbia University
Motion, depth, and texture perception; computer graphics; image processing

Lawrence Pervin, Professor of Psychology, FAS-NB; Ph.D., Harvard University
Clinical psychology; personality

Bela Julesz, State of New Jersey Professor of Psychology, FAS-NB; Ph.D., Hungarian Academy of Sciences
Visual perception of depth, movement, texture, and form

Lee Jessup, Professor of Psychology, FAS-NB; Ph.D., Michigan State University
Social interaction, person perception, the self, expectations, and stereotypes

Robert A. Karlin, Associate Professor of Psychology, FAS-NB; Ph.D., Rutgers University
Hypnotizability, psychotherapies; psychopharmacology

Eileen Konway, Professor of Psychology, FAS-NB; Ph.D., Maryland University
Eye movements and visual information processing; attention

Richard L. Lau, Associate Professor of Psychology, FAS-NB; Ph.D., Southern California University
Decision making in medicine and psychiatry

Stanley Messer, Professor of Psychology, GSE; Ph.D., Harvard University
Psychosocial and cognitive psychology; cognitive style

Edith D. Neimark, Professor of Psychology, FAS-NB; Ph.D., Indiana University
Thinking and cognitive development

Daniel Ogilvie, Professor of Psychology, FAS-NB; Ph.D., Harvard University
Identity structure and personality; aging

Timothy Otto, Associate Professor of Psychology, FAS-NB; Ph.D., New Hampshire University
Cortical-hypocampal interactions and memory

Robert J. Pandina, Professor of Psychology and Director of the Center for Alcohol Studies, GSAPP; Ph.D., Nevada State University
Alcoholism

Thomas V. Papadomas, Professor of Biomedical Engineering, SE; Ph.D., Columbia University
Motion, depth, and texture perception; computer graphics; image processing

Lawrence Pervin, Professor of Psychology, FAS-NB; Ph.D., Harvard University
Clinical psychology; personality

Bela Julesz, State of New Jersey Professor of Psychology, FAS-NB; Ph.D., Hungarian Academy of Sciences
Visual perception of depth, movement, texture, and form

Lee Jessup, Professor of Psychology, FAS-NB; Ph.D., Michigan State University
Social interaction, person perception, the self, expectations, and stereotypes

Robert A. Karlin, Associate Professor of Psychology, FAS-NB; Ph.D., Rutgers University
Hypnotizability, psychotherapies; psychopharmacology

Eileen Konway, Professor of Psychology, FAS-NB; Ph.D., Maryland University
Eye movements and visual information processing; attention

Richard L. Lau, Associate Professor of Psychology, FAS-NB; Ph.D., Southern California University
Decision making in medicine and psychiatry

Stanley Messer, Professor of Psychology, GSE; Ph.D., Harvard University
Psychosocial and cognitive psychology; cognitive style

Edith D. Neimark, Professor of Psychology, FAS-NB; Ph.D., Indiana University
Thinking and cognitive development

Daniel Ogilvie, Professor of Psychology, FAS-NB; Ph.D., Harvard University
Identity structure and personality; aging

Timothy Otto, Associate Professor of Psychology, FAS-NB; Ph.D., New Hampshire University
Cortical-hypocampal interactions and memory

Robert J. Pandina, Professor of Psychology and Director of the Center for Alcohol Studies, GSAPP; Ph.D., Nevada State University
Alcoholism
Associate Members of the Graduate Faculty

Deanne F. Johnson, Research Associate in Psychology, FAS-NB; Ph.D., Pennsylvania State
Carolyn Rovee-Collier, Professor of Psychology, FAS-NB; Ph.D., Brown
Institute Learning and memory; comparative development
Laurie A. Rudman, Assistant Professor of Psychology, FAS-N; Ph.D., Rutgers
Social perception; intergroup relations; impression management and social influence; attitudes and social behavior; implicit attitude measurement
William C. Sanderson, Associate Professor of Psychology, GSAPP; Ph.D., SUNY (Albany)
Grief of anxiety; depressive personality disorders; psychopathology
Louis A. Soss, Professor of Psychology, GSAPP; Ph.D., California (Berkeley)
Schizophrenia; assessment; philosophy of psychology
H. Richard Schiffman, Professor of Psychology, FAS-NB; Ph.D., North Carolina
Perception
Charles F. Schmidt, Professor of Psychology, FAS-NB; Ph.D., Iowa
Human and machine planning and plan recognition; artificial intelligence
Judith M. Stern, Professor of Psychology, FAS-NB; Ph.D., Rutgers
Sexual and gender behaviors in animals and women
Karín J. Strosnยอด, Assistant Professor of Psychology, FAS-NB; Ph.D., Massachusetts Institute of Technology; M.D., Harvard
Language acquisition, cognitive and neural bases of language, functional brain mapping
Arthur Tomie, Associate Professor of Psychology, FAS-NB; Ph.D., Colorado
Stimulus properties of drugs; intracranial self-stimulation
George Wagner, Professor of Psychology, FAS-NB; Ph.D., Chicago
Parkinson's disease and schizophrenia
Arlene S. Walker-Andrews, Professor of Psychology, FAS-NB; Ph.D., Cornell
Perceptual and cognitive development; autism
Thomas J. Walsh, Associate Professor of Psychology, FAS-NB; Ph.D., Syracuse
Hippocampal function; animal models of CNS diseases; trophic factors
Neil D. Weinstein, Professor of Human Ecology and Psychology, FAS-NB; Ph.D., Harvard
Health behavior: environmental stress; risk perception
Mark O. West, Professor of Psychology, FAS-NB; Ph.D., Bowman Gray
Analysis of basal ganglia and limbic circuits during behavior and in response to drugs
David A. Wilder, Professor of Psychology, FAS-NB; Ph.D., Wisconsin
Social perception; intergroup relations
G. Terence Wilson, Oscar K. Buros Professor of Psychology, GSAPP; Ph.D., SUNY (Stony Brook)
Behavior therapy
Robert L. Woolfolk, Professor of Psychology, FAS-NB; Ph.D., Texas (Austin)
Behavior therapy

Adjunct Members of the Graduate Faculty

James T. Winslow, Senior Research Pharmacologist, Hoechst-Roussel; Ph.D., Pennsylvania State
Planning and evaluation of mental health delivery systems
Barbara Forisha-Kovach, Professor of Psychology, FAS-NB; Ph.D., Maryland
Organizational psychology
Michael A. Carra, Associate Professor of Psychiatry, UMDNJ-RWJMS; Ph.D., Rutgers
Personal identity; identity and psychopathology; person perception
Melvin Lee Gary, Associate Professor of Psychology, FAS-NB; Ph.D., Ohio State
Prejudice; cognitive styles and social perception
William K. Hallman, Associate Professor of Human Ecology, FAS-N; Ph.D., South Carolina
Risk perception; risk communication; individual and community responses to environmental hazards
Jan S. Handleman, Educational Director of Douglass Developmental Disabilities Center, FAS-NB; Ed.D., Rutgers
Education and treatment of autistic persons
Deanne F. Johnson, Research Associate in Psychology, FAS-NB; Ph.D., Oregon (Portland)
How ecology and hormones affect feeding, social, and reproductive behavior
Harry R. Kissileff, Associate Professor of Clinical Psychology; Columbia Medical School; Ph.D., Pennsylvania State
Control of food intake and food intake-related reward in humans
Alexander W. Kusnecov, Assistant Professor of Psychology, FAS-NB; Ph.D., New York
How the nervous and immune systems interact to affect illness and behavior
Sandra Leiblum, Professor of Psychiatry, UMDNJ-RWJMS; Ph.D., Illinois
Female sexuality; menopause; infertility
Robert Matthews, Professor of Philosophy, FAS-NB; Ph.D., Cornell
Psychological genetics; formal models of language acquisition
Michael H. Miller, Professor of Psychiatry, UMDNJ-RWJMS; Ph.D., Illinois
Institute of Technology
Neuroanalytical correlates of cognitive performance
Jonathan Morganstein, Assistant Research Professor, CAS; Ph.D., New York
Alcoholism; treatment processes
Mark Hoffman, Adjunct Associate Professor of Psychiatry, UMDNJ-RWJMS; Ph.D., Rhode Island
Psychopharmacology
Tracy J. Shors, Associate Professor of Psychology, FAS-NB; Ph.D., Southern California
Effects of stress and sex on neuronal plasticity and associative memory formation
Michael R. Solomon, Associate Professor of Marketing, SB-NB; Ph.D., North Carolina (Chapel Hill)
Effects of material symbolism on self-concept; social identity, and person perception; psychology of fashion; dyadic interactions in consumption settings
Margaret W. Sullivan, Adjunct Associate Professor of Pediatrics, UMDNJ-RWJMS; Ph.D., Rutgers
Socialization of infant anger; technology as an intervention with developmentally disabled infants and preschoolers
James T. Walkup, Assistant Professor of Psychology, GSAPP; Ph.D., New School for Social Research
Serious mental illness; combined mental and physical disorders; disability
Michael Wogan, Associate Professor of Psychology, FAS-N; Ph.D., North Carolina
Group psychotherapy
John Worneby, Associate Professor of Nutritional Sciences, CC; Ph.D., Pennsylvania State
Socioemotional development; infant nutrition and behavior

Areas of specialization include biopsychology and behavioral neuroscience, clinical psychology (APA approved), cognitive psychology, social psychology, intradisciplinary developmental psychology, and intradisciplinary health psychology.

Part-time students are not accepted into the program. New graduate students must have had an undergraduate course in experimental psychology with laboratory and a course in statistics. There is no language requirement.

Specific course requirements and options normally are established by each area. To the greatest extent possible, students' programs are tailored to their career goals. A minimum of 48 course credits and 24 research credits are required in the Ph.D. program.

In addition to the Ph.D. program in clinical psychology, a Doctor of Psychology (Psy.D.) degree in clinical or school psychology is offered by the Graduate School of Applied and Professional Psychology. This program is described in the catalog of that professional school.
Graduate Courses

16:830:500. SOCIAL PSYCHOLOGY COLLOQUIA (N1)
Required of all first-year social psychology students. Series of colloquia, lectures, and panel discussions as an introduction to the discipline and profession of social psychology.

16:830:501,502. NONTHESIS RESEARCH (BA,BA)
A reading and individual study course; students arrange with members of the staff for direction and guidance; regular conferences scheduled and both written and oral reports submitted.

16:830:505. THEORIES AND ISSUES IN DEVELOPMENTAL PSYCHOLOGY (3)
Models and theory in developmental psychology. Emphasis upon metatheoretical and theoretical issues, including theories of cognitive, social, and emotional development.

16:830:506. SOCIAL PSYCHOLOGY (3)
Critical survey of concepts and current research in social psychology. Social perception, attitudes and attitude change, groups.

16:830:507. DEVELOPMENTAL RESEARCH METHODOLOGY (3)
Survey of descriptive and explanatory research methods for the study of behavioral change and development.

16:830:508. RESEARCH METHODS IN SOCIAL PSYCHOLOGY (3)
Critical examination of methodological problems in research involving human subjects, including personality, social psychology, and health psychology. Topics include measurement, experimental and quasi-experimental design, operationalization, and threats to validity. Applications to students' research problems.

16:830:509. PRACTICUM: FIELD AND APPLIED RESEARCH (3)
Practical issues encountered in nonlaboratory settings; procedures and statistical analyses useful when true experimental designs cannot be employed; developing research proposals to meet needs of an organization; issues involved in consultation.

16:830:510. INTRODUCTION TO INDUSTRIAL/Organizational Psychology (3)
Overview of topics in personnel psychology (predictors, criteria, personnel decisions, interviews, training) and organizational psychology (motivation, job satisfaction, supervision, organizational structure).

16:830:511,512. ADVANCED TOPICS IN DEVELOPMENTAL PSYCHOLOGY (3,3)
Selected topics in developmental psychology, emphasizing theory and research. Offered by different faculty members as a special course in their particular area of expertise.

16:830:513. NEUROLINGUISTICS (3)
Prerequisite: Graduate student in psychology, linguistics, neuroscience, or philosophy; permission of instructor. Topics include functional neuroimaging studies of language (PET, fMRI, MEG), acquired and developmental language disorders, the relationship between language development and neural development, language acquisition after the critical period.

16:830:514. SENSATION AND PERCEPTION (3)
Theoretical and experimental approaches to the perception of form, motion, depth, texture, and color.

16:830:515. COMPUTATIONAL VISION (3)
Introduction to algorithms for computing environmental shape-from-stimulus cues and regularization procedures for choosing optimally economic solutions as related to the perception of surfaces and objects.

16:830:516. HUMAN INFANCY (3)
Current theory and research in infant’s socioemotional, motor, perceptual, cognitive, and language development.

16:830:517. INTERPERSONAL BEHAVIOR AND GROUP PROCESSES (3)
Observations of the development of an undergraduate self-analytic group used as the basis for the investigation of issues in the psychology of personality, interpersonal behavior, social structure, and the formation of group cultures.

16:830:518. PERSONALITY ASSESSMENT I (3)

16:830:520. PRINCIPLES OF BIOPSYCHOLOGY (3)
Not open to psychology majors. Survey of current theory and data from the fields of neuropsychology, Pavlovian and operant learning, neuropharmacology, and developmental psychobiology.

16:830:521. RESEARCH DESIGN AND ANALYSIS I (3)
Review of basic statistical theory, experimental design, and statistical techniques. Topics include descriptive statistics, probability, z-scores, t-tests, correlation, bivariate regression, one- and two-way analysis of variance, and elementary nonparametric analyses.

16:830:522. RESEARCH DESIGN AND ANALYSIS II (3)
Review of advanced topics in design and analysis, with emphasis on one or more of the following: multiple regression, multi-way analysis of variance, including mixed designs and repeated measures, analysis of covariance, factor analysis, cluster analysis, and bootstrapping techniques.

16:830:523. COMPUTER APPLICATIONS IN PSYCHOLOGY (3)
Designed to introduce psychologists to the use of the computer in the control of experiments, simulation, and complex data analysis.

16:830:524. SENSORY PROCESSES (3)
Theory and data on the senses treated behaviorally and psychologically.

16:830:525,526. DEVELOPMENTAL SURVEY (1,1)
Three classes taught each term in 1-credit units. These may be elected independently. A comprehensive review of theory, data, and methods in developmental psychology.

16:830:527,528. DEVELOPMENTAL LABORATORY (3,3)
Laboratory observation and experience parallel to coverage in 16:830:525,526.

16:830:535. LANGUAGE AND COMMUNICATION (3)
Structural properties and processing of language.

16:830:537. ADULT DESCRIPTIVE AND EXPERIMENTAL PSYCHOPATHOLOGY (3)
Systematic consideration of descriptive and experimental psychopathology, consisting of class discussion, student presentations, and research critiques.

16:830:538. CHILD DESCRIPTIVE AND EXPERIMENTAL PSYCHOPATHOLOGY (3)
Descriptive and experimental psychopathology of childhood, covering neurotic, psychotic, and antisocial behavior, learning disabilities, child abuse, and mental retardation. Systematic observation of parent and child interviews and evaluations.

16:830:540. MATHEMATICAL MODELS OF LEARNING, PERCEPTION, COGNITION (3)
Historical and current status of mathematical models of learning, perception, and cognition.
16:830:541. PERSONALITY THEORY (3)
Nature, development, and role of theory in personality; major contemporary theories and relevant evidence.

16:830:542. ATTITUDE ORGANIZATION AND CHANGE (3)
Theories and research data on the formation, structure, and alternation of attitude.

16:830:543. CONDITIONING AND LEARNING (3)
Principles and applications of Pavlovian conditioning, instrumental learning, and stimulus control. Topics include conditioned drug tolerance, learned helplessness, and cognitive processes in animal behavior.

16:830:544. BEHAVIOR ANALYSIS (3)
Principles and application of operant conditioning; perspectives on the history and philosophy of science. Ethological perspectives.

16:830:545. EXPERIMENTAL ANALYSIS OF BEHAVIOR (3)
Survey of historical development and current concepts in operant conditioning.

16:830:546. MEMORY AND ATTENTION (3)
Survey of current theories and research in memory and attention.

16:830:547. COMPUTATIONAL MODELS OF COGNITION (3)
Computational approaches to cognition. Historical development of approach; formalisms, tools, and methodological challenges.

16:830:548. LANGUAGE DEVELOPMENT (3)
Theory and research on the acquisition of speech and language by young children.

16:830:549. PERSONALITY AND SOCIAL DEVELPOMENT (3)
Theory and research on personality and social development.

16:830:550. PERCEPTUAL DEVELOPMENT (3)
Effects of early rearing conditions, phylogenetic development, and development of children's and infants' perception of objects, persons, spatial arrays, pictures, and symbols.

16:830:551. STRATEGIES IN COGNITIVE BEHAVIOR THERAPY (3)
Research on and applications of a number of behavioral strategies in psychotherapy. Concentrates on individual, adult, outpatient psychotherapy, treatment of couples, families, and the use of small groups.

16:830:552. DEVELOPMENT OF COGNITIVE PROCESSES (3)
Cognitive development, including memory, language, and thinking.

16:830:553. HUMAN AND ANIMAL AGGRESSION (3)
Attempt to define aggressive behavior and to examine its function.

16:830:554. PSYCHOPHARMACOLOGY: THEORY AND PRACTICE (3)
Neural, neurochemical, and behavioral bases of psychopharmacology. Peripheral and central nervous neurotransmission mechanisms, animal experimental methods, and the application of these methods to human problem areas in the behavioral effects of drugs, including learning, activity, dyskinesia, psychosis, tolerance, abuse, aggression, anxiety, and behavioral toxicology.

16:830:555. REGULATORY MECHANISMS OF BEHAVIOR (3)
The problem of behavior as part of the organism's regulatory mechanisms; nature of and physiological basis for hunger and thirst, and concepts of reinforcement, deprivation, and regulation.

16:830:556. ASSESSMENT AND TREATMENT OF ALCOHOL ABUSE AND ALCOHOLISM (3)
Theory and research on alcohol problems, alcohol abuse, and alcohol dependence; models to conceptualize how people change; approaches to assessment; models of treatment. Experiential component.

16:830:557. NERVOUS SYSTEM AND BEHAVIOR I, II (3,3)
Neural bases of reinforcement, motor behavior, and ingestive behavior.

16:830:558. CLINICAL PROSEMINAR I (3)
Basic philosophical issues, current theories of personality, and issues in personality research as they relate to clinical phenomena.

16:830:559. CLINICAL PROSEMINAR II (3)
Open only to clinical psychology students. Introduction to issues, methods, and findings in contemporary experimental clinical psychology. Recent research presented and analyzed. Students read, digest, and analyze the clinical research literature and begin to devise their own research.

16:830:560. BIOPSYCHOLOGY OF BEHAVIORAL DEVELOPMENT (3)
Underlying processes that determine the course of behavioral and physiological development.

16:830:561. HISTORY AND SYSTEMS OF PSYCHOLOGY (3)
Philosophical and scientific antecedents of modern psychology. Psychological systems of psychology, including structuralism, fundamentalism, behaviorism, gestalt, psychoanalysis. Recurrent issues in the history of psychology.

16:830:562. ETHOLOGY (3)
Critical examination of the theories and research of contemporary ethologists. Emphasis on the evolution and development of behavior in mammals.

16:830:563. CURRENT TOPICS IN PSYCHOLOGY (BA)
Prerequisites: Permission of instructor.
Review of recent developments within psychology.

16:830:564. PSYCHOLINGUISTICS (3)
Language comprehension and production, including syntactic and semantic analyses.

16:830:565. ASSESSMENT OF INFANCY AND EARLY CHILDHOOD (3,3)
Survey of theory and techniques used in diagnostic testing of infants and preschool children. Emphasis on Gesell, Cattell, and Bayley infant scales, Stanford-Binet, WPPSI, and other tests for preschool children.

16:830:566. PSYCHOLOGICAL MEASUREMENT (3)
Basic psychometric theory, including item weighting and analysis; foundations of reliability and validity determination; special correlational problems.

16:830:567,568. SOCIAL PSYCHOLOGY OF WORK (3)
Prerequisite: Permission of instructor.
Major dimensions of the experience of working (e.g., job content, worker participation, technology, and stress) and the implications of work in other life domains (social class and family life).

16:830:569. SOCIAL PSYCHOLOGY OF ORGANIZATIONS (3)
Social psychological analysis of major approaches to organizations, e.g., classical and open systems, and major topics, e.g., roles, environment, decision making, leadership, communications, health, conflict, and change.

16:830:570. SEMINAR: PERCEPTION (3)
Selected topics on theory and research in perception.

16:830:571. SEMINAR: SOCIAL PSYCHOLOGY (3)
Prerequisites: 16:830:506, 508, or permission of instructor.
Each section reviews an area of current research interest in social psychology. Topics vary and may include cardiovascular health psychology, health and social behavior, stress and illness, and social cognition.
16:830:613. SEMINAR: CONFLICT AND CONFLICT RESOLUTION (3)
Critical examination of major theoretical and empirical approaches to the study of conflict.

16:830:615. TOPICS IN SOCIAL COGNITION (3)
Prerequisites: 16:830:506, 508, or permission of instructor.
Examination of current theoretical and empirical approaches to social behavior from a cognitive orientation.

16:830:616. SEMINAR: PERSONALITY (3)
Prerequisite: 16:830:541 or permission of instructor.
Critical examination of theories of personality, with particular attention to the relationship between emotion and thought.

16:830:620. SEMINAR: THE DYNAMICS OF SMALL GROUPS (3)
Examination of the processes operating in several types of groups, including families, work groups, adult psychotherapy groups, and children’s groups. Includes participation in an experiential group, lectures, and the opportunity to plan and practice consultation and intervention skills with an ongoing group.

16:830:622. INTRODUCTION TO SURVEY RESEARCH (3)
Explores all stages in the survey process, e.g., research design, question construction and survey layout, sampling, interviewing, coding, analysis, and report writing. Covers face-to-face interviews and mail and telephone surveys.

16:830:623,624. THEORY AND PRACTICE OF COGNITIVE BEHAVIOR THERAPY I,II (3,3)
Analysis of the theoretical and clinical foundations of cognitive behavior therapy (CBT); clinical practice of CBT with adult disorders.

16:830:627,628. ADVANCED TOPICS IN DEVELOPMENT (3,3)
Intensive consideration of problems, methods, data, and theory in selected areas of development.

16:830:631,632. SEMINAR: PROBLEMS OF EXPERIMENTAL PSYCHOLOGY (3,3)
Critical examination of the literature on a relatively circumscribed topic of current research interest in experimental psychology.

16:830:634. PSYCHOPHARMACOLOGY TECHNIQUES (3)
Laboratory/lecture course dealing with the behavioral and neurochemical procedures employed by neuropsychopharmacologists.

16:830:635. SEMINAR: SELECTED TOPICS IN LEARNING (3)
Detailed examination of limited research problem areas in learning.

16:830:636. NEUROENDOCRINE RESPONSES TO STRESS (3)
Psychological factors initiating stress, physiological correlates of stress, and pathological consequences of stress.

16:830:637,638. SEMINAR: COGNITION (3,3)
Selected topics in cognition and cognitive science, including language, memory, attention, problem solving, thinking, and learning.

16:830:639. COGNITIVE ASSESSMENT (3)
The integration of various means of assessment and communication of assessment findings; recent theory, research, principles of measurement, and sociocultural factors relevant to individual cognitive assessment; administration and scoring of individual intelligence tests, interpretation of findings, and use of findings for intervention.

16:830:641. SEMINAR: THINKING (3)
Treats in depth the literature of circumscribed topics in thinking.
PUBLIC HEALTH 832

Degree Program Offered: Doctor of Philosophy

Director of Graduate Program: Dr. George Rhoads, EOHSI, 170 Frelinghuysen Road, Busch Campus (732/445-0195)
Codirector: Dr. Michael Greenberg, Civic Square Building (732/932-0387, ext. 673) or EOHSI, 170 Frelinghuysen Road, Busch Campus (732/445-0200)

Application and General Information: 732/445-0199

Members of the Graduate Faculty

Michael A. Gallo, Professor of Environmental and Community Medicine, UMDNJ-RWJMS; Ph.D., Albany Medical College; Metabolism of xenobiotics; hormone carcinogenesis; receptor action
Michael Hochfeld, Clinical Professor of Environmental and Community Medicine, UMDNJ-RWJMS; M.D., Albert Einstein, Ph.D., New York; Industrial hygiene ergonomics; occupational safety and ergonomics
Bernard D. Goldstein, Chairperson and Professor of Environmental and Community Medicine and Professor of Medicine, UMDNJ-RWJMS and Director, Environmental and Occupational Health Sciences Institute; M.D., New York; Toxicity of oxidant air pollutants and benzene; environmental health policy
Lois A. Grau, Associate Professor of Clinical Environmental and Community Medicine, UMDNJ-RWJMS; Ph.D., Wisconsin (Milwaukee); Gerontology: long-term care; healthcare services utilization
Michael R. Greenberg, Professor of Urban Studies and Community Health, EJBSPPP; Ph.D., Columbia; Geography of mortality, morbidity, and risk factors; hazardous waste management
Howard Kipen, Associate Professor of Environmental and Community Medicine and Director of Occupational Health, UMDNJ-RWJMS; M.D., California (San Francisco); M.P.H., Columbia; Clinical epidemiologic studies of occupational asthma and disease diagnosis
Paul J. Liu, Professor of Environmental and Community Medicine, UMDNJ-RWJMS; Ph.D., Rutgers; Human exposure to toxic substances from single and multiple media; health effects of ozone

Richard M. Lynch, Assistant Professor of Urban Studies and Community Health, EJBSPPP; Ph.D., Columbia; Industrial hygiene ergonomics; occupational safety and ergonomics
George Rhoads, Endowed Professor of Environmental and Community Health, UMDNJ-RWJMS; Ph.D., Harvard; Epidemiology of perinatal, environmental, and noninfectious health problems
William E. Strawderman, Professor of Statistics, FAS-NB; Ph.D., Rutgers; Decision and estimation theory and linear models
Daniel Wartenberg, Associate Professor of Environmental and Community Medicine, UMDNJ-RWJMS; Ph.D., SUNY (Stony Brook); Epidemiologic methods; geographic patterns of disease
Clifford D. Weisel, Associate Professor of Environmental and Community Medicine, UMDNJ-RWJMS; Ph.D., Rhode Island; Human exposure to toxicorganic compounds and trace metals
Nicholas Wright, Associate Professor of Environmental and Community Medicine, UMDNJ-RWJMS; M.D., New York; M.P.H., Michigan; Maternal health, fertility, and AIDS in third world countries

Associate Members of the Graduate Faculty

Ronald Cody, Associate Professor of Environmental and Community Medicine, UMDNJ-RWJMS; Ph.D., Rutgers; Statistical research design
Karen Erzfeld, Assistant Professor of Environmental Sciences, CC; Ph.D., Michigan; Biomarkers: bioavailability; environmental fate of chemicals
Audrey L. Gotsch, Professor of Environmental and Community Medicine, and Chief, Division of Consumer Health Education, UMDNJ-RWJMS; Dr. P.H., Columbia; Attitudes and practices of consumers and health professionals regarding health risks

Patrice M. Gregory, Assistant Professor of Family Medicine, UMDNJ-RWJMS; Ph.D., UMDNJ/Rutgers; M.P.H., Columbia; Use of health-care services among underserved populations; cardiovascular and geriatric health
Bob Hamer, Associate Professor of Psychiatry, UMDNJ-RWJMS; Ph.D., North Carolina (Chapel Hill); Biostatistics; psychiatry; clinical trials
Jane Lewis, Assistant Professor of Environmental and Community Medicine, UMDNJ-RWJMS; Dr. P.H., Texas; Planning, implementation, and promotion of programs
Jane Miller, Associate Professor of Urban Studies and Community Health, EJBSPPP/HHPCAR; Ph.D., Pennsylvania; Maternal and child health and nutrition; reproductive health; demography
Michele Ochsner, Assistant Professor of Urban Studies and Community Health, EJBSPPP; Ph.D., Columbia; Environmental and occupational health policy

Environmental and occupational health policy

Mark Robin, Executive Director of Rutgers Environmental and Occupational Health Services Institute; Ph.D., Rutgers; Pesticide use; policy; regulation and alternative pest control

Don A. Schneider, Associate Professor of Urban Studies and Community Health, EJBSPPP; Ph.D., Rutgers; Geographic distribution of mortality, disease, and high risk behavior among children and young adults

Lynn Waishwell, Assistant Professor of Environmental and Community Medicine, UMDNJ-RWJMS; Ph.D., Southern Illinois (Carbondale); Needs assessment; multicultural issues; models of health behavior change

Brendetta M. West, Adjunct Assistant Professor of Environmental and Community Medicine, UMDNJ-RWJMS; Ph.D., Rutgers; Community health assessment

Programs

Graduate study in public health has been developed as a joint degree between the University of Medicine and Dentistry of New Jersey—Robert Wood Johnson Medical School and Rutgers, The State University of New Jersey, with participation of faculty from both institutions. In addition, highly qualified scientists and administrators from industry, government, and public institutions participate in the teaching program.

The Ph.D. degree requires 72 credit hours. The areas of concentration are environmental and occupational health, epidemiology, and quantitative methods, and health education and behavioral sciences.

Admission to the following UMDNJ-RWJMS courses for Rutgers students requires the completion of the Graduate Exchange Program Form, which is available from the registrar’s offices at UMDNJ-RWJMS or Rutgers. In addition to these graduate courses, other courses specific to the candidate’s specialty area are offered through various programs at Rutgers. Contact the office of the New Jersey graduate program in public health at UMDNJ-RWJMS for a listing of specific track courses and other options in public health.

A master's level program and a Dr.P.H. degree also are offered in public health through the Edward J. Bloustein School of Planning and Public Policy and UMDNJ-RWJMS.

Graduate Courses

CORE-5511-001. (F) HEALTH-CARE ORGANIZATION AND ADMINISTRATION (3)

Grau Required course
Overview of health care in the United States: social, political, and economic issues; organization and financing of health-care services—the private practice of medicine and health maintenance organizations; ethical, legal, and policy issues; trends in health-care organization in the U.S.

CORE-5520-001. (S) PRINCIPLES OF EPIDEMIOLOGY (3)

Schneider, Wartenberg, community experts. Required core course. Introduction to the definitions, language, and approaches of epidemiologists.

ELEC-5624-001. CONTROVERSIES AND DEBATE ON CURRENT ISSUES IN PUBLIC HEALTH (0)

Wartenberg, For doctoral students only. Issues in the current public health scientific literature; oral presentations.
EPQM-5521-001. EPIEDEMIOPHLOGICAL RESEARCH METHODS (3)
Wartenberg. Methods and logistics in the design and conduct of epidemiological research.

EPQM-5522-001. INFECTIOUS DISEASE EPIDEMIOLOGY (3)
Rhoads. Properties, characteristics, and mechanisms of transmission of infectious disease; investigation of outbreaks of infectious disease.

EPQM-5523-001. EPIDEMIOLOGY OF CHRONIC DISEASES (3)
Rhoads. Characteristics of selected chronic diseases. Students learn to design studies to investigate chronic diseases and approaches to primary and secondary prevention.

CORE-5531-001. (F) ENVIRONMENTAL HEALTH (3)
Ernstfeld, Gallo, Gochfeld, Lynch, Robson. Required core course.

EPQM-5541-001. INTRODUCTION TO BIOSTATISTICS AND BIOCOMPUTING (3)
Cody. Prerequisites: Pretest. Required core course. Brief introduction to fundamental concepts in descriptive and inferential statistics and to quantitative and computer methods. Basic methods, including t-test, chi-square, nonparametric tests, F-tests.

EPQM-5548-001. BIOCOMPUTING I (3)
Cody. Prerequisites: CORE-5541-001, knowledge of MS-DOS. Essential features and use of operating systems. Use of SAS to solve database and statistical problems. Spreadsheet and database packages.

EPQM-5544-001. BIOCOMPUTING II (3)
Cody. Prerequisites: CORE-5541-001, 5548-001. Advanced uses of SAS and SPSSx, including reorganizing data files, and reading data from tapes and disks.

EPQM-5525-001. SEMINAR IN SURVIVAL ANALYSIS (3)
Miller. Prerequisites: CORE-5541-001 and REQM-5584-001. Concepts and skills in the application of event history, including a review of life tables; estimation and interpretation of survival methods as applied to such issues as mortality, marriage, and nursing home admission.

EPQM-5805-001. DISEASE CLUSTERS: SCIENCE AND POLICY (1)
Wartenberg. Prerequisites: CORE-5541-001 and CORE-5520-001. History and context; methods of cluster investigations.

CORE-5550-001. HEALTH EDUCATION AND BEHAVIORAL SCIENCE (3)
Waishwell. Learning and behavioral sciences theories that provide the framework for the practice of health education and interventions.

ENOH-5582-001. ENVIRONMENTAL AND OCCUPATIONAL EPIDEMIOLOGY (3)
Gochfeld, Kipen. Prerequisite: CORE-5520-001. Specific epidemiologic approaches to understanding the causation of occupational and environmental health diseases.

ENOH-5586-001. ENVIRONMENTAL RISK ASSESSMENT (3)

ENOH-5588-001. HISTORY OF OCCUPATIONAL DISEASE AND ENVIRONMENTAL HEALTH (3)
Development of ideas and practices in the prevention of workplace exposures and occupational diseases.

ENOH-5589-001. ADVANCED ENVIRONMENTAL HYGIENE MEASUREMENTS (4)
Weisel. Prerequisites: 2 years college chemistry, CORE-5541-001, and a course in air sampling and analysis principles of industrial hygiene. Fundamental concepts of data interpretation, quality assurance, and "hands on" use of equipment and monitoring procedures in the field.

ENOH-5590-001. OCCUPATIONAL HEALTH PRACTICES (2)
Practical experience leading to certification in spirometry/audiometry.

ENOH-5593-001. (5) ADVANCED PRINCIPLES OF OCCUPATIONAL HEALTH (3)
Gochfeld, Kipen. Workplace hazards, occupational diseases, industrial hygiene, and medical surveillance. Design, implementation, administration, and evaluation of programs.

ENOH-5594-001. ENVIRONMENTAL AND OCCUPATIONAL TOXICOLOGY (3)
Gallo. Prerequisite: Organic chemistry or biochemistry. Basic language and principles of toxicology, and the mechanisms by which xenobiotics damage living systems at the molecular, cellular, tissue, and organ levels.

ENOH-5595-001. ENVIRONMENTAL EXPOSURE MEASUREMENTS AND ASSESSMENT (2)
Lioy. Prerequisites: Calculus, biostatistics, principles of air pollution. Development of skills for designing exposure studies and basic mathematical tools for estimating exposures.

ENOH-5599-001. PRINCIPLES OF INDUSTRIAL HYGIENE (3)
Lynch. Prerequisite: CORE-5531-001. Skill development for evaluating exposures causing occupational health problems. Emphasis on mathematical techniques to estimate exposures to chemicals, physical agents, and ergonomic hazards facing employees.

ENOH-5600-001. INTERFACE BETWEEN SCIENCE AND ENVIRONMENTAL POLICY (1)
Goldstein. Prerequisite: CORE-5531-001. Overview of the health effects of air pollutants with emphasis on the setting of quality standards.

ENOH-5601-001. READINGS/RESEARCH TOPICS IN ENVIRONMENTAL HEALTH TRACK (1-3)

ENOH-5602-001. PESTICIDES AND PUBLIC HEALTH (1)
Robson. Five-week course. Introduction to the toxicological, health effects, exposure, and policy issues surrounding the use of pesticides in agricultural and residential settings.

ENOH-5603-001. OCCUPATIONAL HEALTH: POLITICS AND POLICIES (3)
Ochser. Overview of the field of occupational health.

EPQM-5595-001. CLASSIC PAPERS IN PUBLIC HEALTH (1)
Schneider. Prerequisites: CORE-5541-001, 5520-001. Books, essays, journal articles, and public documents that have had a profound impact on public health.

FAMH-5804-001. FAMILY HEALTH RESEARCH SKILLS (3)
Gregory. Prerequisites: CORE-5520-001 and CORE-5541-001. Fundamental characteristics of selected chronic diseases. Students learn to design studies to investigate chronic diseases and approaches to primary and secondary prevention.

HEBS-5550-001. RESEARCH TOPICS IN HEALTH EDUCATION (1-3)
Individual, in-depth study of specific topic of interest.

179
HEBS-5551-001. Health Education Planning (3)
Prerequisite: CORE-5550-001.
Introduction to development of health education and health promotion programs.

HEBS-5553-001. Modifying Health Behaviors: Strategies for Changing Individuals and Environments (3)
Prerequisite: CORE-5550-001.
Selection and evaluation of appropriate health education methodologies and materials for achieving program goals and objectives.

HEBS-5555-001. Methodologies and Materials in Health Education (3)
Prerequisite: CORE-5550-001, HEC/5551-001 or 5553-001.
Concepts, strategies, and skills for modifying health-related behaviors and for influencing environments and cultures to provide more health support.

HEBS-5556-001. Seminar in Health Education Topics (1-3)
Forum to address timely public health problems.

HEBS-5563-001. Introduction to Survey Research (3)
Prerequisite: CORE-5541-001.
Major methods and techniques in the use of surveys for program development, evaluation, and research.

HEBS-5579-001. Health/Risk Communication (3)
Prerequisite: CORE-5550-001.
Concepts of public health communication and risk perception, and communication emphasis on media coverage of health-related information.

HCOA-5517-001. Health Services Research Evaluation (3)
West. Prerequisites: CORE-5511-001, 5520-001, 5541-001.
Systematic approaches to the evaluation of health services programs, building on prior knowledge of research methods in biostatistics and epidemiology and issues in health services administration.

HCOA-5623-001. Introduction to Outcomes Research (3)
Prerequisite: CORE-5550-001.
Study of patient outcomes, medical outcomes, and economics outcomes related to health and health care: quality of life issues and assessment tools; and measures of morbidity, mortality, treatment, and severity of disease.

PUBLIC POLICY 833

Degree Program Offered: Master of Science*

Director of Graduate Program: Professor Cliff Zukin,
Edward J. Bloustein School of Planning and Public Policy,
Civic Square Building, College Avenue Campus
(732/932-2499, ext. 716)

Members of the Graduate Faculty

Philip Burch, Research Professor of Public Policy, EJBSPPP/CGS; Ph.D., Rutgers
American government; public policy analysis; elites; interest groups

Raphael J. Caprio, Vice President for Continuous Education and Outreach Professor of Public Administration, GS-N; Ph.D., Rutgers
Alternative delivery models of public service including privatization, outsourcing, and interlocal agreements

Robert A. Catlin, Professor of Public Policy, EJBSPPP; Ph.D., Claremont
Housing and community development; planning; administration; planning and minority group communities

Henry Coleman, Associate Professor of Public Policy, EJBSPPP/CGS; Ph.D., Princeton
Public policy

Barri Anhalt Ericsson, Assistant Professor of Public Policy, EJBSPPP/CGS; Ph.D., Stanford
Education policy and politics; political institutions; race, ethnicity, and representation

* Beginning in the 2000–2001 academic year, the M.S. (Master of Science in public policy) will be offered by the Edward J. Bloustein School of Planning and Public Policy as the M.P.A.P. (Master of Public Affairs and Politics). For further information, contact Cliff Zukin, 732/932-2499, ext. 716.

David H. Guston, Assistant Professor of Public Policy, EJBSPPP; Ph.D., Massachusetts Institute of Technology
Science and technology policy; environmental policy; role of experts

Alan Rosenthal, Professor of Public Policy, EJBSPPP/EIP; Ph.D., Princeton
American political institutions; state politics and legislatures

Carl E. Van Horn, Director, Heldrich Center for Workforce Development, and Professor of Public Policy, EJBSPPP/EIP; Ph.D., Ohio State University
Public policy; American political institutions; employment policy

Cliff Zukin, Chairperson and Professor of Public Policy, EJBSPPP/EIP; Ph.D., Ohio State University
Public opinion; survey research; mass media

Associate Members of the Graduate Faculty

Jocelyn T. Crowley, Assistant Professor of Public Policy, EJBSPPP; Ph.D., Massachusetts Institute of Technology
American politics and political economy; American social policy

John A. Spry, Assistant Professor of Public Policy, EJBSPPP; Ph.D., Rochester
Public finance, industrial organization

Julie Whittaker, Assistant Professor of Public Policy, EJBSPPP; Ph.D., Wisconsin
Laboreconomics; compensation distribution; women in labor markets

Adjunct Members of the Graduate Faculty

Sanford Jaffe, Lecturer in Public Policy, EJBSPPP/CNCR; L.L.B., Harvard
Negotiation and conflict resolution

Linda Stanato, Lecturer in Public Policy, EJBSPPP/CNCR; M.A., Rutgers
Negotiation and conflict resolution

William A. Tracy, Executive Director, John J. Heldrich Center for Workforce Development; Lecturer in Public Policy; M.A., Iowa
Development economics

Program

The Department of Public Policy, in close affiliation with the Eagleton Institute of Politics, offers a course of study leading to the Master of Science degree in public policy through the Graduate School–New Brunswick. A joint degree program also is offered with the School of Law–Camden, leading to the Juris Doctor and Master of Science degrees.

The master’s degree program in public policy is designed to prepare students for careers in government, politics, and public affairs. A distinctive feature of the program is its emphasis on political institutions in the making and implementation of public policy. The program attracts high-quality students and has a strong record of placing its graduates in professional positions in the field of public affairs. Of its 385 graduates, 32 percent are employed in government, 21 percent in politics and public affairs, and the remainder in the private sector, including business, banking, and the law.

The department engages several high-ranking or former high-level government officials, such as former Governor Jim Florio, to teach courses. In addition, the Eagleton Institute of Politics and the department offer programs throughout the year featuring as speakers prominent leaders and political thinkers who offer their observations and analyses of the political scene.

The M.S. in public policy is a 30-credit program. Normally students will already have some relevant work experience. Students are expected to complete 15 credits in required courses: 16:833:534, 540, 592, 593, 634. The remaining 15 credits consist of five elective courses in a specialization, such as public finance, education policy, campaigns and elections, and policy-making institutions and processes. Students may complete the M.S. program on a full-time or part-time basis. Individuals may enroll in up to 12 credits of work as nondegree students.

The Department of Public Policy also offers a 45-credit, two-year Master of Public Policy (M.P.P.) degree as well as dual Bachelor of Arts or Bachelor of Science/Master of Public Policy degrees with several Rutgers–New Brunswick undergraduate colleges through the Edward J. Bloustein School of Planning and Public Policy. For further information regarding these degrees, please consult the Edward J. Bloustein School of Planning and Public Policy catalog or contact the department at 732/932-2499, extension 716.

Rutgers’ School of Law–Camden and the Department of Public Policy offer a joint-degree program for students interested in law and politics. The three and one-half year program leads to a Juris Doctor degree and a Master of Science in public policy. Students spend one year in New Brunswick studying public policy and politics and...
two and one-half years studying law in Camden. Students may begin the joint-degree program either in public policy or at the law school. To be accepted into the joint-degree program, students must apply to and be admitted separately by the School of Law–Camden and by the graduate program in public policy.

Graduate Courses

16:833:511. **POLITICS AND POLICY ON THE WORLD WIDE WEB (1.5)**
Creation of web pages, the conduct of policy research and advocacy on the Internet, and the reciprocal relations between policy and new communications technology.

16:833:520. **LEGISLATIVE POLICYMAKING (3)**
Exploration of legislatures as political institutions responsible for policymaking in the American states. Consideration of the role of legislators, lobbyists, governors, and the media.

16:833:521. **MASS MEDIA, PUBLIC OPINION, AND PUBLIC POLICY (3)**
Role and impact of the mass media, the nature and expression of public opinion, and how these feed into the development and implementation of public policy in the American political system.

16:833:522. **PUBLIC POLICY ADVOCACY (3)**
Role and process of organized advocacy by private interests in the formation and implementation of public policy. Strategies and methods used to influence the policy process.

16:833:523. **NEW JERSEY POLITICS AND POLICY (3)**
Influence of the political process on public policy. Comparisons with other states.

16:833:525. **DECISION MAKING FOR PUBLIC POLICY (3)**
Changes in policy making over the last several decades. Examples include the environment, welfare reform, law enforcement, and health care. The budget as a policy-making “engine” at both the federal and state levels.

16:833:526. **LABOR POLICY (3)**
Federal and state programs and policies designed to help the unemployed, with emphasis on the problems of adult workers. The politics surrounding these policies and the effectiveness of government strategies to help the unemployed. Practices and policies in other advanced industrial nations.

16:833:533. **RESEARCH DESIGN FOR PUBLIC POLICY (3)**
Scientific method of study, the processes of conceptualization and measurement, and “experimental design,” or how social programs are structured so they may be effectively studied.

16:833:534. **DATA ANALYSIS FOR PUBLIC POLICY (3)**
Quantitative techniques employed to analyze public policy programs and problems, including univariate, bivariate, and multivariate analysis.

16:833:537. **SURVEY RESEARCH (3)**
Students learn to conduct, analyze, and evaluate surveys. Topics include: problem formation, sample design and selection, questionnaire wording and layout, modes of survey administration, field procedures, data reduction, and data analysis.

16:833:540. **STATE AND LOCAL PUBLIC FINANCE (3)**
Theory and practice of state-local public finance; link between regional economy and subnational governments; fiscal federalism; major state-local spending programs; revenues, including property, sales, and income taxes and gambling; intergovernmental grants.

16:833:541. **ISSUES IN STATE AND LOCAL FISCAL POLICY (3)**
Contemporary state-local policy areas, such as revenue forecasting and the budget process, privatization of public services, education finance, health care/medicaid, welfare reform, and economic development. Relevant economic research and alternative policy options.

16:833:542. **STATE AND LOCAL ECONOMIC DEVELOPMENT THEORIES AND POLICIES (3)**
Introduction to theories and policies for regional economic development used at the subnational scale within the United States. Proposed and current economic development programs from New Jersey and elsewhere in theoretical and historical context.

16:833:543. **ECONOMICS AND PUBLIC POLICY (3)**
Basic microeconomic analysis with applications to current policy issues. Models of consumer and firm behavior applied to issues such as assistance programs for low-income individuals, tax incentives for firms and workers, and environmental regulation. Public goods, externalities, and the role of government in economic markets.

Development, implementation, and effects of federal and state education policy; key policy issues as cases for the exploration of political, policy design, and implementation issues.

16:833:551. **ISSUES IN EDUCATION FINANCE (3)**
Legal, political, economic, and equity issues in public school finance. Topics include sources of revenue, school finance formulas, the allocation of education resources, the equity and adequacy of school finance systems, school finance litigation, and the politics of school finance reform.

16:833:552. **EDUCATION POLICY (1.5)**
Major issues in the area of primary and secondary education and their implications for current and future public policy.

16:833:570. **THE ROLE OF EXPERTS IN THE POLICY PROCESS (3)**
Interrelations of technical expertise with policymaking in various institutional settings. Case studies in environmental, health, economic, and science and technology policy.

16:833:571. **PUBLIC MANAGEMENT (3)**
Fundamental tasks and responsibilities of management in the public sector, with an emphasis on the external and internal environments in which managers implement public policy.

16:833:572. **NEGOTIATION AND PUBLIC POLICY (3)**
Nonadversarial concepts and techniques of conflict resolution—negotiation, mediation, consensus-building dialogues—considered in public contexts, from courts, prisons, and schools to other institutional and noninstitutional settings. Issues include controversial subjects such as siting resource recovery plants, implementing economic redevelopment plans, enacting environmental protection measures, and devising grievance mechanisms.

16:833:573. **CAMPAIGNS AND PUBLIC POLICY (3)**
Overview of modern political campaigning. The campaign as a process occurring within a political context.

34:833:576. **URBAN POLICY FORMULATION (3)**
Origins and evolution of federal and state programs designed to assist cities with growth, development, and redevelopment. Focus on programs in housing, community development, infrastructure provision, and growth management. The role of planning in maximizing the benefits of federal and state assistance efforts.

16:833:577. **URBAN REVITALIZATION POLICY (3)**
Origins and evolution of U.S. federal, state, and local government efforts to preserve and/or enhance the viability of urban places. Case study analysis of selected cities. Examination of alternative revitalization policies.

16:833:592. **PUBLIC POLICY FORMATION (3)**
Formulation and implementation of public policy, with emphasis on federal policymaking, models for policy choice, and intergovernmental policy problems. Analysis of the formulation and implementation of a governmental program.
16:833:593. Policy Analysis and Evaluation (3)
Strategies and methods of public policy analysis and evaluation: developing a research strategy, choosing measures, analyzing data.

Participation in a directed research project that applies analytical techniques of policy analysis and evaluation or survey research to public policy problems.

16:833:670. Independent Study in Public Policy (3)

16:833:671. Internship in Public Policy (3)

34:833:672. Applied Field Experience (6)
Designed specifically for and required of students enrolled in the department’s two-year (M.P.P.) degree. Students gain practical experience in a public policy setting and relate it to an academic perspective as well. Students work in a professional setting for approximately twenty hours per week for fourteen weeks and write a paper synthesizing their experience within an academic framework, supervised by the faculty member in charge.

16:833:680. Seminar in Public Policy (3)
Selected problems in American public policy. Topics include research and development policy; race, politics, and the news media; education policy.

PUBLIC POLICY
(See the catalog of the Edward J. Bloustein School of Planning and Public Policy for information about other degree programs in this area.)

QUATERNARY STUDIES 841

Program Offered: Certificate in Quaternary Studies
Director of the Certificate Program in Quaternary Studies:
Professor Gail M. Ashley, Department of Geological Sciences,
239A Wright-Rieman Laboratories, Busch Campus
(732/445-2221, 2044)
Email: gmashley@rci.rutgers.edu

Participating Faculty
The following members and associate members of the graduate faculty, identified more fully under their respective programs, are among those who participate in the certificate program in Quaternary Studies:

G. Ashley, Geological Sciences
R. Blumenschine, Anthropology
L. Burckle, Geological Sciences
S. Cachel, Anthropology
C. Feibel, Anthropology
M. Coman, Geography, Geological Sciences
J. Harris, Anthropology
D. Kent, Geological Sciences
J. Miller, Environmental Sciences
K. Miller, Sr., Geological Sciences
R. Olsson, Geological Sciences
N. Psuty, Geography
D. Robinson, Geography
E. Russell, Ecology and Evolution
K. Scott, Ecology and Evolution
R. Sherrill, Environmental Sciences
J. Wright, Geological Sciences

Certificate Program
Students with an interest in interdisciplinary study of the earth and its inhabitants during the last few million years may pursue, in the course of their regular program of studies toward an advanced degree, a special concentration in Quaternary studies. Participating graduate programs are anthropology, ecology and evolution, environmental sciences, geography, and geological sciences. Those who fulfill the requirements below are awarded a Certificate in Quaternary Studies, signifying special achievement in this field, along with the master’s or doctoral degree in the student’s major discipline. Students must fulfill all degree requirements in their major program of study, including two courses in other participating programs that focus on the Quaternary period. In addition, the certificate requires enrollment for one term in 16:841:501 Quaternary Studies Seminar. If a thesis is required for the degree, it should focus on the Late Cenozoic or Quaternary time period.

Graduate Courses
16:841:501. Quaternary Studies Seminar (3)
A multidisciplinary (geology, geography, biology, meteorology, oceanography, paleontology, and soils) course focused on specific questions or problems related to the Quaternary time period.

16:841:503. Pedology (3)
General processes and paradigms of soil formation. Soil taxonomy, soil chemistry, clay mineralogy, and the importance of biological processes in soil genesis. Interpretation of paleoclimate from the soil record.

16:841:504. Modern Links to Ancient Lives (3)
Using contemporary observations and laboratory and field experiments in a variety of habitats and ecosystems to understand the impact of humans and natural processes on the geological and archaeological record.

16:841:505. Palynology (3)
Morphology and taphonomy of fossil pollen, especially with reference to Quaternary sediments. Use of pollen analysis to reconstruct paleoenvironments. Emphasis on field sampling, laboratory analyses, and interpretation of results.

16:841:506. Isotopes in the Paleoenvironment (3)
Application of isotope geochemistry to paleoenvironmental studies in hydrology, geology, anthropology, ecology, and paleontology. Emphasis on understanding conceptual basis, limitations, and potential of isotopic studies.

RUSSIAN, CENTRAL AND EAST EUROPEAN STUDIES 859

Program Offered: Certificate in Russian, Central and East European Studies
Director of the Certificate Program: Professor Jan Kubik,
Center for Russian, Central and East European Studies,
172 College Avenue, College Avenue Campus (732/932-8551)

Participating Faculty
The following members of the graduate faculty, identified more fully under the subject headings indicated, are among those who participate in the certificate program in Russian, Central and East European Studies:

Helmut Anheier, Sociology
Jerome Aumente, Communication, Information, and Library Studies
Seymour Becker, History
József Borocz, Sociology
David Foglesong, History
Ziva Galili, History
Peter Golden, History
Jan Kubik, Political Science
Joan Marten, Art History
Gerald Pirog, Comparative Literature
Stephen Reinert, History
Joanna Regulska, Geography
Robert Stuart, Economics
Gabor Vermes, History
Certificate Program

Students with a special interest in Russia or in Central and/or Eastern Europe may pursue, in the course of their regular program of studies toward an advanced degree, a special concentration in Russian, Central and East European Studies. Students who fulfill the following requirements may be awarded a Certificate in Russian, Central and East European Studies upon completion of their degree. In many cases, the certificate requirements also may be used to satisfy the student’s own graduate degree requirements.

Certificate Requirements

1. Completion of three courses (9 credits) in Russian, Central and East European subjects, with a grade of B or better, in disciplines other than that of the student’s degree program. Of these three courses, no more than two can be in any one discipline; only one can be in the 300–400 level, subject to approval by the program’s director.
2. Completion of a year-long seminar (6 credits) offered by the Center for Russian, Central and East European Studies.
3. Completion of a major research paper under the guidance of two participating faculty members.
4. Proof of proficiency in one of the languages of the region.

Year-long seminar that examines the political, economic, and social transition in Russia and in Central and Eastern Europe from various perspectives. Theme of the seminar changes annually. Taught by Rutgers faculty members and visiting faculty from the region.

Graduate Courses

16:859:501,502. RUSSIAN, CENTRAL AND EAST EUROPEAN STUDIES SEMINAR (3,3)
Year-long seminar that examines the political, economic, and social transition in Russia and in Central and Eastern Europe from various perspectives. Theme of the seminar changes annually. Taught by Rutgers faculty members and visiting faculty from the region.

SOCIAL WORK 910

Degree Program Offered: Doctor of Philosophy
Director of Graduate Program: Professor Bernard Neugborene, Associate Dean for Academic Affairs, School of Social Work, 536 George Street, College Avenue Campus (732/932-6967)
Members of the Graduate Faculty

- Ann A. Abbott, Associate Professor of Social Work, SSW; Ph.D., Bryn Mawr College
- Professional values; socialization; female substance abuse; health reform
- Eleanor L. Brillant, Professor of Social Work, SSW; D.S.W., Columbia Social policy; organizations; women; and international philanthropy
- Michael J. Camasso, Associate Professor of Social Work, SSW; Ph.D., Pennsylvania State University; Public welfare; child welfare; developmental disabilities
- Stephen Crystal, Research Professor of Social Work and Sociology, SSW/HHFCP/Ph.D., Harvard
- AIDS; long-term care; homelessness; longitudinal data analysis
- Mary Edna Davidson, Dean and Professor of Social Work, SSW; Ph.D., Brandeis University; Child welfare; advocacy research; equity analysis of public social policy
- Donald T. Dickson, Professor of Social Work, SSW; Ph.D., Michigan State University; Law; child welfare; mental health; administration
- Paul Glasser, Professor of Social Work, SSW; Ph.D., North Carolina State University; Community welfare; family; and family therapy; small group; theory and practice
- Raymond Sánchez Mayers, Associate Professor of Social Work, SSW; Ph.D., Brandeis University; Financial management in nonprofits; administrative issues; Hispanic issues
- David Mechanic, University Professor and Rene Dubos Professor of Behavioral Sciences; Ph.D., Stanford University; Medical sociology; evaluation research and social policy
- Bernard Neugborene, Associate Dean for Academic Affairs and Professor of Social Work, SSW; Ph.D., Brandeis University; Mental health policy; administration; environmental practice

- Kathleen J. Pottick, Associate Professor of Social Work, SSW/HHFCP/Ph.D., Michigan State University; Child and adolescent mental health; psychiatric social services; system management
- Jerome C. Wakefield, Professor of Social Work, SSW/HHFCP/Ph.D., California (Berkeley); Conceptual and theoretical foundations of mental health services
- Allison Zipay, Assistant Professor of Social Work, SSW; Ph.D., California (Berkeley); Poverty and unemployment policy; community development; social networks

Associate Members of the Graduate Faculty

- Judith Bae, Assistant Professor of Social Work, SSW; Ph.D., Houston; Early adolescence; survey development
- Sandra Burman, Assistant Professor of Social Work, SSW; Ph.D., Illinois Institute of Technology; Substance abuse treatment; motivation and strategies of self-recovery
- Patricia C. Dunn, Associate Extension Specialist in Social Work, SSW; GSE; Ed.D., Rutgers University; Alcohol and other drugs; teaching methodology; developmental disabilities
- Antoinette Farmer, Assistant Professor of Social Work, SSW; Ph.D., Pittsburgh; Parenting behavior; kinship care; AIDS; knowledge and prevention; evaluation of social work practice
- G. Lawrence Farmer, Assistant Professor of Social Work, SSW; Ph.D., Florida International University; Evaluation of social programs; psychological and psychiatric assessment and quantitative data analysis
- Michael C. Lala, Assistant Professor of Social Work, SSW; Ph.D., SUNY (Albany); Clinical social work; gay and lesbian issues; marriage and family therapy
- Edward Lowenstein, Associate Professor of Social Work, SSW; Ph.D., Michigan State University; Intercultural dynamics
- Shari Munch, Assistant Professor of Social Work, SSW; Ph.D., Michigan State University; Healthcare
- Robert James Reid, Assistant Professor of Social Work, SSW; Ph.D., Columbia University; Substance abuse; HIV/AIDS prevention; social policy and economics
- Mark Schnitz, Assistant Professor of Social Work, SSW; Ph.D., Iowa State University; Mental health; social psychology; family; analytic and survey methodologies
- Sharon H. Smith, Assistant Professor of Social Work, SSW; Ph.D., Pennsylvania State University; Gerontology; minority issues; clinical social work
- Paul W. Speer, Assistant Professor of Social Work, SSW; CAS; Ph.D., Missouri (Kansas City); Community organizing; substance abuse prevention; individual and organizational empowerment

Programs

Programs in social work leading to the degree of Doctor of Philosophy are offered by the Graduate School–New Brunswick in cooperation with the School of Social Work. Those programs leading to the degree of Master of Social Work are conducted by the School of Social Work and are described in the separate catalog of that professional school.

The doctoral program in social work prepares students for advanced research that contributes to the knowledge base of social work intervention, and for leadership roles in social work and social welfare organizations.

The program is designed for students who have already earned an M.S.W. or a master’s degree in a closely related field. Theory development and research are emphasized in the program’s two tracks, which are Direct Practice and Social Policy and Administration. The required course work covers research, statistics, courses specific to the chosen program track, one or more courses in a cognate discipline other than social work, and electives. Students in the program are assisted in becoming computer literate in social science research and statistical analysis.

In addition to the required course work, there are three other elements to the program: a research internship, qualifying examination, and dissertation. Completion of a research internship, under the direction of a faculty member, enhances each student’s readiness to conduct the independent research necessary to complete the dissertation. The qualifying examination ensures that the requisite background has been mastered prior to undertaking the dissertation research. The dissertation research itself, and the writing of the dissertation, is performed under the guidance of a faculty member and a doctoral committee after all other requirements have been satisfied.

The curriculum policy of the doctoral program in social work holds that students should be able to develop their own programs of study. Preparation includes 6 credits of graduate-level statistics...
A post-M.S.W. honors option is designed for students completing the M.S.W. program with outstanding records who lack post-M.S.W. practice experience. These students are encouraged to carry a social work practice position while in the doctoral program. This option enables the students to acquire the requisite two years of post-M.S.W. experience needed to qualify for faculty positions upon earning their doctorates.

Graduation requirements include an M.S.W. or closely related master’s degree. Two years of post-M.S.W. practice experience is preferred for all except those enrolled in the post-M.S.W. honors option.

Graduate Courses

16:910:637. (F) Quantitative Research Methods (3)
Knowledge and skills needed to carry out independent doctoral-level research in the field of social work. Identification and study of state-of-the-art concerns centering on issues of design and measurement; qualitative and quantitative formulations; data gathering, processing, analysis, and interpretation.

16:910:638. (F) Advanced Statistical Methods I (3)
Prerequisite: 16:910:637.
Analytic and measurement strategies fundamental to multivariate model testing in policy, administration, and direct practice research. Topics include tabular and log-linear analysis, multiple regression, analysis of covariance, and analysis of variance in its principal forms. Multiple indicators and measurement approaches such as exploratory and confirmatory factor analysis.

16:910:639. (S) Advanced Statistical Methods II (3)
Prerequisite: 16:910:638.
General conceptual issues in the use of multivariate, quantitative methods. Use of multiple dependent variables, nonlinear relationships, mediator effects, instrument variables, and multilevel analysis.

16:910:640. (S) Qualitative Research Methods (3)
Examination of the methods of collecting, analyzing, presenting, and applying qualitative data. History and evolution of qualitative research methods; theoretical orientations; data collection methods, including ethnography, participant observation, in-depth interviewing, focus groups, and archival analysis; methods of data analysis; and research applications, including theory development and program design and evaluation.

16:910:644. (S) Current Perspectives (3)
Prerequisite: 16:910:637.
Theories and models of intervention used in social work direct practice. Applications.

16:910:646. (S) Family Theory and Program Development (3)
Study of family theory and its relationship to program development at different levels of practice and social planning. Geared toward both a policy planning and intervention perspective, as well as sociological interest in socialization and the study of deviance.

16:910:647. (F) Social Policy Analysis (3)
Paradigms, methods, and strategies for the analysis of policy from social work, economics, sociology, political science, public administration, policy sciences, and planning.

16:910:649. (F) Mental Health Policy (3)
Major issues in mental health policies and programs in socio-environmental context.

16:910:650. (S) Problems in Health and Social Policy (3)
Selected critical issues in the delivery of human services; application of social research to policy. The policy research process. Topics may include care of the aging and the health policy challenge posed by the AIDS epidemic.

Provides an opportunity to study in greater depth, and on an individualized basis, various areas of social policy, social planning, social administration, or direct intervention.

Provides an opportunity to specialize in a specific area of policy analysis, social planning, social administration, or direct intervention, on an individualized basis.

16:910:687. (S) Theory Development in Social Work Direct Practice (3)
The relative place and contribution of theoretical conceptualization, “practice wisdom,” and descriptive and prescriptive research.

16:910:694. (S) Social Work Organizations (3)
Applicability of organizational theories and concepts from the social sciences for analysis of human service organizations; strategies and performance with clients and constituents. Criteria and procedures for organizational assessment and case studies of public and private social welfare organizations used on various paradigms for critical analysis of organizational culture, environmental interactions, resource dependency, policy impact, and program implementation.

Independent research study related to proposed dissertation, with assistance of appropriate faculty. Dissertation seminar. Research internship.

SOCIAL WORK: ADMINISTRATION, POLICY AND PLANNING, AND DIRECT PRACTICE
(See the catalog of the School of Social Work for information about the M.S.W. degree.)
SOCILOGY 920

Degree Programs Offered: Master of Arts, Doctor of Philosophy

Director of Graduate Program: Professor Eviatar Zerubavel, Lucy Stone Hall, Livingroom Campus (732/445-4030)

Members of the Graduate Faculty

Helmut K. Anheier, Associate Professor of Sociology, FAS-NB; Ph.D., Yale Comparative sociology; social networks; organizations

Sarane S. Boockoo, Professor of Education, FAS-NB; Ph.D., Johns Hopkins Children, education; cross-national studies

Joséf Borócz, Associate Professor of Sociology, FAS-NB; IHS; Ph.D., John Hopkins Historical; comparative; economic; leisure migration; stratification

Karen A. Cerulo, Associate Professor of Sociology, FAS-NB; Ph.D., Princeton Culture; communications; deviance; methods

Lee Clarke, Associate Professor of Sociology, FAS-NB; Ph.D., SUNY (Stony Brook)

Organizations; technology and risk

Ira J. Cohen, Associate Professor of Sociology, FAS-N; Ph.D., Wisconsin Social theory; sociology of everyday life

Jeanette Covington, Associate Professor of Sociology, FAS-NB; Ph.D., Chicago Deviance; crime

Stephen Crystal, Professor of Social Work, SSW/JHHC; Ph.D., Harvard Social policy; social gerontology; AIDS

Nancy DiTomaso, Professor of Management, GSM; Ph.D., Wisconsin Organizations; theory; economy and society

Lucie Duberman, Associate Professor of Sociology, FAS-N; Ph.D., Case Western Reserve Marriage; family

William A. Firestone, Professor of Educational Theory, Policy, and Administration, GSE; Ph.D., Chicago Education; policy implementation; qualitative methods; organizations

Judith J. Friedman, Associate Professor of Sociology, FAS-NB; Ph.D., Michigan Urban communities; environment; demography

Judith M. Gerson, Associate Professor of Sociology, FAS-NB, Ph.D., Cornell Gender; work; social theory

Ted G. Goertzel, Professor of Sociology, FAS-C; Ph.D., Washington Political stratification; social welfare

Sherry Gorelick, Associate Professor of Sociology, FAS-NB; Ph.D., Columbia Education; ethnicity

Cathy Greenblat, Professor of Sociology, FAS-NB; Ph.D., Columbia Research methods; simulation; sexuality; development

Stephen Hansell, Associate Professor of Sociology, FAS-NB; IJHCPAR; Ph.D., Chicago Medical; social psychology; education

Clayton A. Hartjen, Professor of Sociology, FAS-N; Ph.D., New York Criminology and deviant behavior

Allan V. Horwitz, Professor of Sociology, FAS-NB; IJHCPAR; Ph.D., Yale Deviance and social control; mental illness; law

Ellen L. Idler, Professor of Sociology, FAS-NB; IJHCPAR; Ph.D., Yale Health; aging; religion

John C. Leighton, Associate Professor of Sociology, FAS-NB; Ph.D., Michigan Labor; gender; race; class; survey research; political

Donald Light, Professor of Sociology and Community Medicine, UMDNJ-SOM; Ph.D., Brandeis Comparative healthcare; social policy; professions

John L. Martin, Assistant Professor of Sociology, FAS-NB; Ph.D., California (Berkeley) Culture; belief; religion; numerical analysis of qualitative data

Leslie McCall, Assistant Professor of Sociology, FAS-NB; Ph.D., Wisconsin Gender; work; labor markets; theory

Paul McLean, Assistant Professor of Sociology, FAS-NB; Ph.D., Chicago Historical-comparative; economic; patronage networks

David Mechanic, University Professor and René Dubos Professor of Behavioral Sciences, IJHCPAR; Ph.D., Stanford Medical; social psychology; psychiatry

Ann Mische, Assistant Professor of Sociology, FAS-NB; Ph.D., New School for Social Research Political culture; social movements; social networks; micro-interaction; temporality

Martin Oppenheimer, Associate Professor of Sociology, FAS-NB; Ph.D., Pennsylvania Social movements; American working class

Ann P. Parelius, Associate Professor of Sociology, FAS-NB; Ph.D., Chicago Education; marriage and family

Robert J. Parelius, Associate Professor of Sociology, FAS-NB; Ph.D., Chicago Education

Julie Phillips, Assistant Professor of Sociology, FAS-NB; CUPR; Ph.D., Pennsylvania Demography; crime; migration; methods; urban geography; mortality

David Popeno, Professor of Sociology, FAS-NB; Ph.D., Pennsylvania Family and community; comparative social systems

Patricia A. Roos, Professor of Sociology, FAS-NB; Ph.D., California (Los Angeles) Stratification; work; gender

Sarah Rosenfield, Associate Professor of Sociology, FAS-NB/IIHCPAR; Ph.D., Texas Medical sociology; mental illness

Thomas Radul, Professor of Sociology, C; Ph.D., Yale Development; environment; human ecology

D. Randall Smith, Associate Professor of Sociology, FAS-NB; Ph.D., Johns Hopkins Methodology; statistics

Shirley A. Smoyak, Professor of Urban Studies and Community Health, EJBSPPP; Ph.D., Rutgers Seriously mentally ill adults and children

Megan Sweeney, Assistant Professor of Sociology, FAS-NB; Ph.D., Wisconsin Family; life course; gender; demography

Jackson Toby, Professor of Sociology, FAS-NB; Ph.D., Harvard Criminology; deviance; theory; education

Chaim I. Waxman, Professor of Sociology, FAS-NB; Ph.D., New School for Social Research Religion; ethnicity; social welfare

Helene R. White, Professor of Sociology, FAS-NB/CAS; Ph.D., Rutgers Alcohol and drug; deviance

Richard Williams, Associate Professor of Sociology, FAS-NB; Ph.D., SUNY (Binghamton) Social construction of identities (race and ethnic); mass communications (television/news)

Robert E. Wood, Associate Professor of Sociology, FAS-C; Ph.D., California (Berkeley) Political economy of international development

Benjamin D. Zablocki, Associate Professor of Sociology, FAS-NB; Ph.D., Johns Hopkins Methodology; statistics; collective behavior

Eviatar Zerubavel, Professor of Sociology, FAS-NB; Ph.D., Pennsylvania Cognitive sociology; sociology of time; social memory; everyday life

Associate Members of the Graduate Faculty

Dennis M. Gorman, Assistant Professor of Sociology, CAS; Ph.D., Essex Substance abuse prevention; risk factor research and program evaluation

Drew Humphries, Associate Professor of Sociology, FAS-C; Ph.D., California (Berkeley) Sociology; international cooperation; macroeconomics

Valerie R. Johnson, Associate Professor of Alcohol Studies, CAS; Ph.D., Rutgers Alcohol and drugs

Charles A. Nanny, Professor of Industrial Relations and Human Resources, SMLR; Ph.D., Rutgers Theory; work and occupations; communications

Karen M. O’Neill, Assistant Professor of Human Ecology, FAS-NB; Ph.D., California (Los Angeles) Land use conflicts; social classes; the state

Adjunct Member of the Graduate Faculty

Carol A. Boyer, Assistant Research Professor, IJHCPAR; Ph.D., Yale Mental health; health care

Programs

The aim of the program is to prepare students for scholarly research and for teaching. The program is designed for students who seek the Ph.D. degree; an M.A. degree is typically granted in the process of obtaining a Ph.D. degree.

Requirements for the Ph.D. degree include 21 research credits, a writing seminar (3 credits), and 48 credits of approved course work (including courses used to satisfy the requirements for the M.A. degree). Students transferring from other institutions may transfer up to 24 credits. Of the 48 credits, 6 must be in theory, 6 in methods, and 6 in statistics. Students also must complete three qualifying papers of publishable quality (or two such papers and a qualifying examination in one area of specialization), a writing seminar, the defense and approval of a dissertation proposal, and complete and defend a doctoral dissertation.

Students generally receive the M.A. degree when they have completed 30 credits of approved course work (with at least 3 credits in methods, 3 credits in statistics, and 6 credits in theory) and one of the qualifying papers required for the Ph.D. Up to 12 credits may be transferred from other institutions upon petition and approval.

Applications for September admission should be submitted no later than February 1 by students seeking financial assistance; otherwise by May 1. Official transcripts, a writing sample, and three letters of recommendation are required. The Graduate Record Examination (GRE) is also required, but applicants need not take the advanced test in sociology. Students for whom English is not the first language must take the TOEFL examination if their undergraduate degree was not obtained in the United States.
Graduate Courses

16:920:501,502. SOCIOLOGICAL RESEARCH METHODS I,II (3,3)
The logic, design, and implementation of research to test sociological hypotheses. First term: fundamentals of research

design, sampling, and measurement. Second term: data collection, data management, and exploratory data analysis, including an introduction to computer techniques. Laboratory exercises required.

16:920:503,504. SELECTED SOCIOLOGICAL PROBLEMS (3,3)
Prerequisite: Permission of instructor. For graduate students wishing to pursue advanced work. By arrangement.

16:920:505,506. INDIVIDUAL STUDIES IN SOCIOLOGICAL THEORY (3,3)
Prerequisite: Permission of instructor. For graduate students wishing to pursue advanced work in fields where no advanced courses are provided. By arrangement.

16:920:511,512. PROSEMINAR IN SOCIOLOGY (3,3)
Selected special topics in sociology.

16:920:515. CLASSICAL SOCIOLOGICAL THEORY (3)
Discussion of the major figures who shaped sociological theory from the mid-nineteenth century to the first three decades of the twentieth century.

16:920:516. CONTEMPORARY SOCIOLOGICAL THEORY (3)
Survey of the dominant lines of theoretical development in contemporary sociology.

16:920:520. COMPARATIVE AND HISTORICAL METHODS (3)
Philosophical, theoretical, and methodological issues involved in sociological explanations of the development of social systems over time.

16:920:521. SOCIOLOGY OF EDUCATION (3)
Analysis of the U.S. educational system and its relation to other social systems. Major focus on the ideology of the system, the interrelationship of various occupations, and special problems of urban schools.

16:920:523. SOCIOLOGY OF HEALTH (3)
Social correlates of health and illness in the U.S.; major social roles and organizational structures concerned with health and medical care.

16:920:524. SOCIOLOGY OF ORGANIZATIONS (3)
Basic survey of the sociology of organizations, with emphasis on current developments.

16:920:527. RESEARCH SEMINAR IN POLITICAL SOCIOLOGY AND DEVELOPMENT (3)
Major theoretical frameworks of political sociology and development, and historical and contemporary debates within these fields.

16:920:528. MARRIAGE AND THE FAMILY (3)
Review of the basic concepts and research in the field of marriage and the family.

16:920:535. PROFESSIONS (3)
Development and functions of professions in advanced industrial societies. Alternative theories of professionalism evaluated against the background of sociological studies of different professions, such as medicine, law, social work, psychology, education, nursing, engineering, management and planning, the clergy, and the artistic professions.

16:920:541-542. ANALYSIS OF SOCIOLOGICAL DATA I,II (3,3)
Prerequisite for 16:920:541 or permission of instructor. Application of classical and modern statistical techniques to the analysis of sociological data. Problems of optimal fitting of technique to level and quality of data emphasized. First term: bivariate techniques, up to and including the analysis of variance. Second term: multivariate techniques, multiple regression, and the general linear model. Laboratory exercises required.

16:920:550. PRACTICUM IN TEACHING SOCIOLOGY (3)
Trains sociology graduate students to teach, with specific emphasis on clear presentations, logical argument, and day-to-day pedagogical issues.

16:920:570,571,572,573. SPECIAL TOPICS IN SOCIOLOGY (3,3,3,3)

16:920:602. CULTURE, SYMBOLS, AND SOCIAL INTERACTION (3)
Examines several dimensions of the complex interaction between the social and cultural spheres. Focuses on: the ways in which norms, gestures, and symbols structure interpersonal encounters; the symbol systems that make possible large-scale interaction between social members; the ways in which social structure orders interactions; and the ways in which technology can mediate social interactions.

16:920:603. SOCIOLOGY OF RELIGION (3)
Religious belief systems and forms of social organization in historical and cross-cultural perspective; public religious behavior and private spiritual practice; old and new religious movements; relationship between religion and other major social institutions (especially the political and the economic).

16:920:611. CRIMINOLOGY AND CORRECTIONS (3)
Theories of criminality and methods of treatment and prevention within the context of the general analysis of deviance and social control.

16:920:612. SOCIAL DEVIANCE AND SOCIAL CONTROL (3)
Conditions under which people tend to conform or deviate; probable consequences of deviance and social control for both deviants and conformists.

16:920:613. THE SOCIOLOGY OF AGE (3)
Theory of age stratification, age structure of the society, aging of individuals, and connections between aging and various social processes and social institutions.

16:920:614. SEMINAR IN RACE AND ETHNIC RELATIONS (3)
Analysis of race and ethnic relations from a comparative perspective; contemporary theory, issues, and problems.

16:920:615. SEMINAR IN QUALITATIVE RESEARCH METHODS (3)
Discussion and guided practice in the collection and analysis of qualitative data. Major attention on research designs employing participant observations and/or in-depth interviewing. Case studies reviewed; collection and analysis of data from a field research study.

16:920:616. SEMINAR IN SOCIAL STRATIFICATION (3)
Fundamental features of social stratification in both its structural and dynamic aspects and in terms of its consequences for society and for the individual.

16:920:618. SOCIOLOGY OF GENDER (3)
Cross-cultural and historical analysis of gender roles; gender in modern society; gender roles and social institutions; work, family, religion, politics, and education. A range of theoretical and empirical approaches included.

16:920:627. SOCIOLOGY OF SOCIALIZATION (3)
Study of socialization as a concept and as a process; the socialization of children and adults; variations in socialization among cultures, socioeconomic status groups, and types of social groups.

16:920:629. DEVELOPMENT AND UNDERDEVELOPMENT (3)
Interdisciplinary perspectives on processes of development, with focus on phenomena of class and politics.
16:920:631. SOCIOLOGY OF MENTAL ILLNESS (3)
Study of the epidemiology of psychiatric disorders, help-seeking processes for mental illness, social responses to the mentally ill, and social policy issues in the mental health field.

16:920:632. SOCIOLOGY OF WORK (3)
The meaning and organization of work; the division of labor—who does what and how; interactions among occupations; and the quality of work life in industrial societies.

16:920:633. SEMINAR IN SOCIAL SCIENCE DATA ANALYSIS (3)
Prerequisite: 16:920:542 or permission of instructor.
Advanced topics in quantitative reduction and analysis of data generated by research in the various social sciences. Topics chosen from, but not limited to, loglinear analysis, structural equations models, panel analysis, network analysis, time series analysis, and continuous time process models. Initial sessions focus on developing the basics of matrix algebra upon which most of these techniques rely.

16:920:640. SOCIOLOGICAL PERSPECTIVES ON FEMINIST THEORY (3)
Detailed examination of major feminist theories, with an emphasis on contemporary feminist thought.

16:920:645. DRUGS AND SOCIETY (3)
Examination of causes and consequences of illegal drug use; how drugs came to be criminalized; the current system of drug prohibition in the U.S.; and alternatives to prohibition, such as decriminalization and legalization.

16:920:646. (S) COGNITIVE SOCIOLOGY (3)
Social context of thinking, focusing on specific cognitive processes: classifying, framing, symbolizing, time-reckoning, perceiving, attending, remembering, and making sense. Draws on sociology of knowledge, phenomenological sociology, ethnomethodology, sociology of science, symbolic interactionism, semiotics, symbolic anthropology, and linguistics.

16:920:701,702. RESEARCH IN SOCIOLOGY (BA,BA)
Prerequisite: Candidacy for Ph.D. required of all students engaged in Ph.D. dissertation research.

16:920:703. WRITING SEMINAR (3)
Sharpen writing and publishing skills as professional sociologists. Writing and rewriting doctoral qualifying papers and dissertation proposals.

SPANISH 940

Degree Programs Offered: Master of Arts, Master of Arts for Teachers, Doctor of Philosophy
Director of Graduate Program: Professor Susana Rotker, Carpender House, Douglass Campus (732/932-9323)

Members of the Graduate Faculty
Mary Lee Bretz, Professor of Spanish, FAS-NB; Ph.D., Maryland
Nineteenth- and twentieth-century Spanish literature
Frank N. Dauster, Professor Emeritus of Spanish, FAS-NB; Ph.D., Yale
Contemporary Spanish-American literature; drama; poetry
Mary S. Gessey, Associate Professor of Spanish, FAS-NB; Ph.D., Harvard
Golden age prose, narrative, feminist theory; reader-response; psychoanalysis
Carl Kirschner, Professor of Spanish, FAS-NB; Ph.D., Massachusetts
Spanish linguistics; syntax; semantics; bilingualism in the United States
Jorge Marcone, Associate Professor of Spanish, FAS-NB; Ph.D., Texas
Latin American literature and environmentalism; theories of literacy; orality, hypermedia
Tomás Éloy Martínez, Professor of Spanish-American Literature, FAS-NB; M.A., Paris Institute
Contemporary Spanish-American narrative; Latin American studies; film theory; colonial Spanish-American literature
Gabriela Mora, Professor of Spanish, FAS-NB; Ph.D., Smith
Nineteenth- and twentieth-century Spanish-American literature; literary theory

Carlos Raúl Navier, Associate Professor of Spanish-American Literature, FAS-NB; Ph.D., Columbia
Twentieth-century Spanish-American and Caribbean literature; poetry; novel; contemporary literary theory
Margaret H. Persin, Professor of Spanish, FAS-NB; Ph.D., Indiana
Twentieth-century Hispanic poetry; literary theory

Marcy Schwartz, Associate Professor of Spanish, FAS-NB; Ph.D., Johns Hopkins
Twentieth-century Spanish-American literature; urban cultural studies; literary theory

Thomas M. Stephens, Associate Professor of Spanish, FAS-NB; Ph.D., Michigan
Hispanic ethno- and sociolinguistics, lexicography
Phyllis Zatin, Professor of Spanish, FAS-NB; Ph.D., Florida
Contemporary Spanish film and theater/novel; translation studies

Associate Members of the Graduate Faculty
César Braga-Pinto, Assistant Professor of Portuguese, FAS-NB; Ph.D., California (Berkeley)
Colonial Brazilian literature
José Camacho, Assistant Professor of Spanish and Linguistics, FAS-NB; Ph.D., Southern California
Spanish linguistics; syntax, phonology, semantics, and bilingualism
Conrado Guardiola, Associate Professor of Spanish, FAS-NB; Doctor en Filosofía y Letras, Zaragoza
Medieval Spanish literature

Yeon-Soo Kim, Assistant Professor of Spanish, FAS-NB; Ph.D., Yale
Contemporary Spanish narratives and films

Lawrence La Fountain-Stokes, Assistant Professor of Spanish and Puerto Rican and Hispanic Caribbean Studies, FAS-NB; Ph.D., Columbia
Caribbean and Latino literature and culture

Susan Martin-Márquez, Assistant Professor of Spanish, FAS-NB; Ph.D., Pennsylvania
Modern peninsular novel; cinema; cultural studies

Debóra M. Otero-Torres, Assistant Professor of Spanish, FAS-NB; Ph.D., California (San Diego)
Golden age literature and culture; gender studies and literary theory

Ben Siffuentes Jáuregui, Assistant Professor of Spanish, FAS-NB; Ph.D., Yale
Twentieth-century Spanish-American literature and cultural studies; gender theory and psychoanalysis; U.S. Latin American literature

Adolf Sinaidas, Associate Professor of Spanish, FAS-NB; Ph.D., Rutgers
Spanish-American literature

Camilla Stevens, Assistant Professor of Spanish, FAS-NB; Ph.D., Kansas
Twentieth-century Spanish American theater; Hispanic Caribbean literature; literary and cultural studies; theater theory

Programs

The department offers several options for advanced study. The M.A./Ph.D. option in Spanish is intended to prepare students for careers in research and teaching in the field of Hispanic studies. The M.A. option in translation prepares students for careers in the fields of commerce, industry, and the judicial system. The M.A.T. program is designed for individuals already teaching Spanish at the secondary or junior college level. Both the M.A. option in translation and the M.A.T. are terminal degrees.

The M.A. /Ph.D. program deals primarily with Spanish and Spanish-American literature and culture and may include course work in Luso-Brazilian literature and linguistics. This program is open to applicants whose academic record and GRE scores give evidence of distinction. Doctoral candidates are required to complete 54 credits of course work beyond the bachelor’s degree, of which 12 constitute a major field of concentration. An optional minor field may be taken either inside or outside the department. Candidates also must pass a written qualifying examination and complete 24 credits of research. The proposal for the doctoral thesis must be handed in at the time of the written examinations.

Six of the 30 credits required for the M.A. may be devoted to a research problem if the candidate elects to write a thesis, in which case an oral defense of the thesis is required. Candidates wishing to continue toward the Ph.D. are screened at the time of the M.A. examination. Exceptional students who are nominated by the faculty for the accelerated program are given the opportunity to bypass the master’s examination and proceed directly to the 24 credits of Ph.D. course work.
Credit for graduate work taken at other institutions may be accepted in partial fulfillment of the course requirements; this normally may be no more than the equivalent of one year of course work (24 credits) at Rutgers. Candidates must demonstrate a reading knowledge of two foreign languages chosen from among German, Latin, and the Romance languages other than Spanish. This language requirement must be satisfied before the student is admitted to the qualifying examination.

The doctoral qualifying examination is a written examination based on reading lists covering the student’s major and minor fields of concentration and two more general areas of study. Once the student has fulfilled the course and language requirements and passed this qualifying examination, he or she is admitted to candidacy for the Ph.D. and may then proceed with the preparation of the dissertation.

The Master of Arts option in translation provides advanced training for translators and interpreters who are or will be preparing for careers in legal, commercial, medical, technical, and social service fields. Applicants are admitted on the basis of academic record, GRE general test scores, and a personal statement submitted in English and in Spanish. The 24 credits of course work may include theory and practice of translation and interpretation, linguistics, literature, culture, and literary theory. There is a foreign language requirement and a 6-credit thesis, which is a translation.

The M.A.T. program is designed for individuals already teaching Spanish. Applicants are admitted on the basis of prior academic and/or professional performance. Scores from the GRE are not required for admission. The 30 credits of course work may include language, linguistics, methodology, literature, and culture.

Admission

In order to be admitted to the graduate program in Spanish and the Graduate School–New Brunswick, applicants must meet the following criteria: have received a baccalaureate degree from an accredited institution, submit a completed application form, present a minimum of three letters of recommendation, pay a $40 application fee, and submit supporting documentation, such as TOEFL scores, GRE scores, and/or a textual analysis. It is highly recommended that candidates have some life experience or study abroad in a Spanish-speaking environment.

Normally, students who seek entrance to the Spanish graduate programs have an undergraduate degree in Spanish. It is unusual, though not entirely impossible, for undergraduate majors of curricula other than Spanish to seek entrance. A candidate for admission to the graduate program whose undergraduate preparation does not fall within the parameters of a conventional undergraduate degree in Hispanic studies may be directed to take a limited number of undergraduate or graduate courses, on a nonmatriculated basis, to make up any deficiencies. The decision for admission is held in abeyance, and only upon completion of remedial work is the final decision made. If the courses taken on a nonmatriculated basis were on the graduate level, and the student is subsequently accepted for admission to the program, those credits will count toward the graduate degree.

The Graduate School–New Brunswick must approve admission to the graduate program in the Department of Spanish and Portuguese. Normally, the department requires its candidates to have maintained a cumulative grade-point average of 3.0 or better during the junior and senior undergraduate years, and a grade-point average of 3.5 in the major field of study. GRE scores are required for admission to all programs except for the M.A.T. Foreign students also must submit TOEFL scores.

Graduate Courses

Approximately six courses from the following list are offered each term.

Methods of teaching Spanish to English speakers at secondary and university levels. Methodology of research in Spanish including study of library resources and introduction to theoretical issues.

16:940:503-504. ADVANCED GRAMMAR AND STYLISTICS (3,3) Ph.D. students do not receive degree credits for these courses.

Selected problems of advanced style and grammar, with special emphasis on idiomatic usage, themes, essays, oral presentations.

16:940:505. (F) SPANISH CULTURE AND CIVILIZATION (3) Ph.D. students do not receive degree credit for this course.

The land and the people of Spain. The national character and its historical and cultural evolution through the present.

16:940:506. (S) CULTURE AND CIVILIZATION IN LATIN AMERICA (3) Stephens. Development of the Spanish language from its origins to the present. Relationship of external history to linguistic development.

16:940:513-514. MEDIEVAL LITERATURE (3,3) Guardiola

Major works of medieval literature, including epic poetry, mester de clerecía, prose, and lyric poetry.

16:940:517. (F) DRAMA OF THE GOLDEN AGE (3) Otero-Torres

Development of dramatic literature from its origins through the seventeenth century.

16:940:520. (F) THE PICARESQUE GENRE IN SPAIN (3) Gossy

Origins, growth, and decline; such works as El Lazarillo de Tormes, Mateo Aleman’s Guzmán de Alfarache, La Picara Justina, Quevedo’s El Buscón, Vincente Espinel’s La Vida de Marcos de Obregón, Cervantes’s Novelas ejemplares.

16:940:521. (S) POETRY OF THE GOLDEN AGE (3) Otero-Torres

The poetical world of the period. Analysis and literary significance of the most representative poets: Garcilaso, Fray Luis de León, Herrera, Lope de Vega, Cóngora, and Quevedo.

16:940:522. (S) BALLADRY OF SPAIN (3) Guardiola, Persin

How Spanish ballads originated, grew, and multiplied over the world. Different themes and styles. Their significance as sources of other literature. Analysis of several “romanceros” including Menéndez Pidal’s Flor nueva de romances viejos.

16:940:523. (F) DON QUIXOTE (3) Zatlin

Critical study of Cervantes’ masterpiece; analysis of its importance within the Golden Age and across the centuries.

16:940:525. (S) NEOCLASSICISM (3)

Major works of the eighteenth century including Feijoo, Jovellanos, Moratin, and Cadalso.

16:940:527. (F) ROMANTICISM (3) Bretz

Poetry, prose, and theater of the romantic period. Relation of Spanish romanticism to other European literature.
16:940:529. (F) REALISM AND NATURALISM (3)
Bretz
Spanish literature of the latter part of the nineteenth century, with emphasis on the novel.

16:940:531. (S) SPANISH MODERNISM (3)
Bretz, Persin
Study of representative authors from early twentieth century Spain and the problem of such classifications as “Generation of 1898,” “Modernismo,” and “Novecentismo.”

16:940:533. (F) PROSE FICTION OF THE TWENTIETH CENTURY (3)
Zatlin
Selected novels and short stories of the pre- and post-civil war period. The vanguardistas, social realism, the new novel.

16:940:535. (S) SPANISH POETRY OF THE TWENTIETH CENTURY (3)
Persin
Application of contemporary critical methods to poets of the Generation of 1927 and postwar period.

16:940:537. (F) TWENTIETH-CENTURY SPANISH THEATER (3)
Benavente, Valle-Inclán, García Lorca, Buero Vallejo, Mihura, the Generación Realista, and the Nuevos Autores. Relationships to the Hispanic tradition and to currents in modern theater.

16:940:539. (S) SPANISH WOMEN WRITERS OF THE NINETEENTH AND TWENTIETH CENTURIES (3)
Bretz, Persin, Zatlin
Application of contemporary feminist criticism to selected poetry, prose, and plays.

16:940:541. (F) MODERN SPANISH ESSAY (3)
Bretz
Study of the essay in Spain through representative writers from the eighteenth, nineteenth, and twentieth centuries.

16:940:542. SPANISH LITERATURE INTO FILM (3)
Zatlin
Spanish novels and short stories compared to their film counterparts. Theoretical consideration of narrative strategies of cinema and television in relation to narrative or theatrical techniques of the source texts.

16:940:543. (F) COLONIAL SPANISH-AMERICAN LITERATURE (3)
Mora, Rotker
Regionalism, romanticism, and the Wars of Independence; precursors of modernism.

16:940:547. (F) MODERNISM IN SPANISH AMERICA (3)
Mora, Rotker
Development of modernism, with special emphasis on poetry. Dario, Parnassianism, and symbolism; French influence and the autochthonous contribution. The evolution of modernism toward postmodernism.

16:940:549. (F) CONTEMPORARY SPANISH-AMERICAN POETRY (3)
Narváez
Spanish-American poetry as an autonomous linguistic and artistic product incorporating literature in Spanish into modern world literature as part of a general renaissance in culture.

16:940:551, 552. CONTEMPORARY SPANISH-AMERICAN NOVEL (3,3)
Mora, Narváez, Marcone, Schwartz, Sifuentes
Accepted masterpieces of contemporary writing in Spanish America. Relation of the American novel to the genre in Europe, and Spain in particular.

16:940:553. (S) CONTEMPORARY SPANISH-AMERICAN SHORT STORY (3)
Mora, Schwartz
Tendencies in the modern short story, with particular emphasis on the postmodern period. Realism and fantasy; the short story as a document and as a social instrument.

16:940:555. (S) CONTEMPORARY SPANISH-AMERICAN THEATER (3)

16:940:556. (S) SPANISH-AMERICAN THOUGHT FROM PRE-INDEPENDENCE THROUGH MODERNISM (3)
Rotker
Consideration of texts that figure in the Spanish-American debate concerning the Enlightenment, the movement toward independence, and eventual development of Spanish-American modernism.

16:940:557. (S) TWENTIETH-CENTURY SPANISH-AMERICAN ESSAY (3)
Rotker
Consideration of representative essayists of the twentieth century; their impact on literary and cultural development of Spanish America.

16:940:562. (S) APPROACHES TO THE TEACHING OF HISPANIC LITERATURE (3)
Bretz, Persin
Current approaches to literature and methods of teaching literature to introductory-level students.

16:940:563. (F) THEORY AND PRACTICE OF TRANSLATION (3)
Zatlin. Prerequisite: 16:940:502 or equivalent, or permission of graduate director.

16:940:579. (F) TRANSLATION WORKSHOP (3)
Zatlin. Prerequisite: 16:940:502 or equivalent, or permission of graduate director. Intensive practice in advanced translation, Spanish to English and English to Spanish. Nonliterary and literary texts. Individual and group projects, with emphasis on translation into the native tongue.

16:940:584. (S) SPANISH SYNTAX (3)
Kischner
Structuralism, transformational-generative grammar, case grammar, and generative semantics.

16:940:585. (S) SPANISH PHONOLOGY (3)
Mora, Schwartz
Spanish phonetics, phonology, and morphology within the structuralist, generative, and natural generative frameworks.

16:940:586. (S) THE SPANISH LANGUAGE IN SOCIAL CONTEXTS (3)
Stephens
Theoretical issues of dialectology and bilingualism and applications to the Spanish of Spain, Spanish America, and the U.S. Spanish language contact areas throughout the world.

16:940:590. (F) MAIN CURRENTS IN PORTUGUESE LITERATURE (3)
Zatlin
Critical study of texts exemplifying principal currents of Portuguese literature from the Middle Ages to the present.

16:940:591. (S) TOPICS IN PORTUGUESE LITERATURE (3)
Mora, Schwartz
Critical readings of the major poets and writers, such as Mario de Andrade, Oswald de Andrade, and Manuel Bandeira.
16:940:599. INDEPENDENT STUDY IN SPANISH (3)
Staff. Prequisite: One term of course work. First-year students normally not eligible. Permission of the graduate director and the faculty member directing the study required. Students limited to one independent study course during their degree program.

Intensive study of a specific area of peninsular or Latin American literature or language not covered in regularly scheduled classes.

16:940:612. (S) SEMINAR: LITERARY THEORY (3)
Gossy, Mora, Persin. Required of Ph.D. candidates.

Current critical theory applied to Hispanic texts, starting with Russian formalism and including phenomenological, structuralist, psychoanalytical, sociological-Marxist, reader-response, and deconstructionist, as well as other poststructuralist approaches.

16:940:613. (S) SEMINAR: MEDIEVAL LITERATURE (3)
16:940:617. (F) SEMINAR: DRAMA OF THE GOLDEN AGE (3)
16:940:619. (F) SEMINAR: NOVEL OF THE GOLDEN AGE (3)
16:940:620. (F) SEMINAR: NONFICTION OF THE GOLDEN AGE (3)
16:940:621. (F) SEMINAR: POETRY OF THE GOLDEN AGE (3)
16:940:623. (S) SEMINAR: CERVANTES (3)
16:940:629. (F) SEMINAR: REALISM AND NATURALISM (3)
16:940:631. (S) SEMINAR: GENERATION OF 1898 (3)
16:940:633. (S) SEMINAR: NOVEL OF THE TWENTIETH CENTURY (3)
16:940:635. (S) SEMINAR: POETRY OF THE TWENTIETH CENTURY (3)
16:940:637. (S) SEMINAR: THEATER OF THE TWENTIETH CENTURY (3)
16:940:645. (F) SEMINAR: NINETEENTH-CENTURY SPANISH-AMERICAN LITERATURE (3)
16:940:647. (S) SEMINAR: MODERNISM IN SPANISH AMERICA (3)
16:940:649. (F) SEMINAR: POETRY OF SPANISH AMERICA (3)
16:940:651. (S) SEMINAR: NOVEL OF SPANISH AMERICA IN THE TWENTIETH CENTURY (3)
16:940:653. (S) SEMINAR: SHORT STORY OF SPANISH AMERICA IN THE TWENTIETH CENTURY (3)
16:940:655. (F) SEMINAR: CONTEMPORARY SPANISH-AMERICAN THEATER (3)
16:940:659,660. SEMINAR: ADVANCED TOPICS IN HISPANIC LITERATURE (3,3)
16:940:701,702. RESEARCH IN SPANISH (BA,BA)

Interdisciplinary Graduate Course

16:617:510. INTRODUCTION TO LITERARY THEORY (3)
Introduction to contemporary literary theory, including formalism, structuralism, poststructuralism, feminism, psychoanalysis, cultural studies, and other approaches. Readings of theoretical texts and applications to short literary texts from a variety of literatures.

STATISTICS 960

Degree Programs Offered: Master of Science, Doctor of Philosophy

Director of Graduate Program: Professor Kesar Singh, 504 Hill Center for the Mathematical Sciences, Busch Campus (732/445-2693)

Members of the Graduate Faculty

Robert H. Berk, Professor of Statistics, FAS-NB; Ph.D., Harvard
Sequential and nonparametric methods; large sample theory
Javier F. Cabrera, Associate Professor of Statistics, FAS-NB; Ph.D., Princeton
Statistical computing

Arthur Cohen, Professor of Statistics, FAS-NB; Ph.D., Columbia
Statistical inference; decision theory; linear models

Ramanathan Gnanadesikan, Professor Emeritus of Statistics, FAS-NB; Ph.D., North Carolina
Graphical methods; multivariate analysis; robust procedures

Richard F. Gundy, Professor of Statistics, FAS-NB; Ph.D., Chicago
Probability theory

Donald R. Hoover, Professor of Statistics, FAS-NB; Ph.D., Stanford
Applied statistics; biostatistics; epidemiology

John E. Kolassa, Professor of Statistics, FAS-NB; Ph.D., Chicago
Biostatistics; small sample inference

Regina Y. Liu, Professor of Statistics, FAS-NB; Ph.D., Columbia
Nonparametric methods in multivariate data analysis in statistics

Joseph I. Nauss, Professor of Statistics, FAS-NB; Ph.D., Harvard
Applied probability; data quality control; clustering

Douglas A. Pfeffel, Professor of Statistics, GSE; Ph.D., California (Berkeley)
Educational statistics

Herbert Robbins, State of New Jersey Professor Emeritus of Mathematical Statistics, FAS-NB; Ph.D., Harvard
Sequential analysis; empirical Bayes; biostatistics

Harold B. Sackrowitz, Professor of Statistics, FAS-NB; Ph.D., Columbia
Statistical inference and decision theory; acceptance sampling

Lawrence Shepp, Professor of Statistics, FAS-NB; Ph.D., Princeton
Pure and applied probability; tomography

Kesar Singh, Professor of Statistics, FAS-NB; Ph.D., Indian Statistical Institute
Inference; nonparametrics; asymptotic efficiencies; large deviations

William E. Strawderman, Professor of Statistics, FAS-NB; Ph.D., Rutgers
Decision theory; inference; multivariate statistics

Henry Teicher, Professor Emeritus of Statistics, FAS-NB; Ph.D., Columbia
Probability theory; statistical inference

J. Richard Trout, Professor Emeritus of Statistics and Computer Science, CC; Ph.D., Rutgers
Regression analysis; design and analysis of experiments

David E. Tyler, Professor of Statistics, FAS-NB; Ph.D., Princeton
Multivariate analysis; robust statistics; asymptotic inference; psychometrics

Yehuda Vardi, Chairperson and Professor of Statistics, FAS-NB; Ph.D., Cornell
Development of general statistical methodologies for real-life problems; image tomography; image restoration and reconstruction and statistics

Zhiliang Ying, Professor of Statistics, FAS-NB; Ph.D., Columbia
Survival analysis; biostatistics; asymptotic theory

Cunhui Zhang, Professor of Statistics, FAS-NB; Ph.D., Columbia
Probability and mathematical statistics

Associate Members of the Graduate Faculty

Steven Buyske, Assistant Professor of Statistics, FAS-NB; Ph.D., Rutgers
Biostatistics; psychometrics; experimental design, tomography

Jeffrey K. Smith, Professor of Educational Statistics and Measurement, GSE; Ph.D., Chicago
Educational statistics

Minge Xie, Assistant Professor of Statistics, FAS-NB; Ph.D., Illinois
Robustness; experimental design; biostatistics

Programs

The faculty of applied and mathematical statistics offers both the M.S. and Ph.D. degrees. The M.S. degree may be earned with an emphasis in either the applied area or the theoretical area. The Ph.D. program is a continuation of the M.S. program that emphasizes theory. Thirty credits of course work, a final examination, and an essay are required for the M.S. degree; 48 credits of course work and a dissertation are required for the Ph.D. degree. Research for the dissertation begins after successful completion of the qualifying examinations, the first taken at the end of the first year and the second usually taken in the second or third year, depending on the student's background. All Ph.D. candidates are required to demonstrate proficiency in one foreign language relevant to their field or in computer programming relevant to statistics. Ph.D. students are urged to spend at least one full academic year in residence on campus, although there is no formal residence requirement. The Master of Philosophy is available to doctoral candidates.

An entering Ph.D. student should have a good background in mathematics, including advanced calculus and linear algebra; these latter subjects, however, are not required to gain admission. Each student selects his or her program in conference with a department advisor. There are a wide range of course offerings and areas of research. These include statistical inference, estimation theory, operations research, hypothesis testing, decision theory, biostatistics, empirical Bayes and Bayes Methods, regression analysis, analysis of variance, experimental design, multivariate analysis, nonparametric statistics, sequential analysis, quality control theory, time series analysis, applied probability, stochastic processes, and probability theory, including stopping rules and martingales. Information about recommended course sequences for degrees is available upon request from the office of the graduate director. See also Operations Research in this chapter.

Graduate Courses

16:960:501. (F) **Statistical Theory for Research Workers I (3)**
Not open to graduate students in statistics. Designed to strengthen the statistical backgrounds of research workers. Concepts of randomness and probability; frequency distributions; expectations, derived distributions, and sampling; estimation and significance testing.

16:960:502. (S) **Statistical Theory for Research Workers II (3)**
Prerequisite: 16:960:501 or 511. Not open to graduate students in statistics. Continuation of 16:960:501. The principles and practices of experimental design as applied to mathematical models; the analysis of variance; factorial designs; the analysis of matched groups and repeated measurements on the same group; the analysis of qualitative data.

16:960:511. (F) **Statistical Methods in Social Work (3)**
For students in the School of Social Work. Introduction to descriptive and inferential statistics. Frequency distributions and cross-classification techniques; analyzing qualitative and quantitative data; measures of central tendency and dispersion; measures of association, correlation, and regression; probability modeling, sampling distribution, confidence intervals, hypothesis tests.

16:960:531,532. **Statistical Methods in Education (3,3)**
Penfield. For students in the Graduate School of Education. First term: Graphing, descriptive measures of central tendency and variability, introduction to correlation and regression, probability theory, the normal curve, sampling, point estimation, interval estimation, and elementary hypothesis testing. Second term: Principles and practices of experimental design; z-test, t-test, chi-square tests, F-test, and analysis of variance.

16:960:540. (F) **Statistical Quality Control I (3)**
Prerequisite: 01:960:484 or equivalent. Construction and analysis of control charts for variables and attributes; histogram analysis; use and evaluation of Dodge-Romig and Military Standards acceptance sampling plans.

16:960:541. (S) **Statistical Quality Control II (3)**
Prerequisites: 16:960:540, 582, 590. Introduction to state-of-the-art methods in statistical quality control, including economic design and Bayesian methods in process control, Taguchi’s method and statistical tolerancing.

16:960:542. (F) **Life Data Analysis (3)**
Prerequisite: 01:960:484 or equivalent. Statistical methodology for survival and reliability data. Topics include life table techniques; competing risk analysis; parametric and nonparametric inferences of lifetime distributions; regressions and censored data; Poisson and renewal processes; multivariate survival models and goodness-of-fit test. Statistical software used.

16:960:555. (F) **Nonparametric Statistics (3)**
Prerequisite: 16:960:582, or permission of instructor. Introduction and survey of distribution-free approaches to statistical inference. Fisher’s method of randomization, distribution-free test procedures for means, variances, correlations, and trends; rank tests; relative efficiency, asymptotic relative efficiency, and normal-score procedures; binomial, hypergeometric distributions, and combinatorial run theory. Also, tests of goodness-of-fit including the Kolmogorov-Smirnov and chi-square tests, contingency table analysis, tolerance sets, and Tchebycheff-type inequalities. Emphasis on applications.

16:960:563. (S) **Regression Analysis (3)**
Prerequisite: 16:960:590 or permission of instructor. Review of basic statistical theory and matrix algebra; general regression models, computer application to regression techniques, residual analysis, selection of regression models, response surface methodology, nonlinear regression models, experimental design models, analysis of covariance. Emphasis on applications.

16:960:567. (F) **Applied Multivariate Analysis (3)**
Prerequisite: 01:960:484 or equivalent. Methods of reduction of dimensionality, including principal components, factor analysis, and multidimensional scaling; correlation techniques, including partial, multiple, and canonical correlation; classification and clustering methods. Emphasis on data analytic issues, concepts, and methods (e.g., graphical techniques) and on applications drawn from several areas including behavioral management, and physical and engineering sciences.

16:960:575. (F) **Acceptance Sampling Theory (3)**
Prerequisite: 16:960:540, or 01:960:484, 485, or permission of instructor. Selection, operation, and statistical behavior of sampling plans. Dodge-Romig plans; continuous, chain, and skip-lot plans; variable sampling plans. Economic analysis and study of sampling systems.

16:960:576. (S) **Survey Sampling (3)**
Prerequisite: 16:960:582 or equivalent. Introduction to the design, analysis, and interpretation of sample surveys. Sampling types covered include simple random, stratified random, systematical, cluster, and multistage. Methods of estimation described to estimate means, totals, ratios, and proportions. Development of sampling designs combining a variety of types of sampling and methods of estimation, and detailed description of sample size determinations to achieve goals of desired precision at least cost.

16:960:580. **Basic Probability (3)**
Prerequisite: One year of calculus. Credit given for only one of 16:960:580, 582, 592. Discrete probability spaces, combinatorial analysis, occupancy and matching problems, basic distributions, probabilities in a continuum; random variables, expectations, distribution functions, conditional probability and independence; coin tossing, weak law of large number, DeMoivre-Laplace theorem.

16:960:582. **Introduction to Methods and Theory of Probability (3)**
Prerequisite: One year of calculus. Credit given for only one of 16:960:580, 582, 592. Emphasis on methods and problem solving. Topics include probability spaces, basic distributions, random variables, expectations, distribution functions, conditional probability and independence, sampling distributions.

16:960:583. **Methods of Inference (3)**
Prerequisite: 16:960:582. Credit not given for both 16:960:583 and 16:960:593. Theory of point and interval estimation and hypothesis testing. Topics include sufficiency, unbiasedness, and power functions. Emphasis on application of the theory in the development of statistical procedures.
16:960:584. (F) BIOSTATISTICS I (3)
Prerequisite: One year of calculus. Statistical techniques for biomedical data. Analysis of observational studies emphasized. Topics include measures of disease frequency and association; inferences for dichotomous and grouped case-control data; logistic regression for identification of risk factors; Poisson models for grouped data; Cox model for continuous data; life table analysis; and SAS used in analysis of data.

16:960:585. (S) BIOSTATISTICS II (3)
Prerequisite: 16:960:484 or equivalent.
Statistical techniques used in design and analysis of controlled clinical experiments. Topics include introduction to four phases of clinical trials; randomization, blocking, stratification, balancing, power, and sample-size calculation; data monitoring and interim analyses; baseline covariate adjustment; crossover trials; brief introduction to categorical and event-time data; and SAS used in analysis of data.

16:960:586, 587. INTERPRETATION OF DATA I, II (3,3)
Prerequisites: 16:960:484 or equivalent.
Use of various computer-based techniques, including graphical, to understand and interpret data sets. Exposure to, and intuitive understanding of, some basic techniques for the analysis of multivariate, categorical, and time-series data as well as other miscellaneous applications of statistical procedures.

16:960:590. DESIGN OF EXPERIMENTS (3)
Prerequisite: 16:960:484 or permission of instructor.
Fundamental principles of experimental design; completely randomized variance component designs, randomized blocks, Latin squares, incomplete blocks, partially hierarchic mixed model experiments, factorial experiments, fractional factorials, response surface exploration.

16:960:591. ADVANCED DESIGN OF EXPERIMENTS (3)
Prerequisite: 16:960:590.
Recommended: 16:960:583.
Strategy of experimentation, screening designs, factorial designs, response surface methodology, evolutionary operation, mixture designs, incomplete blocking designs, computer-aided experimental designs, and design optimality criteria.

16:960:592. THEORY OF PROBABILITY (3)
Prerequisite: Advanced calculus or permission of instructor. Credit given for only one of 16:960:580, 582, 592.
Emphasis on proofs and fundamental concepts. Topics include probability spaces, basic distributions, random variables, expectations, distribution functions, conditional probability and independence, and sampling distributions.

16:960:593. THEORY OF STATISTICS (3)
Prerequisite: 16:960:592 or permission of instructor. Credit not given for both 16:960:583 and 16:960:593.
Theory of point and interval estimation and hypothesis testing. Topics include sufficiency, unbiasedness, Bayes methods, and power functions. Emphasis on fundamental concepts underlying the theory.

16:960:595. INTERMEDIATE PROBABILITY (3)
Prerequisites: Advanced calculus, 16:960:592 or equivalent.
Central limit theorem. Borel-Cantelli lemma, strong law of large numbers; convolutions, generating functions, recurrent events, random walks on line, plane and 3-space, ruin of a gambler, simple time-dependent processes and/or Markov chains.

16:960:652. (F) ADVANCED THEORY OF STATISTICS I (3)
Prerequisites: 16:960:593, real variables.
Theories of statistical inference and their relation to statistical methods. Sufficiency, invariance, unbiasedness, decision theory. Bayesian procedures, likelihood procedures.

16:960:653. (S) ADVANCED THEORY OF STATISTICS II (3)
Prerequisite: 16:960:652.
Hypothesis testing, point and confidence estimation robustness, sequential procedures.

16:960:654. (F) STOCHASTIC PROCESSES (3)
Prerequisite: 16:960:595.
Selected topics from the theory of the Markov processes, queueing theory, birth and death processes, martingale theory, and Brownian motion and related topics. Measure theoretic notions as well as ideas from classical analysis used as needed.

16:960:655. (S) ADVANCED NONPARAMETRIC STATISTICS (3)
Prerequisites: 16:960:593, 595, or permission of instructor.
Rank-testing and estimation procedures for the one- and two-sample problems; locally most powerful rank tests. Criteria for unbiasedness; permutation tests. Exact and asymptotic distribution theory; asymptotic efficiency. Rank correlation; sequential procedures; the Kilmogorov-Smirnov test. Emphasis on theory.

16:960:663. (F) REGRESSION THEORY (3)

16:960:664. (S) ADVANCED TOPICS IN REGRESSION AND ANOVA (3)
Prerequisite: 16:960:663.
Development of linear classification models; general results of components of variance for balanced designs; polynomial regression models (response surfaces); cross models for combined qualitative and quantitative factors; reduced regression models; nonlinear regression computational and statistical procedures.

16:960:667. (S) MULTIVARIATE STATISTICS (3)
Prerequisites: 16:960:593, vectors and matrices, or permission of instructor. Multivariate, marginal, and conditional distributions. Multivariate normal; characterizations and parameter estimation. Wishart distribution; Hotelling’s T2 statistic; multivariate linear model; principal component analysis correlations. Multivariate classification; matrices and discriminate methods. Emphasis on theory.

16:960:680. (F) ADVANCED PROBABILITY THEORY I (3)
Prerequisite: Real variables or equivalent.
Measure of theoretic foundations of probability theory, conditional expectations, sums of independent random variables including the strong law of large numbers, law of the iterated logarithm, and Lindeberg-Levy theorem; Spitzer’s lemma.

16:960:681. (S) ADVANCED PROBABILITY THEORY II (3)
Prerequisite: 16:960:680 or equivalent.
Selected topics may include theory of martingales and applications, stationary processes, and the ergodic theorem; weak convergence of probability distributions; Prokhorov’s theorems and Brownian motion; invariance principle.

16:960:682, 683. INDIVIDUAL STUDIES IN STATISTICS (3,3)
Prerequisite: Permission of instructor.

16:960:689. (F) SEQUENTIAL METHODS (3)
Prerequisites: 16:960:593, 595.
Sequential probability ratio test; approximations for the stopping boundaries, power curve, and expected stopping time; termination with probability one, existence of moments for the stopping time; Wald’s lemmas and fundamental identity; Bayes character and optimality of the SPRT. Composite hypotheses: weight-function and invariant SPRTs. Sequential estimation, including fixed-width confidence intervals and confidence sequences.
THEATER ARTS
(See the catalog of the Mason Gross School of the Arts for information about programs that lead to the Master of Fine Arts in acting, directing, playwriting, design [scenic, costume, and lighting], stage management, and costume technology.)

TOXICOLOGY 963

Degree Programs Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Professor Kenneth R. Reuhl,
EOHSI Building, Busch Campus (732/445-6909)
WebSite: http://www.eohsi.rutgers.edu

Members of the Faculty

Alan Appleby, Professor of Radiation Science, CC; Ph.D., Durham (England)
Molecular biology of the extracellular matrix in skin

Johna Burger, Professor of Biology, FAS-NB; Ph.D., Minnesota
Mechanisms of mammalian cell signaling and regulation of gene expression

John L. Colaiazi, Professor of Pharmacy and Dean of the College of Pharmacy, CP;
Behavioral mechanisms and drug of abuse; animal models of alcoholism

Allan H. Conney, New Jersey Professor of Pharmacology, CP; Ph.D., Wisconsin
Experimental toxicology and drug metabolism

Keith R. Cooper, Professor of Microbiology, CC; Ph.D., Rhode Island
Environmental factors; pollutants; estuarine organisms

David T. Denhardt, Professor of Molecular and Cellular Biology, FAS-NB; Ph.D., California Institute of Technology
Mechanisms of mammalian cell signaling and regulation of gene expression

Richard D. Geller, Professor of Pharmacology and Neurology, UMDNJ-RWJMS;
DNA repair and replication of damage-containing DNA are directly related to biochemical mechanisms of carcinogenesis

Herbert M. Geller, Professor of Pharmacology and Neurology, UMDNJ-RWJMS;
DNA repair and replication of damage-containing DNA are directly related to biochemical mechanisms of carcinogenesis

Donal R. Gerecke, Assistant Professor of Pharmacology and Toxicology, CP;
Molecular biology of the extracellular matrix in skin

Michael Godfild, Professor of Environmental and Community Medicine, UMDNJ-RWJMS;
Environmental toxicology; behavioral development and occupational medicine

Bernard D. Goldstein, Professor of Environmental and Community Medicine, UMDNJ-RWJMS; M.D., New York
Air pollutants; benzene hematotoxicity

Marion K. Gordon, Research Assistant Professor of Pharmacology and Toxicology, CP;
Molecular biology of the extracellular matrix in skin

Frank E. Heck, Assistant Professor of Toxicology, CP;
Molecular biology of the extracellular matrix in skin

Michael M. Iba, Associate Professor of Pharmacology, CP; Ph.D., Illinois
Mechanisms of liver injury; noninvasive biophysical probes

Sung Whale, Associate Professor of Pharmacy, CP; Ph.D., SUNY (Albany)
Mechanisms of liver injury; noninvasive biophysical probes

Steven Katz, Professor of Microbiology, CC; Ph.D., Rutgers
Agricultural microbiology; pesticides; food additives

Frederick C. Kaufman, Professor of Pharmacology, CP; Ph.D., Illinois
Influence of intermediary metabolism on noninvasive biophysical probes

Howard Kipen, Associate Professor of Environmental and Community Medicine, UMDNJ-RWJMS; M.D., California (San Francisco)
Occupational health

Samsyl Kuma, Visiting Professor of Toxicology, CP; Ph.D., New York
Analyses

Debra L. Laskin, Professor of Toxicology, CP; Ph.D., Medical College of Virginia
Immunology; immunotoxicology; monoclonal antibodies; flow cytometry

Jeffrey D. Laskin, Professor of Environmental and Community Medicine, UMDNJ-RWJMS; Ph.D., SUNY (Buffalo)
Carcinogenesis and differentiation in cell culture

Edmond J. LaVoie, Professor of Medicinal Chemistry, CP; Ph.D., SUNY (Buffalo)
Metabolism and structure-activity studies of pharmacological agents

Paul J. Loy, Professor of Environmental and Community Medicine, UMDNJ-RWJMS; Ph.D., Rutgers
Air pollution exposure; measurement and assessment

Herbert E. Lowndes, Professor of Pharmacology and Toxicology, CP;
Ph.D., Cornell
Neurotoxicology

William J. Nickliss, Professor of Neurology and Pharmacology, UMDNJ-RWJMS;
Ph.D., Fordham
Excitotoxicity; mitochondrial toxicity; ischemia; animal models of alcoholism

Larissa A. Poliurenki, Professor of Neurotoxicology, CAS; Ph.D., Chicago
Alcohol and psychological stress on brain monoamines and behavior

Ronald D. Potetz, Professor of Biochemistry, CP; Ph.D., SUNY (Buffalo)
Inherited susceptibility to neurotoxics; drug delivery; cancer prevention and therapy

Susan R. Quinn, Assistant Professor of Environmental and Community Medicine, UMDNJ-RWJMS; Ph.D., UMDNJ-Rutgers
Extracellular matrix biology and involvement in benzene-associated autoimmunity

Kenneth R. Reuhl, Professor of Pharmacology and Toxicology, CP;
Ph.D., Wisconsin
Developmental neuropathology and neurotoxicology

David J. Riley, Professor of Medicine, UMDNJ-RWJMS; M.D., Maryland
Respiratory physiology; respiratory toxicology; effects of oxidants on tissue metabolism and molecular biology

Joseph D. Rosen, Professor of Food Science, CC; Ph.D., Rutgers
Mutagenesis; mycotoxins

Karen M. Schach, Associate Professor of Food Science, CC; Sc.D., Massachusetts Institute of Technology
EPRI studies of free radicals; lipid oxidation; co-oxidation of macromolecules

Robert Snyder, Chairperson and Professor of Pharmacology and Toxicology, CP;
Ph.D., SUNY Upstate Medical Center (Syracuse)
Benzene; bone marrow disease; drug metabolism; carcinogenesis

Patricia K. Somsalla, Associate Professor of Neurology, Psychiatry, and Pharmacology, UMDNJ-RWJMS; Ph.D., Utah
Neurotoxicology, monoamines, and CNS function

Kevin S. Sweder, Assistant Professor of Chemical Biology, CC; Ph.D., California Institute of Technology
DNA repair and replication of damage-containing DNA are directly related to biochemical mechanisms of carcinogenesis

Paul E. Thomas, Professor of Chemical Biology and Pharmacognosy, CP; Ph.D., Ohio State
Antibody probe of the regulation and membrane topology of cytochrome P-450

Theresa Thomas, Associate Professor of Molecular Genetics, UMDNJ-RWJMS;
Ph.D., Indian Institute of Science
Hormones and breast cancer; cyclins; polynucleotides

George Wagnier, Professor of Psychology, FAS-NB; Ph.D., Chicago
Neutral and behavioral toxicology

Thomas J. Walsh, Assistant Professor of Psychology, FAS-NB; Ph.D., Syracuse
Hippocampal function; animal models of CNS diseases; trophic factors

Judith Weis, Professor of Zoology, FAS-NB; Ph.D., New York
Inherited susceptibility to neurotoxins; drug delivery; cancer prevention and therapy

Eric H. Weyand, Associate Professor of Medicinal Chemistry, CP; Ph.D., Virginia Polytechnic Institute
Drug metabolism

Gisela Witz, Professor of Environmental and Community Medicine, UMDNJ-RWJMS; Ph.D., New York
Benzene metabolism; tumor promotion, oxygen radical toxicity

Chung S. Yang, Professor of Pharmacognosy, CP; Ph.D., Cornell
Nitroamines, carcinogenesis, molecular biology of cytochrome P-450

Edward J. Yurkow, Research Associate Professor of Pharmacology and Toxicology, CP;
Ph.D., Rutgers
Insulin receptor-mediated signal transduction

Reming Zhou, Associate Professor of Chemical Biology, CP; Ph.D., California (Berkeley)
Development of the brain: function of growth factors and their receptors

193
Graduate Courses

16:963:501,502. GENERAL TOXICOLOGY I,II (2,2)
Cooper, J.; Prerequisites: 16:115:503,504; 16:761:501,502 or equivalent.
Basic principles of toxicology, organ toxicology, toxicology of specific chemical agents and radiation, and overview of environmental and industrial toxicology and safety evaluation.

16:963:504. (S) GENERAL TOXICOLOGY LABORATORY (2)
Introduction to the basic laboratory activities in toxicology. Emphasis on state-of-the-art techniques for toxicity evaluation of chemicals.

16:963:505. (F) BIOCHEMICAL TOXICOLOGY (4)
Iba, Witz, Yang. Prerequisites: 16:115:503,504, permission of instructor.
Metabolism and electrophilic reactions of subsequent toxic metabolites studied with emphasis on kinetics, mutagenesis, carcinogenesis, and organ toxicity.

16:963:601,602. SEMINAR IN TOXICOLOGY (1,1)
Students present reports on current topics in toxicology; during the first two years, a minimum of two reports a year are required, and thereafter, one per year.

16:963:603. ADVANCED PROBLEMS IN TOXICOLOGY (BA)
Prerequisites: Permission of adviser and graduate director.

16:963:605,606. ADVANCED GENERAL PHARMACOLOGY I,II (4,4)
Cooper, Reuhl
Stresses morphological effects of chemical agents in cells and organs. Includes chemical and pathological correlates in laboratory animal models.

Related Graduate Courses

16:001:815. CELLULAR AND MOLECULAR PHARMACOLOGY; PRINCIPLES OF DRUG ACTION AND TARGETING (3)
16:115:556. ETHICAL SCIENTIFIC CONDUCT (1)
16:215:555. ECOLOGICAL RISK ASSESSMENT (3)
16:761:501,502. MAMMALIAN PHYSIOLOGY (3,3) (BA)
Programs

The Master of Science in urban planning degree is open to holders of advanced degrees in other disciplines who wish to develop special auxiliary knowledge in planning. All M.S. candidates are also required to take and pass an extensive comprehensive examination during their second term in the program.

A special M.S. degree option in planning for developing countries also is offered for planning professionals who hold responsible public or private positions in developing nations. This one-year course in international development planning, which leads to the M.S. degree, is designed to meet the needs of practicing professionals in international development who hold public or private positions in the United States or abroad. The curriculum consists of a core of four courses in development theory and planning methods, and an opportunity to specialize in either gender issues in development and planning or regional development and developing nations. The 30-credit curriculum is capped by an oral or written comprehensive examination. Students are accepted once per year, in the fall term.

The gender issues in development and planning concentration provides a critique of conventional development policies and encourages students to question underlying assumptions as well as examine the differing impact that specific policies have on women and men. Students gain the analytic and technical skills needed to reappraise policy concepts and construct viable alternatives to them. Additional resources for the program come from women’s studies, which covers a broad range of subjects from anthropology to zoology, and from the unique women’s research of the program come from women’s studies, which covers a broad range of subjects from anthropology to zoology, and from the unique women’s research.

Program Members of the Graduate Faculty

John Van Til, Professor of Urban Planning, EJBSPPP; Ph.D., California (Berkeley)

Cathy Stein Greenblat, Professor of Sociology, FAS-NB; Ph.D., Columbia

Frank Fischer, Professor of Political Science and Public Administration, FAS-N; Ph.D., New York

Science, technology, and environmental policy

Voluntary action and citizen participation; urban futures; energy

Qualitative methods; visual sociology; ethnographic and photographic research

John Van Til, Professor of Urban Planning, FAS-C; Ph.D., California (Berkeley)

Voluntary action and citizen participation; urban futures; energy

Associate Members of the Graduate Faculty

Jerome Aumente, Professor of Journalism and Communications, SCILS, and Director, Journalism Resources Institute; M.S., Columbia

Mass communications; information planning and policy

Frank Fischer, Professor of Political Science and Public Administration, FAS-N; Ph.D., Columbia

Qualitative methods; visual sociology; ethnographic and photographic research

John Van Til, Professor of Urban Planning, FAS-C; Ph.D., California (Berkeley)

Voluntary action and citizen participation; urban futures; energy
16:970:625. (S) PLANNING AND SOCIAL THEORY II (3)
Fainstein, School of Planning and Public Policy.
Review of literature in several broad topics in urban and regional studies. Theories of development; regulation theory; urban social movements; pluralism; and other topics.

16:970:626. (F) ADVANCED PLANNING ANALYSIS (3)
Keck, School of Planning and Public Policy.
Doctoral-level study of the urban-focused research methods of use to those undertaking a dissertation. Topics include social science methodology, the application of statistical techniques, and the structure of planning and policy research.

16:970:698,699. SPECIAL STUDIES IN URBAN PLANNING (BA,BA)
Prerequisite: Permission of graduate director.
Field or library independent study projects, guided by a faculty member, leading to the presentation of an essay for the master’s degree or for Ph.D. students who have not yet qualified for candidacy.

16:970:701,702. RESEARCH IN URBAN PLANNING (BA,BA)
The following courses are offered by the Edward J. Bloustein School of Planning and Public Policy in support of its program leading to the degree of Master of City and Regional Planning. They include many courses that form all or part of the curriculum for M.S. and Ph.D. students in urban planning. For further information, consult the publications of the Department of Urban Planning of the Edward J. Bloustein School of Planning and Public Policy.

URBAN PLANNING,
CITY AND REGIONAL
(See the catalog of the Edward J. Bloustein School of Planning and Public Policy for information about degree programs in this area.)

VISUAL ARTS
(See the catalog of the Mason Gross School of the Arts for information about the program leading to the Master of Fine Arts in visual arts.)

WIRELESS COMMUNICATIONS CERTIFICATE
Program Offered: Certificate in Wireless Communications
Director of the Certificate Program in Wireless Communications: Professor Jack M. Holtzman, Rutgers University, WINLAB, P.O. Box 909, Piscataway, New Jersey 08855-0909 (732/445-3849)
Participating Faculty
The following members and associate members of the graduate faculty, identified more fully under their respective programs, represent part of the faculty who participate regularly in the certificate program in wireless communications:
David G. Daut, Electrical Engineering
David J. Goodman, Electrical Engineering
Joseph Hui, Electrical Engineering
Jack M. Holtzman, Electrical Engineering
Narayan Mandalayam, Electrical Engineering
Christopher Rose, Electrical Engineering
Roy Yates, Electrical Engineering

Certificate Program
The Wireless Information Network Laboratory (WINLAB) offers a Certificate in Wireless Communications. This is in response to a pressing need of the wireless networking community—the shortage of engineers with the knowledge and skills needed to contribute to the growth of this dynamic industry.

The program offers a series of courses providing background in telecommunications with specialized education in wireless communications. There is some flexibility in the program to meet different educational needs. Some may wish to take the two electives as preparation for the three required courses, while others will take the electives for more specialized training. The graduate courses are applied towards advanced degree programs, subject to the program’s requirements. Participating faculty are drawn from members of the graduate faculty in electrical engineering.

WINLAB is an industry/university collaborative venture aimed at furthering the interests of the wireless networking community. Its activities include research, technology evaluation, and education. The Rutgers Department of Electrical and Computer Engineering offers education in wireless networking at the bachelor’s, master’s,
Members of the Graduate Faculty

Director of the Graduate Program in Women's Studies:

Required Courses

- 16:332:543 Communications Networks I (3), or 14:332:458 Telecommunication Networks (3)
- 16:332:553 Wireless Access to Information Networks (3)
- 16:332:556 Microwave Systems (3)

Elective Courses

- 14:332:450 Principles of Communications Systems (3) (If not previously completed)
- 14:332:452 Communications Engineering (3) (If not previously completed)
- 14:332:454 Electromagnetic Waves (3) (If not previously completed)
- 16:332:527 Digital Speech Processing (3)
- 16:332:541 Stochastic Signals and Systems (3)
- 16:332:544 Communications Networks II (3)
- 16:332:545 Communication Theory (3)
- 16:332:547 Digital Communications I (3)
- 16:332:548 Digital Communications II (3)
- 16:332:551 Fading Communication Channels (3)

WOMEN'S STUDIES 988

Programs Offered: Master of Arts in Women's Studies; Certificate in Women's Studies

Director of the Graduate Program in Women's Studies:

Professor Jennifer Jones, Ruth Dill Johnson Crockett Building, Douglass Campus (732/932-9331)

Members of the Graduate Faculty

Louise Barnett, Professor of English, FAS-NB; Ph.D., Bryn Mawr College
American literature

Mia Elisabeth Bay, Assistant Professor of History, FAS-NB; Ph.D., Yale
African-American history; American intellectual and cultural history

Mary Lee Bretz, Professor of Spanish, FAS-NB; Ph.D., Maryland
Nineteenth- and twentieth-century Spanish literature

Eleanor Brillhart, Professor of Social Work, SWW; D.S.W., Columbia
Community planning, organizational behavior, and social policy;
women's leadership

Charlotte Bunch, Professor of Planning and Public Policy, EJBSPPP, and Director of the Center for Women's Global Leadership; B.A., Duke
Gender and development; women's human rights; violence against women;
women's global leadership

Abena Busia, Associate Professor of English, FAS-NB; D.Phil., Oxford
Black African women in British and American fiction

Barbara Callaway, Professor of Political Science, FAS-NB; Ph.D., Boston
Comparative politics (Africa); women and politics

Susan Carroll, Professor of Political Science, FAS-NB; EIP; Ph.D., Indiana
Women and politics; mass politics

Susan Cobbie, Associate Professor of Labor Studies, SMLR; Ph.D., Stanford
Women and work; labor history; union leadership

Ed Cohen, Associate Professor of English, FAS-NB; Ph.D., Stanford
Literary and social theory; gay and gender studies; late Victorian culture

Ann Baynes Coise, Associate Professor of English, FAS-NB; Ph.D., Maryland
Renaissance and seventeenth-century literature

Druclila Cornell, Professor of Law, SL-N; J.D., California (Los Angeles)
American cultural and intellectual history

Sheila Cosiminsky, Associate Professor of Sociology and Anthropology, FAS-C; Ph.D., Brandeis
Cultural and medical anthropology; ethnic relations; Mesoamerica; Africa

Jeanette Covington, Associate Professor of Sociology, FAS-NB; Ph.D., Chicago
Deviance/criminology

Susan Crane, Professor of English, FAS-NB; Ph.D., California (Berkeley)
Medieval studies

Alice Crozier, Associate Professor of English, FAS-NB; Ph.D., Harvard
American literature

Cynthia Daniels, Associate Professor of Political Science, FAS-NB; Ph.D., Massachusetts (Amherst)
Women and public policy; productive politics; political economy of gender

Harriet A. Davidson, Associate Professor of English, FAS-NB; Ph.D., Vanderbilt
American literature

Belinda Davis, Assistant Professor of History, FAS-NB; Ph.D., Michigan
Modern and contemporary poetry; critical theory

Marianne DeKoven, Professor of English, FAS-NB; Ph.D., Stanford
Modernity; women's studies

Elin Diamond, Associate Professor of English, FAS-NB; Ph.D., California (Davis)
Drama and dramatic theory; feminist and literary theory

M. Josephine Diamond, Associate Professor of French, FAS-NB; Ph.D., Cornell
Nineteenth- and twentieth-century literature; critical theory

William C. Donahue, Assistant Professor of German, FAS-NB; Ph.D., Harvard
Nineteenth- and twentieth-century literature; German-Jewish studies

Kate Ellis, Associate Professor of English, FAS-NB; Ph.D., Columbia
Women's studies; eighteenth-century fiction

Leela Fernandes, Assistant Professor of Political Science and Women's Studies, FAS-NB; Ph.D., Chicago
Women's studies; comparative politics; political economy and cultural studies; South Asia

Jerry Flieger, Professor of French, FAS-NB; Ph.D., California (Berkeley)
Twentieth-century literature; critical theory; women's studies and feminist theory

Sandy Flitterman-Lewis, Associate Professor of English, FAS-NB; Ph.D., California (Berkeley)
Feminist cultural analysis with an emphasis on film and literature

Ziva Galili, Professor of History, FAS-NB; Ph.D., Columbia
Social, economic, political history of Russia, 1900–1917, especially the revolution

Lora D. Garrison, Professor of History, FAS-NB; Ph.D., California (Irvine)
Women and reform movements; recent United States history

Judith Gerson, Associate Professor of Sociology, FAS-NB; Ph.D., Cornell
Gender; work; social theory

Mary Gibson, Associate Professor of Philosophy, FAS-NB; Ph.D., Princeton
Social/political/feminist/Marxist philosophy; reproductive practices; autonomy

John Gillis, Professor of History, FAS-NB; Ph.D., Stanford
Modern European social history and British history

Sherry Gorelick, Associate Professor of Sociology, FAS-NB; Ph.D., Columbia
Education; ethnicity

Mary Gross, Associate Professor of Spanish, FAS-NB; Ph.D., Harvard
Golden-age prose, narrative, feminist theory; reader-response; psychoanalysis

Cathy Greenblat, Professor of Sociology, FAS-NB; Ph.D., Columbia
Research methods; simulation; sexuality; development

Sandra Harris, Professor of Psychology, FAS-NB; GSAAPP; Dean of the Graduate School of Applied and Professional Psychology; Ph.D., SUNY (Buffalo)
Autism

Mary S. Hartman, Professor of History, FAS-NB; Ph.D., Columbia
Nineteenth-century France; women's history

Mary E. Hawkesworth, Professor of Political Science, FAS-NB; Ph.D., Georgetown
Political philosophy; feminist theory

Nancy Hewitt, Professor of History, FAS-NB; Ph.D., Pennsylvania
American women; nineteenth-century United States history

Dorothy Hodgson, Assistant Professor of Anthropology, FAS-NB; Ph.D., Michigan
Cultural anthropology; politics of development; culture and power; gender

Briavel Holcomb, Professor of Urban Studies, EJBSPPP; Ph.D., Colorado
Urban revitalization; social and behavioral; women

Marjorie Howes, Associate Professor of English, FAS-NB; Ph.D., Princeton
Anglo-Irish and modern British literature; critical theory

Jennifer Jones, Associate Professor of History, FAS-NB; Ph.D., Princeton
Medieval and early modern European; France, old regime and revolution; European women's history

Jane Jurin, Assistant Professor of Political Science, FAS-NB; Ph.D., Chicago
Methodology

Dorothy Ko, Associate Professor of History and Women's Studies, FAS-NB; Ph.D., Stanford
Premodern Chinese women's history

Renée Larrier, Associate Professor of French, FAS-NB; Ph.D., Columbia
African and Caribbean literature in France

T. J. Jackson Lears, Professor of History, FAS-NB; Ph.D., Yale
American cultural and intellectual history

Barbara Lee, Professor of Human Resource Management, SMLR; Ph.D., Ohio; J.D., Georgetown
Employment discrimination; disability and work

Barbara Lewis, Associate Professor of Political Science, FAS-NB; Ph.D., Northwestern
Comparative politics (Africa); women and politics

Phyllis Mack, Professor of History, FAS-NB; Ph.D., Cornell
Early modern French and English history; women's history

Ruth Mandel, Board of Governors Professor of Politics and Director of the Eagleton Institute of Politics; Ph.D., Connecticut
Women's participation in American politics

Lamberto Mariani, Professor of Italian, FAS-NB; Dott. in Lettere, Pavia
Nineteenth- and twentieth-century literature

Umberto Mariani, Professor of Italian, FAS-NB; Dott. in Lettere, Pavia
Nineteenth- and twentieth-century literature
Change, 16:988:582 Feminist Theories, 16:988:583 Feminist Paradigms, gender. It centers on a core curriculum in women’s studies that global and multicultural perspectives in the study of women and Adjunct Member of the Graduate Faculty Joan Marter, Professor of Art History, FAS-NB; Ph.D., Delaware
Modern art; twentieth-century art; gender studies; museum studies
Leslie McCall, Assistant Professor of Sociology and Women’s Studies, FAS-NB; Ph.D., Wisconsin
Gender, work, and labor markets; theory
Meredith McGill, Assistant Professor of English, FAS-NB; Ph.D., Johns Hopkins Nineteenth-century women’s poetry; women and the literary marketplace
Gabriela Mora, Professor of Spanish, FAS-NB; Ph.D., Smith Nineteenth- and twentieth-century Spanish-American literature; literary theory
Jennifer Morgan, Assistant Professor of History and Women’s Studies, FAS-NB; Ph.D., Duke
Early American history; African-American women’s history
Alicia Ostriker, Professor of English, FAS-NB; Ph.D., Harvard American and modern literature; criticism
Ann Parelus, Associate Professor of Sociology, FAS-NB; Ph.D., Chicago
Education
Gerald Parog, Associate Professor of Slavic Languages and Literatures, FAS-NB; Ph.D., Yale
Slavic languages and literatures
Joanna Regulski, Associate Professor of Geography, FAS-NB; Ph.D., Colorado Urban policy; planned-market economy; geography of women
Bruce Robbins, Professor of English, FAS-NB; Ph.D., Harvard
Critical theory; fiction
Donald T. Roden, Associate Professor of History, FAS-NB; Ph.D., Wisconsin
Modern Japanese social and intellectual history
Patricia Roos, Professor of Sociology, FAS-NB; Ph.D., California (Los Angeles)
Stratification; work; gender
Sarah Rosenfield, Associate Professor of Sociology, FAS-NB; Ph.D., Texas Medical sociology; mental illness
Louisa Schein, Assistant Professor of Anthropology, FAS-NB; Ph.D., California (Berkeley)
Cultural politics; ethnicity; gender; transnational issues; China
Bonnie G. Smith, Professor of History, FAS-NB; Ph.D., Rochester
Modern European history; women’s history
Carol Smith, Professor of English, FAS-NB; Ph.D., Pittsburgh
Thenevel; critical theory
Caridad Souza, Assistant Professor of Puerto Rican and Caribbean Studies, FAS-NB; Ph.D., California (Berkeley)
Comparative ethnography
Judith Stern, Professor of Psychology, FAS-NB; Ph.D., Rutgers
Sexual and maternal behaviors in animals and women
Antonia Tripolitis, Associate Professor of Religion, FAS-NB; Ph.D., Pennsylvania Hellenistic Greek literature and thought; patrician; Neoplatonism
Meredith Turner, Associate Professor of Urban Planning, EJBSPPP; Ph.D., Sussex
Political economy of health; third world social policy
Cheryl Wall, Professor of English, FAS-NB; Ph.D., Harvard American and African-American literature
Michael D. Warner, Professor of English, FAS-NB; Ph.D., Johns Hopkins Colonial and nineteenth-century American literature; queer theory; social theory
Carmen Whalen, Assistant Professor of Puerto Rican and Hispanic Caribbean Studies, FAS-NB; Ph.D., Rutgers
U.S. immigration; women’s history
Deborah White, Associate Professor of History, FAS-NB; Ph.D., Illinois
African-American history; women’s history
Carolyn S. Williams, Associate Professor of English, FAS-NB; Ph.D., Virginia
Victorian literature; women’s studies; cultural studies
Virginia Yans-McLaughlin, Professor of History, FAS-NB; Ph.D., SUNY (Buffalo)
United States cultural history; women’s history; history of immigration
Adjunct Member of the Graduate Faculty Barbara Balliet, Associate Director of Women’s Studies, FAS-NB; Ph.D., New York U.S. social history; women’s history

Programs
The interdisciplinary M.A. program in women’s studies emphasizes global and multicultural perspectives in the study of women and gender. It centers on a core curriculum in women’s studies that consists of four required courses: 16:988:520 Women and Social Change, 16:988:582 Feminist Theories, 16:988:583 Feminist Paradigms, and 16:988:603 Research Methods in Women’s Studies. The master’s program draws on faculty from some twenty different departments that offer a wide range of gender-related courses. By selecting from a list of cognate courses offered by these departments, each student can develop an individualized interdisciplinary concentration in her or his particular area of interest. Concentrations consist of four elective courses. In addition, each student needs to complete a 6-credit thesis or practicum.

Some students will be able to complete the 30-credit program in one calendar year, with course work concentrated in the fall and spring terms and the final thesis or practicum in the summer. It also is possible to attend part time and complete the degree in up to four years.

Certificate Program
Rutgers is unusual in offering both a graduate certificate in women’s studies and Ph.D. concentrations on women and gender in several major disciplines—English, history, sociology, and political science. Whether or not they are in a graduate program with a “women’s studies track,” students with a special interest in women’s studies may nonetheless pursue, in the course of their regular program toward an advanced degree, a special concentration in women’s studies resulting in a graduate certificate in women’s studies.

Students who fulfill the requirements are awarded the certificate in women’s studies by the Graduate School–New Brunswick upon completion of their degree. The special requirements for the certificate, many of which also may be used to satisfy the student’s graduate degree requirements, are as follows: One feminist theory course, two 988 (women’ studies) courses, plus one approved cognate course.

Graduate Courses in Women’s Studies
16:988:520. WOMEN AND SOCIAL CHANGE (3)
Interdisciplinary study of new social movements examining the dynamics of social and political transformation across cultures.
16:988:525. COLLOQUIUM IN WOMEN’S STUDIES (3)
Prerequisite: Permission of instructor.
Topic varies according to specialization of instructor.
16:988:582. FEMINIST THEORIES (3)
Development of feminist theories from late eighteenth century to the present.
16:988:583. FEMINIST PARADIGMS (3)
Contemporary issues and debates in feminist theory in local and global contexts.
16:988:584,585. WOMEN’S STUDIES PRACTICUM (3,3)
Prerequisite: Permission of instructor.
Field work for M.A. degree candidates.
16:988:590. INDEPENDENT STUDY—ISSUES IN WOMEN’S STUDIES (3)
Prerequisite: Permission of instructor.
16:988:603. RESEARCH METHODS IN WOMEN’S STUDIES (3)
Introduction to methodological issues in women’s studies.
16:988:701,702. RESEARCH IN WOMEN’S STUDIES (3,3)
Prerequisite: Permission of instructor.

Graduate Courses in Other Programs
Descriptions for the courses listed below can be found elsewhere in this catalog or in that of one of the professional schools. Students should inquire at the office of the graduate program offering a particular course to determine the specific topic of the course that term.

Anthropology
16:070:510. SOCIAL IMPLICATIONS OF GENDER DIFFERENCES (3)
16:070:511. ANTHROPOLOGY OF GENDER (3)
16:070:514. LANGUAGE IN CULTURE AND SOCIETY (3)
16:070:516. SEXUALITY IN A CROSS-CULTURAL PERSPECTIVE (3)
16:070:518. CORPORATE AND PERSONAL VIOLENCE (3)
16:070:520. ANALYSIS OF STATE SYSTEMS (3)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:070:521</td>
<td>Anthropology of Industrial Society: Transnaturalism</td>
<td>3</td>
</tr>
<tr>
<td>16:070:523</td>
<td>Culture and Aging</td>
<td>3</td>
</tr>
<tr>
<td>16:070:525</td>
<td>World Ethnographic Areas</td>
<td>3</td>
</tr>
<tr>
<td>16:070:527</td>
<td>The Ethnology of Inequality: Race, Class, and Ethnicity</td>
<td>3</td>
</tr>
<tr>
<td>16:070:546</td>
<td>Medical Anthropology: Women and Children's Health and Healing</td>
<td>3</td>
</tr>
<tr>
<td>Comparative Literature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:195:603</td>
<td>Drama: Feminist Theory/Performance Theory</td>
<td>3</td>
</tr>
<tr>
<td>16:195:609</td>
<td>Comparative Literature and Other Fields: Women in Surrealist Films</td>
<td>3</td>
</tr>
<tr>
<td>16:195:613</td>
<td>Minority Literatures</td>
<td>3</td>
</tr>
<tr>
<td>16:195:615</td>
<td>East/West Literary Relations</td>
<td>3</td>
</tr>
<tr>
<td>English</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:350:508</td>
<td>Critical Theory</td>
<td>3</td>
</tr>
<tr>
<td>16:350:514</td>
<td>Literature and Politics</td>
<td>3</td>
</tr>
<tr>
<td>16:350:526</td>
<td>Literary Criticism: The Major Texts (Feminist Texts)</td>
<td>3</td>
</tr>
<tr>
<td>16:350:527</td>
<td>Psychoanalytic Criticism</td>
<td>3</td>
</tr>
<tr>
<td>16:350:535</td>
<td>Texts and Critical Issues in Medieval Literature</td>
<td>3</td>
</tr>
<tr>
<td>16:350:559</td>
<td>Texts and Critical Issues in Eighteenth-Century Literature</td>
<td>3</td>
</tr>
<tr>
<td>16:350:581</td>
<td>The Minority Place in Literature</td>
<td>3</td>
</tr>
<tr>
<td>16:350:602</td>
<td>Readings in British and American Literature</td>
<td>3</td>
</tr>
<tr>
<td>16:350:625</td>
<td>Seminar: Medieval Literature</td>
<td>3</td>
</tr>
<tr>
<td>16:350:654</td>
<td>Seminar: Eighteenth-Century Literary Criticism and Theory</td>
<td>3</td>
</tr>
<tr>
<td>16:352:527</td>
<td>History and Criticism of Film</td>
<td>3</td>
</tr>
<tr>
<td>16:352:583</td>
<td>Introduction to the Study of Women Writers</td>
<td>3</td>
</tr>
<tr>
<td>16:352:681</td>
<td>American Literary Women: Cather, Glasgow, Wharton, Stein</td>
<td>3</td>
</tr>
<tr>
<td>French</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:420:651</td>
<td>French Literature of the Nineteenth Century</td>
<td>3</td>
</tr>
<tr>
<td>16:420:661</td>
<td>French Literature of the Twentieth Century</td>
<td>3</td>
</tr>
<tr>
<td>16:420:668</td>
<td>Studies in French Literature of the Twentieth Century</td>
<td>3</td>
</tr>
<tr>
<td>16:420:682</td>
<td>Perspectives of Contemporary Criticism</td>
<td>3</td>
</tr>
<tr>
<td>Geography</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:450:520</td>
<td>Women in the Urban Environment</td>
<td>3</td>
</tr>
<tr>
<td>16:450:525</td>
<td>Restructuring of Central and Eastern Europe after 1989</td>
<td>3</td>
</tr>
<tr>
<td>German</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:470:662</td>
<td>The German Enlightenment: German Feminist Writers</td>
<td>3</td>
</tr>
<tr>
<td>History</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:510:529</td>
<td>Topics in the History of Sexuality</td>
<td>3</td>
</tr>
<tr>
<td>16:510:539</td>
<td>Colloquium in the History of Women</td>
<td>3</td>
</tr>
<tr>
<td>16:510:549</td>
<td>Seminar in the History of Women</td>
<td>3,3</td>
</tr>
<tr>
<td>16:510:563</td>
<td>Colloquium in African-American History</td>
<td>3</td>
</tr>
<tr>
<td>Labor and Industrial Relations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33:578:541</td>
<td>Women and Work</td>
<td>3</td>
</tr>
<tr>
<td>33:578:566</td>
<td>Work and Alienation</td>
<td>3</td>
</tr>
<tr>
<td>Political Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:790:584</td>
<td>Themes in Feminist Theory in Politics</td>
<td>3</td>
</tr>
<tr>
<td>16:790:587</td>
<td>Proseminar in Women and Politics</td>
<td>3</td>
</tr>
<tr>
<td>16:790:588</td>
<td>Gender and Mass Politics</td>
<td>3</td>
</tr>
<tr>
<td>16:790:589</td>
<td>Women and Political Leadership</td>
<td>3</td>
</tr>
<tr>
<td>16:790:590</td>
<td>Gender and Political Theory</td>
<td>3</td>
</tr>
<tr>
<td>16:790:591</td>
<td>Gender and Public Policy</td>
<td>3</td>
</tr>
<tr>
<td>16:790:592</td>
<td>Politics, Development, and Women</td>
<td>3</td>
</tr>
<tr>
<td>16:790:594</td>
<td>Women's Movements in Comparative Perspective</td>
<td>3</td>
</tr>
<tr>
<td>16:790:596</td>
<td>Advanced Topics in Women and Politics</td>
<td>3</td>
</tr>
<tr>
<td>16:790:635</td>
<td>French Feminist Theory</td>
<td>3</td>
</tr>
<tr>
<td>Public Policy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:833:680</td>
<td>Seminar in Public Policy: Race, Politics, and Media</td>
<td>3</td>
</tr>
<tr>
<td>Social Work</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:910:647</td>
<td>Social Policy Analysis</td>
<td>3</td>
</tr>
<tr>
<td>16:910:650</td>
<td>Problems in Health and Social Policy</td>
<td>3</td>
</tr>
<tr>
<td>Sociology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:920:511</td>
<td>Proseminar in Sociology</td>
<td>3,3</td>
</tr>
<tr>
<td>16:920:528</td>
<td>Marriage and the Family</td>
<td>3</td>
</tr>
<tr>
<td>16:920:618</td>
<td>Sociology of Gender</td>
<td>3</td>
</tr>
<tr>
<td>16:920:646</td>
<td>Cognitive Sociology</td>
<td>3</td>
</tr>
<tr>
<td>Spanish</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:940:539</td>
<td>Spanish Women Writers of the Nineteenth and Twentieth Centuries</td>
<td>3</td>
</tr>
<tr>
<td>16:940:659</td>
<td>Seminar: Advanced Topics in Hispanic Literature</td>
<td>3,3</td>
</tr>
<tr>
<td>Urban Planning and Policy Development</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34:970:581</td>
<td>Planning and Gender Development</td>
<td>3</td>
</tr>
<tr>
<td>34:970:585</td>
<td>Tourism Planning</td>
<td>3</td>
</tr>
</tbody>
</table>
Research Centers, Bureaus, and Institutes

The university sponsors many centers, bureaus, and institutes that are the loci of its mission-oriented research. Many of these contain the principal offices of members of the graduate faculty, whose research activity takes place under their auspices. Students enrolled in the Graduate School–New Brunswick may find that their own research activity is located at and funded through these centers, bureaus, and institutes. This chapter lists those that are likely to be sites of graduate student research at the Graduate School–New Brunswick.

Biotechnology Center for Agriculture and the Environment (BIOTECH)

Foran Hall
59 Dudley Road, Cook Campus
New Brunswick, NJ 08901-8520
Telephone: 732/932-8165; Fax: 732/932-6535
biotech@njaes.rutgers.edu
Peter R. Day, Director

The Biotechnology Center for Agriculture and the Environment (BIOTECH) is an integral part of the New Jersey Agricultural Experiment Station. BIOTECH carries out research and training in molecular biology applied to agriculture and the environment and transfers new discoveries into practice and product development. Research on plant systems is concerned with fungal and viral disease resistance, sulfate metabolism, natural products and the regulation of plant development, turfgrass transformation, and the use of plants to remedy heavy metal and radionuclide pollution. Bioremediation research also seeks new tools and methods to degrade industrial and other toxic wastes using aerobic and anaerobic microorganisms to minimize pollution on land, freshwater, coastal, and offshore marine environments.

Center for Advanced Biotechnology and Medicine (CABM)

679 Hoes Lane, Busch Campus
Piscataway, NJ 08854-5627
Telephone: 732/235-5300; Fax: 732/235-4850
Aaron J. Shatkin, Director

The Center for Advanced Biotechnology and Medicine (CABM) is jointly administered by Rutgers, The State University of New Jersey, and the University of Medicine and Dentistry of New Jersey, and is designated by the New Jersey Commission on Science and Technology as one of the state’s advanced technology centers. In addition to the two universities and the commission, the center’s constituencies include the New Jersey pharmaceutical and related biotechnology industries, the National Institutes of Health, the National Science Foundation, and private organizations that support science and technology, including the Howard Hughes Medical Institute. The mission of CABM is the advancement of knowledge in the life sciences for the improvement of human health. CABM performs basic research in the areas of cell and developmental biology, molecular genetics, and structural biology to improve the understanding of fundamental life processes. Researchers interact with clinical scientists to bring laboratory discoveries to patient care. CABM faculty train undergraduate, graduate, and postdoctoral students for leadership in science and technology. CABM serves the public interest by enhancing economic development through corporate collaborations in research and education, by technology transfers, and through consultations.

Center for Advanced Food Technology (CAFT)

Nabisco Institute for Advanced Food Technology
65 Dudley Road, Cook Campus
New Brunswick, NJ 08901-8520
Telephone: 732/932-8306; Fax: 732/932-8690
Myron Solberg, Director

The Center for Advanced Food Technology (CAFT) is a unique, cooperative venture between the food industry, academia, and government that strives to create and enhance applications of scientific knowledge and technologies that address product, process, and manufacturing needs for the delivery of high-quality, health-promoting foods and food materials to consumers. Research programs involve about 100 faculty members, staff, and students from thirteen university departments. In the Cooperative Research and Technology Transfer Program, multidisciplinary teams carry out precompetitive and targeted research in the areas of materials science, flavor science, process control and simulation, and nutraceuticals. In the Advanced Manufacturing and Outreach Program, multidisciplinary teams research, develop, demonstrate, and assist in commercialization of packaged food manufacturing technologies using a full-scale demonstration manufacturing plant. The CAFT Instrumentation Support Facilities Program provides research, development, and training activities focused upon mass spectrometry and chromatography, spectroscopy and calorimetry, and rheological measurements and extrusion cooking. Economic and human resource development are integrated with the discovery of new knowledge and the transfer of technologies throughout CAFT programs.

Center of Alcohol Studies (CAS)

Smithers Hall
607 Allison Road, Busch Campus
Piscataway, NJ 08854-8001
Telephone: 732/445-2190; Fax: 732/445-3500
Robert J. Pandina, Director

The Center of Alcohol Studies (CAS), the world’s oldest alcohol research center, studies the causes and treatment of alcoholism, the diverse actions of alcohol on the body, means to prevent alcohol abuse, and the incidence and prevalence of normal and problem alcohol consumption and conducts basic research on the causes and biological consequences of alcohol and drug abuse. The CAS includes an Education and Training Division that conducts two summer schools of alcohol and drug studies in
addition to other seminars and programs, the CAS Library, a Division of Prevention, a Division of Clinical Services, and a Division of Basic Sciences that encompasses a range of human, animal, and biochemical research. The center offers graduate courses in Alcohol Studies to students enrolled in advanced degree programs at Rutgers who wish to pursue a special concentration in alcohol studies.

Malcolm G. McLaren Center for Ceramic Research
607 Taylor Road, Busch Campus
Piscataway, NJ 08854-8065
Telephone: 732/445-5900; Fax: 732/445-5595
Dale E. Niesz, Director

The Malcolm G. McLaren Center for Ceramic Research is an Advanced Technology Center of the New Jersey Commission on Science and Technology and a National Science Foundation Industry/University Cooperative Research Center. It serves as a resource center in ceramic science and engineering for the state of New Jersey and member companies. The center is dedicated to developing advanced ceramic science and engineering and assuring that emerging science and engineering technology is used for commercial and technological development in New Jersey and beyond. The center conducts research in a broad area of ceramic science, engineering, and technology, focusing on the synthesis of advanced materials with the microstructures and nanostructures needed to fulfill the property requirements as well as cost, shape, and reliability requirements of emerging applications.

Center for Cognitive Science (RuCCS)
Psychology Building Addition
152 Frelinghuysen Road, Busch Campus
Piscataway, NJ 08854-8020
Telephone: 732/445-0635; Fax: 732/445-6715
http://ruccs.rutgers.edu
Ernest Lepore, Acting Director

The Rutgers Center for Cognitive Science (RuCCS) fosters research activities in cognitive science, focusing on the nature of certain symbolic processes that are constitutive of intelligent performance. The center’s goal is to understand such aspects of intelligent performance as perception, language processing, planning, problem solving, reasoning, and learning, in terms of both the computational processes that underwrite these skills and the computational mechanisms that may instantiate them. The center’s research is essentially multidisciplinary and is carried on in its own facilities as well as facilities throughout the university. RuCCS also contributes to graduate training through the certificate program in cognitive science.

Center for Computer Aids for Industrial Productivity (CAIP)
CoRE Building
96 Frelinghuysen Road, Busch Campus
Piscataway, NJ 08854-8008
Telephone: 732/445-3443; Fax: 732/445-0547
James Flanagan, Director

The Center for Computer Aids for Industrial Productivity (CAIP) is a multidisciplinary Advanced Technology Center sponsored by the New Jersey Commission on Science and Technology, Rutgers, The State University of New Jersey, and twenty-one industrial and corporate sponsors. CAIP conducts computer applications research in the areas of parallel and distributed computing, machine vision, speech processing, computer-aided design, scientific visualization and quantification and multimedia information systems, and facilitates industry-university technology transfer. CAIP’s research mission is to apply the technologies of high-speed scientific computing to the solution of industrial problems. Most of the research is conducted by digital simulation on laboratory workstations networked to CAIP’s central computers. Computational resources include a 64-node Enterprise 10,000 SUN server, an 8-node IBM SP2, a 512-node nCube 2S massively parallel computer, a 50-processor SPARC-cluster, and over 300 workstations. These facilities are networked internally on 100Mbps switched Ethernet.

Center for the Critical Analysis of Contemporary Culture (CCACC)
8 Bishop Place, College Avenue Campus
New Brunswick, NJ 08901-8530
Telephone: 732/932-8426; Fax: 732/932-8683
thecacc@aol.com
George Levine, Director

The Center for the Critical Analysis of Contemporary Culture (CCACC) was established to foster interdisciplinary research and scholarly exchange in the humanities and social sciences. Each year the center focuses on a topic of broad interdisciplinary interest and appoints up to twenty fellows from the full range of university disciplines. The center sponsors lecture series, colloquia, and conferences on important topics of interdisciplinary concern.

Center for Discrete Mathematics and Theoretical Computer Science (DIMACS)
CoRE Building
96 Frelinghuysen Road, Busch Campus
Piscataway, NJ 08854-8018
Telephone: 732/445-5928; Fax: 732/445-5932
Fred S. Roberts, Director

The Center for Discrete Mathematics and Theoretical Computer Science (DIMACS) is a National Science Foundation Science and Technology Center, also supported by the New Jersey Commission on Science and Technology, and a consortium of Rutgers and Princeton universities and AT&T Labs—Research, Bell Labs, Telcordia Technologies, and NEC Research. DIMACS offers workshops, seminars, and tutorials, hosts postdoctoral fellows and graduate students, and runs precollege and undergraduate programs to address topics of current scientific importance. Recent sample topics include Discrete and Computational Geometry, Complexity Theory of Interactive Computing, Graph Theory and Algorithms, Combinatorial Optimization, Massively Parallel Computing, Mathematical Support for Molecular Biology, Logic and Algorithms, Networks, Discrete Probability, Massive Data Sets, DNA Computing, Large-Scale Discrete Optimization, and Computational Intractability.
The Thomas A. Edison Papers is an institute devoted to the selective publication of the more than five million pages of notebooks, correspondence, patent materials, and legal records of Thomas A. Edison and his associates. The Edison Papers is cosponsored by Rutgers, The State University of New Jersey, the National Park Service, the New Jersey Historical Commission, and the Smithsonian Institution.

Ten full-time faculty members associated with the institute do research on Edison and also a broad range of historical issues from the nineteenth and twentieth centuries.

Environmental and Occupational Health Sciences Institute (EOHSI)

170 Frelinghuysen Road, Busch Campus
Piscataway, NJ 08854-8020
Telephone: 732/445-0200; Fax: 732/445-0131
Bernard D. Goldstein, M.D., Director
Mark G. Robson, Ph.D., M.P.H., Executive Director

The Environmental and Occupational Health Sciences Institute (EOHSI) is jointly sponsored by Rutgers, The State University of New Jersey, and the University of Medicine and Dentistry of New Jersey—Robert Wood Johnson Medical School. The institute houses a select group of scientists, physicians, educators, and policy researchers focused on the serious health effects of environmental pollutants. Institute members investigate ways people are exposed to chemicals, study how chemicals react in the body, educate the public about risks from chemical exposure, and assist in formulating policies to protect human health. EOHSI is comprised of six divisions: toxicology; public education and risk communication; occupational health; exposure measurement and assessment; environmental health; and environmental policy. In 1988, EOHSI became the site of the first National Institutes of Health (NIH) center of excellence in New Jersey, one of only twenty such centers funded by NIH to facilitate multidisciplinary research on health problems posed by environmental exposures.

Fiber Optic Materials Research Program (FOMRP)

607 Taylor Road, Busch Campus
Piscataway, NJ 08854-8065
Telephone: 732/445-4729; Fax: 732/445-4545
gigel@alumina.rutgers.edu
George H. Sigel, Jr., Director

The Fiber Optic Materials Research Program (FOMRP) conducts research projects with a scope ranging from the synthesis of new optical materials by chemical vapor deposition to advanced optical signal transmission and processing. Emphasis has been placed on research that focuses on future and advanced applications of optical fibers, particularly those that extend beyond telecommunications, including research on fiber optics for biomedical applications, design and fabrication of fiber optic sensors, fabrication of fiber optic lasers and optical amplifiers, and the development of infrared transmitting fibers based on halide and chalcogenide glasses as well as crystals and hollow waveguides. The FOMRP seeks to conduct generic research on a cooperative basis with industry and government and to provide a mechanism for technology transfer of its activities.

Institute for Health, Health Care Policy, and Aging Research

30 College Avenue, College Avenue Campus
New Brunswick, NJ 08901-1293
Telephone: 732/932-8413; Fax: 732/932-6872
David Mechanic, Director

The Institute for Health, Health Care Policy, and Aging Research was established to consolidate and focus the resources of the university on critical health and aging issues facing the nation. It facilitates collaboration among scholars who represent many disciplines, providing them with opportunities to pool their knowledge and expertise in examining multifaceted health problems. Each of the three divisions on health, health policy, and aging, the Institute’s Center on research on the organization and financing of care for severe mental illness, and its newly established Center for State Health Policy that examines critical state and regional health policy issues provide a range of research and training opportunities to predoctoral students enrolled in degree-granting programs elsewhere in the university, to fellows enrolled in the Institute’s postdoctoral program and to undergraduates. The Institute has broad scope but focuses its research efforts in areas where it has particular analytic strength and where it can build on the excellence of academic departments and professional schools at the university.
Rutgers Center for Historical Analysis (RCHA)
88 College Avenue, College Avenue Campus
New Brunswick, NJ 08901-8542
Telephone: 732/932-8701; Fax: 732/932-8708
David Oshinsky, Director

The Rutgers Center for Historical Analysis (RCHA), a multidisciplinary research center and affiliate of the history department at Rutgers–New Brunswick, provides a setting to discuss issues of broad contemporary relevance in historical perspective. Organizing its annual activities around major themes of inquiry or research projects, the center each year welcomes visiting senior and postdoctoral fellows chosen through an open, international competition, along with several faculty and graduate fellows from within Rutgers. In addition to weekly seminars, the center hosts a variety of public conferences and related cultural events, sponsors the Institute for High School Teachers, and houses The Journal of the History of Ideas.

IEEE History Center
39 Union Street, College Avenue Campus
New Brunswick, NJ 08901-8538
Telephone: 732/932-1066; Fax: 732/932-1193
Michael N. Geselowitz, Director

The IEEE History Center is a joint venture between Rutgers, The State University of New Jersey, and the Institute of Electrical and Electronics Engineers, Inc. The center undertakes research, public outreach, and archival work in all aspects of the history of electrical, electronic, and computing technology and their social, political, and cultural contexts. IEEE also awards an annual fellowship and historical paper prize.

Institute of Marine and Coastal Sciences (IMCS)
71 Dudley Road, Cook Campus
New Brunswick, NJ 08901-8521
Telephone: 732/932-6555; Fax: 732/932-8578
J. Frederick Grassle, Director

The Institute of Marine and Coastal Sciences (IMCS) conducts and integrates research efforts on estuarine, marine, and coastal processes for New Jersey and the surrounding region. Current research themes include establishment of Long-Term Ecosystem Observatories (LEOs), fish and shellfish biology and ecology, estuarine and nearshore ecology, biogeochemistry, aquaculture, genetics of marine populations, coastal physical oceanography, coastal geology, hydrothermal vent research, pinelands ecology, and deep-sea research. The institute features advanced field and laboratory facilities such as a real-time satellite remote sensing laboratory, high-performance computers, coastal observation network, and annular flumes to support mesocosm studies of continental shelf communities. IMCS faculty advise students in oceanography, environmental sciences, ecology and evolution, geology, and several areas of engineering.

Center for Nanostructured Materials (CNM)
School of Engineering
98 Brett Road, Busch Campus
Piscataway, NJ 08854-8058
Telephone: 732/445-3224; Fax: 732/445-5636
James D. Idol, Director

The Center for Nanostructured Materials (CNM) is jointly supported by the New Jersey Commission on Science and Technology, Rutgers, The State University of New Jersey, and several industry members. CNM’s mission is to support forefront research in advanced materials areas and to promote industry-university interactions. Research areas include: chemical and physical synthesis of nanostructured materials, ultrafine powder thin-film technology, and advanced characterization. Equipment at CNM is consolidated into six major facilities: chemical synthesis; physical synthesis; X-ray; ion beam; electron microscopy; and modeling and computer simulations.

Center for Packaging Science and Engineering
137 Winchester Road, Busch Campus
Piscataway, NJ 08854-8029
Telephone: 732/445-2888; Fax: 732/445-3229
Thomas Tsakalakos, Director;
William E. Mayo, Codirector

The Center for Packaging Science and Engineering consists of a research division with four laboratories and an information center for packaging and related fields. The major research thrusts of the center are in packaging science and technologies, covering food and beverage packaging; pharmaceutical, medical, and health care packaging; industrial hard and soft goods packaging; and materials science related to packaging processes and products. The Distribution Packaging Laboratory evaluates package performance in the distribution environments. The Permeation/Leakage Laboratory studies barrier properties of packaging materials. The Materials/Package Laboratory studies mechanical, physical, and chemical properties and performance of packaging materials. The Packaging Machinery Laboratory studies packaging machinery design, operation, and interactions of packaging machinery and packaging materials.

Institute for Research on Women (IRW)
160 Ryders Lane, Douglass Campus
New Brunswick, NJ 08901-8555
Telephone: 732/932-9072; Fax: 732/932-0861
Bonnie G. Smith, Director

Founded in 1976 to provide an exchange of ideas and information among scholars on the New Brunswick campuses, the IRW has taken a leading role both regionally and nationally in enabling and disseminating the new research and writing on women and gender. The institute brings together several hundred university faculty members and graduate students who are working on gender-related subjects; organizes interdisciplinary lectures, seminars, and conferences; and hosts visiting scholars in a range of disciplines. The institute sponsors a weekly graduate student/faculty seminar and, with the financial support of the Rockefeller Foundation, is the site of a project on gender, race, and ethnicity. The IRW also sponsors an annual graduate student conference.
The Laboratory for Surface Modification (LSM) provides a focus for research in basic and applied studies of high technology surfaces and interfaces, which involves multidisciplinary research in the disciplines of physics, chemistry, ceramics, materials science, and electrical engineering. Surface modification encompasses a broad spectrum of phenomena that occur at the atomic level on the surface of solids, and advances in this technology have a fundamental impact on the fields of telecommunications, petrochemicals, superconductivity, computer science, minerals, and chemicals. Research is supported with extensive, state-of-the-art ultrahigh vacuum instrumentation, electronics, and computational facilities. In addition, the laboratory operates a 1.7 MeV Tandetron accelerator, complete with Rutherford backscattering and ion channeling capabilities. Another laboratory facility is a Kratos XSAM Surface Analysis system containing X-ray photoelectron spectroscopy, Auger electron spectroscopy, and ion-scattering spectroscopy.

The Center for Urban Policy Research (CUPR) specializes in housing, land use, economic development, and urban poverty issues and is concerned with both the academic quality of urban research and the practical application of research results to policy formulation and implementation. CUPR conducts research for federal agencies, major private foundations, and state and local governments. Its faculty hold joint appointments in the sociology, economics, geography, urban planning and policy development, and urban studies departments. Major new projects include funding from the U.S. Department of Housing and Urban Development to establish a Community Outreach Partnership Center in Newark, research for the U.S. Economic Development Administration evaluating its public works and defense adjustment programs, and growth management studies for a number of states. In other work, CUPR’s Rutgers Economic Advisory Service (R/ECON™) prepares economic forecasts and analyses for businesses and governments, and its Project Community provides direct services and technical assistance to community-based organizations and nonprofit groups engaged in neighborhood revitalization. The center publishes a quarterly newsletter; monographs and working papers are published through the CUPR Press.

The Laboratory of Vision Research (LVR) has three major objectives: to conduct advanced interdisciplinary research in vision, to establish undergraduate and graduate courses in visual perception and related areas, and to serve as a consulting body to New Jersey and national institutions. Research is focused on early vision, such as texture, stereoscopic depth, and motion perception and some higher processing states, such as the role of focal attention in visual tasks. Practical applications of research conducted in the laboratory include the diagnosis and prevention of stereo blindness, invention of new ways to match large databases to the heuristics of the human observer, and the development of image compression techniques based on the properties of the human visual system.

The Waksman Institute of Microbiology is an internationally recognized center of excellence in molecular genetics. Members of the institute are studying gene expression and signal transduction controlled by a number of environmental and developmental stimuli, using microbe, plant, and animal genetic models. A new focus on structural and computational biology complements these areas of interest. Nineteen laboratories arranged around four groups (microbial, plant, and developmental genetics; structural biology) equipped with state-of-the-art equipment provide graduate students the opportunity to learn the latest techniques in molecular genetics. In addition, the Waksman Institute houses the Molecular Biology Computing Lab.
Administration

Officers
Richard F. Foley, Ph.D., Professor of Philosophy, Dean of the Faculty of Arts and Sciences, and Dean of the Graduate School–New Brunswick
Ziva Galili, Ph.D., Professor of History and Vice Dean of the Graduate School–New Brunswick
Harvey Waterman, Ph.D., Associate Professor of Political Science and Associate Dean of the Graduate School–New Brunswick
Barbara E. Bender, Ed.D., Associate Dean for Academic Support and Graduate Student Services of the Graduate School–New Brunswick
Lisa Estler, Business Manager
Barbara Pleva, Administrator for Fellowships and Student Support
Barbara Sirman, Administrator for Degree Certification

Executive Council of the Graduate School–New Brunswick 1999–2000
Dates in parentheses indicate expiration of term of membership.

The dean, vice dean, and associate deans of the Graduate School–New Brunswick
Michael Adas, Professor of History (2002)
Roni Advis, Professor of Environmental Sciences (2002)
Dennis Bathory, Associate Professor of Political Science (2001)
Nicholas Belkin, Professor of Library and Information Science (2000)*
Richard Brail, Professor of Urban Planning (2000)*
Helen Buettner, Associate Professor of Chemical and Biochemical Engineering (2000)*
Jolde Cizewski, Professor of Physics (2001)
Richard DeLisi, Professor of Educational Psychology (2000)*
Cheryl Dreyfus, Professor of Physiology (2001)
Jack Harris, Professor of Anthropology (2002)
Susan Jackson, Professor of Industrial Relations and Human Resources (2000)*
Charles Martin, Professor of Biological Sciences (2000)
Howard McGary, Professor of Philosophy (2000)
Larry Scanlon, Associate Professor of English (2000)
Richard Schroeder, Associate Professor of Geography (2000)
Eugene Speer, Professor of Mathematics (2000)
Judith Storch, Professor of Nutritional Sciences (2002)

Student Representatives
To be announced

Graduate School–New Brunswick Representatives to the University Senate 1999–2000
Dates in parentheses indicate expiration of term of membership.

Juan P. Advis, Professor of Animal Sciences (2000)
Irene Alm, Associate Professor of Music (2001)
John Bronzan, Professor of Physics (2000)
Elin Diamond, Professor of English (2002)
Ira Gang, Professor of Economics (2000)
Jean Marie Hartman, Associate Professor of Landscape Architecture (2001)
Jane Hinch, Associate Professor of Chemistry (2001)
Phyllis Mack, Professor of History (2000)
Richard Padgett, Associate Professor of Microbiology (2001)
Peter Strom, Associate Professor of Environmental Sciences (2002)
Andrew Vershon, Associate Professor of Microbiology and Molecular Genetics (2002)
Thomas Walsh, Associate Professor of Psychology (2002)

New Brunswick Faculty Council 1999–2000
Paul Clemens, Professor of History (2001)
Judith Grassle, Research Professor of Oceanography (2000)

Administrative Offices

Office of the Graduate School–New Brunswick, 25 Bishop Place, College Avenue Campus (732/932-7034)
Office of Graduate and Professional Admissions, 18 Bishop Place, College Avenue Campus (732/932-7711)
Cashier, Records Hall, College Avenue Campus (732/932-7044)
Office of the Graduate Registrar, Administrative Services Building, Busch Campus (732/445-2104, 3556)
Cashier, Administrative Services Building, Busch Campus (732/445-3008)

* Appointed by the dean.
Governance of the University

State of New Jersey
Christine Todd Whitman, Governor of the State

Rutgers Board of Governors 1999–2000
Chairperson:
Richard A. LeVao
Vice Chairperson:
Kevin J. Collins
Members:
Joan L. Bildner
Ruben Cardona
Frederick D. DeSanti
Francis L. Lawrence, ex officio
Nancy K. Lotstein
Gene O’Hara
Dean J. Parancas
Thomas A. Renyi
Anne M. Thomas
Harry W. Janes, faculty representative
Paul Kuehn, student representative
Kathleen Scott, faculty representative
Secretary:
Mildred R. Schildkamp
Assistant Secretary:
Enrica Gioe Chretien
Treasurer:
Joseph P. Whiteside

Rutgers Board of Trustees 1999–2000
Chairperson:
David Jefferson Harris, Jr., New Brunswick
Vice Chairpersons:
Ronald W. Giaconia, Little Falls
Louis T. DiFazio, Mantoloking
Members:
Jerald D. Banoff, Metuchen
Jeffrey Barist, Short Hills
Henry E. Bartoli, Far Hills
Michael T. Beahm, Old Bridge
Joan L. Bildner, Short Hills
Liam P. Brohan, Easton, PA
Ruben Cardona, Morganville
John Herbert Carman, Somesville, ME
Judith T. Caruso, Gillette
C.K. Chu, New York, NY
Michele Cortese-Petersen, Somerset
Clinton C. Crocker, Tinton Falls
Thomas G. Dallesio, Hopewell
Anthony J. DePetris, Camden
Frederick D. DeSanti, Brookside
Milda B. Dolan, Hawthorne
Michael R. Dressler, Cresskill
Robert P. Eichert, Edison
Evelyn S. Field, Bridgewater
Jeanne M. Fox, New Brunswick
Bruce G. Freeman, Princeton
Albert R. Gamper, Jr., Far Hills
Rochelle Gizinski, Brick
Vesta M. Godvin, Westfield
Leslie E. Goodman, Lawrenceville
Gerald C. Harvey, Summit
Richard W. Hill, Middletown
Kevin E. Kennedy, Red Bank
Robert A. Laudicina, Norwood
Francis L. Lawrence, ex officio
J. Bruce Llewellyn, New York, NY
Nancy K. Lotstein, Del Mar, CA
Henry A. Lubinski, Fanwood
Michael C. MacDonald, Easton, CT
Duncan L. MacMillan, Princeton
Colleen M. McCann, New Brunswick
Ernest C. Mueller, North Caldwell
Patricia Nachtigal, Upper Montclair
Gene O’Hara, Rumson
Dean J. Parancas, Summit
Roxanne Parker, Madison
Brian D. Perkins, North Wales, PA
Eileen L. Poiani, Nutley
Gail L. Powers, Marlton
Paul V. Proleta, West Orange
Richard J. Rawson, Neshanic Station
Thomas A. Renyi, Wyckoff
Lillian Ringel, Maplewood
Bethany Rocque-Romaine, Old Bridge
Michael T. Salpas, Evesham
John J. Scally, Jr., Short Hills
Philip S. Schein, Bryn Mawr, PA
Dorothy M. Stanaitis, Gloucester City
Anne M. Thomas, Flemington
Karen M. Torian, Plainfield
Mary Vivian Fu Wells, Matawan
Addie S. Wright, Marietta, GA
Guy N. Zazzara, Jersey City
Michael Jackson, student representative
Joseph L. Naus, faculty representative
Rajiv Parikh, student representative
Mark Vodak, faculty representative
Alton A. Adler (emeritus), Bayonne
Felix M. Beck (emeritus), Livingston
Floyd H. Bragg (emeritus), North Brunswick
Peter Cartmell (emeritus), Rumson
Carleton C. Dilatash (emeritus), Point Pleasant
Carlton A. Holstrom (emeritus), Pipevsville, PA
Paul B. Jennings (emeritus), Piscataway

Administrative Officers
University-wide
Francis L. Lawrence, Ph.D., President
Raphael J. Caprio, Ph.D., Vice President for Continuous Education and Outreach
Michael W. Carroll, M.A., Executive Director of the Rutgers University Foundation and Vice President for Development and Alumni Relations
James L. Flanagan, Sc.D., Vice President for Research
Susan G. Forman, Ph.D., Vice President for Undergraduate Education
Marianne L. Gaunt, M.L.S., University Librarian
Christine M. Haska, Ph.D., Vice President for Institutional Research and Planning
Mildred R. Schildkamp, B.S., Secretary of the University / Assistant to the President
David R. Scott, J.D., University Counsel
Joseph P. Seneca, Ph.D., University Vice President for Academic Affairs
Joseph P. Whiteside, M.B.A., Senior Vice President and Treasurer
Nancy S. Winterbauer, Ed.D., Vice President for University Budgeting

Camden
Roger J. Dennis, J.D., Provost
Mark Rozewski, M.C.R.P., Associate Provost for Administration and Finance
Rory P. Maradonna, M.B.A., Associate Provost for Student Affairs
Ian Jacobs, Ph.D., Associate Provost for University Outreach
(on leave 11/98–11/99)

Newark
Norman Samuels, Ph.D., Provost
Harvey H. Feder, Ph.D., Associate Provost for Academic Programs
Carol L. Martanick, Associate Provost for Administrative Services
Donald L. McCabe, Ph.D., Associate Provost for Campus Development
Norman Schnayer, Ph.D., Associate Provost for Academic Personnel
Raymond T. Smith, Ph.D., Associate Provost for Student Affairs
Gene A. Vincenti, M.B.A., Associate Provost for Budget and Campus Development
Divisions of the University

ACADEMIC DIVISIONS

Rutgers, The State University of New Jersey, provides educational and research services throughout the state on campuses located in Camden, Newark, and New Brunswick. The principal university center is located in New Brunswick, where Rutgers originated two centuries ago.

Camden

Camden offers programs at three undergraduate colleges and at five graduate schools. With an enrollment of five thousand students, it offers exceptional educational opportunities in addition to providing the advantages and resources associated with a major state university.

Faculty of Arts and Sciences–Camden
Margaret Marsh, Ph.D., Dean
Established in 1983 as a result of academic reorganization of the Camden campus, the Faculty of Arts and Sciences–Camden offers academic programs for undergraduate and graduate work in twenty-three arts and sciences disciplines and in a variety of interdisciplinary areas.

School of Business–Camden
Milton Leontiades, Ph.D., Dean
Established in 1988, the School of Business–Camden sets major requirements and teaches all courses leading to the Bachelor of Science degree in the professional areas of accounting and management. The School of Business also sets the major requirements and teaches all courses leading to a Master of Business Administration degree.

Camden College of Arts and Sciences
Margaret Marsh, Ph.D., Dean
A coeducational, liberal arts college, CCAS is the successor institution to the College of South Jersey, which was established in 1927 and became part of the state university in 1950.

University College–Camden
Margaret Marsh, Ph.D., Dean
University College–Camden is an evening college of liberal arts and professional studies serving part-time students since 1950.

Graduate School–Camden
Margaret Marsh, Ph.D., Dean
Graduate programs in the liberal arts were started in Camden in 1971 under the jurisdiction of the Graduate School–New Brunswick. The Graduate School–Camden was established as an autonomous unit in 1981.

School of Law–Camden
Rayman L. Solomon, J.D., Ph.D., Dean
Founded in 1926, the School of Law–Camden joined the university in 1950 as the South Jersey Division of the School of Law–Newark. It became an independent unit of the university in 1967. The law school offers a curriculum leading to the degree of Juris Doctor, including advanced study in special areas.

Summer Session–Camden
Thomas Venables, Ed.D.
The Summer Session, begun in 1913 and established as a division of the university in 1960, offers a wide variety of graduate and undergraduate courses during three sessions in the summer months.

Newark

Newark offers programs at three undergraduate colleges and at four graduate schools. With an enrollment of approximately ten thousand students, it offers strong academic programs, excellent facilities, and an outstanding faculty.

Faculty of Arts and Sciences–Newark
Steven J. Diner, Ph.D., Dean
The Faculty of Arts and Sciences–Newark was established in 1985 to expand and strengthen the instructional program for undergraduate students at the Newark campus. The combined faculties of Newark College of Arts and Sciences and University College–Newark offer courses and academic programs in more than sixty subject areas.

Newark College of Arts and Sciences
Steven J. Diner, Ph.D., Dean
Founded in 1930 as Dana College, this undergraduate, coeducational, liberal arts college became part of Rutgers when the University of Newark was integrated into the state university in 1946.

College of Nursing
Hurdis Margaret Ann Griffith, Ph.D., Dean
The College of Nursing was established in 1956 as an expansion of the university’s offerings in the former School of Nursing of the Newark College of Arts and Sciences. Its graduate program is conducted through the Graduate School–Newark.
University College–Newark
Steven J. Diner, Ph.D., Dean

University College–Newark is an evening and weekend college of liberal arts and professional studies serving part-time students since 1934. Within the context of the liberal arts tradition, University College students are offered a full range of courses and curricula, including programs in business and preparation for the professions leading to the degrees of Bachelor of Arts and Bachelor of Science.

Faculty of Management
Howard Tuckman, Ph.D., Dean

Established in 1993, the Faculty of Management encompasses the Graduate School of Management and the School of Management. The School of Management is an upper-division undergraduate school, founded in 1993, that offers the Bachelor of Science degree jointly with either the Newark College of Arts and Sciences or University College–Newark. Degree programs are available in accounting, finance, management, and marketing. The Graduate School of Management, founded in 1929 as the Seth Boyden School of Business and incorporated into Rutgers in 1946, offers three programs. Two of these programs, management and professional accounting, lead to the Master of Business Administration degree. The third program offers the Ph.D. degree in management jointly with the Graduate School–Newark and the New Jersey Institute of Technology.

Graduate School–Newark
Norman Samuels, Ph.D., Dean

The Graduate School–Newark was established as a separate instructional division of the university with degree-granting authority in 1976.

School of Criminal Justice
Leslie W. Kennedy, Ph.D., Dean

The School of Criminal Justice, which opened in 1974, offers a graduate program that provides students with a sound foundation for work in teaching, research, or criminal justice management. The Master of Arts degree is offered through the school, and the Ph.D. degree is offered in conjunction with the Graduate School–Newark.

School of Law–Newark
Stuart L. Deutsch, J.D., Dean

The university’s graduate programs in law originated in other institutions. The New Jersey School of Law, founded in 1908, and the Mercer Beasley School of Law, founded in 1926, merged in 1936 to become the University of Newark School of Law, which became part of Rutgers in 1946.

Summer Session–Newark
Hugo J. Kijne, Ph.D.

The Summer Session, begun in 1913 and established as a division of the university in 1960, offers a wide variety of graduate and undergraduate courses during three sessions in the summer months.

New Brunswick

The New Brunswick campus is the largest and most diversified of the university’s three campuses with sixteen academic units, eighteen hundred faculty, and thirty-three thousand students enrolled in undergraduate and graduate programs.

Faculty of Arts and Sciences–New Brunswick
Richard F. Foley, Ph.D., Dean

Established in 1981 as a result of academic reorganization of the New Brunswick campus, the Faculty of Arts and Sciences–New Brunswick teaches all arts and science courses for undergraduate and graduate students in degree-granting units and sets the major requirements for all arts and science majors. Organized into disciplines and departments, it offers forty-four undergraduate major programs and twenty-nine graduate programs, which are administered by the Graduate School–New Brunswick.

Douglass College
Barbara Shailor, Ph.D., Dean

Founded in 1918 as the New Jersey College for Women, Douglass is the largest women’s college in the nation. While maintaining rigorous standards of instruction in the fundamental disciplines of the liberal arts, Douglass supports and develops programs which link major courses of study to future careers. The college also implements special programs as well as independent activities designed to help women students develop the qualities required for achievement in any field of endeavor.

Livingston College
Arnold Hyndman, Ph.D., Dean

Livingston College opened in 1969 as a coeducational institution dedicated to serving a diverse student body reflecting the racial, ethnic, and socioeconomic composition of today’s society. As a college of the liberal arts and professions, Livingston is committed to a multidisciplinary program that brings together a diverse group of students, faculty, and staff in a cosmopolitan community dedicated to learning.

Rutgers College
Carl Kirschner, Ph.D., Dean

Rutgers College was chartered in 1766 and is the original nucleus around which the university developed. Formerly an undergraduate college for men, it is now coeducational. Dedicated to the promotion of excellence in undergraduate education, Rutgers College provides its students with clear guidelines in the pursuit of a liberal arts education.
University College–New Brunswick
Emmet A. Dennis, Ph.D., Dean

University College–New Brunswick is an evening college of liberal arts and professional studies serving part-time students since 1934. Within the context of the liberal arts tradition, University College–New Brunswick students are offered a full range of courses and curricula, including programs in business and preparation for the professions leading to the degrees of Bachelor of Arts and Bachelor of Science.

Cook College
Bruce C. Carlton, Ph.D., Dean

A coeducational and residential college, Cook offers undergraduate programs in various applied disciplines with emphasis on environmental, agricultural, food, and marine sciences. Formerly the College of Agriculture and later the College of Agriculture and Environmental Science, Cook College adopted its present name in 1973. Graduate programs are offered through the Graduate School–New Brunswick.

College of Pharmacy
John L. Colaizzi, Ph.D., Dean

First organized in 1892 and incorporated into the state university in 1927, the College of Pharmacy offers a five-year professional program leading to the Bachelor of Science degree and a graduate program leading to the Pharm.D. degree. Other graduate programs leading to advanced degrees through the Graduate School–New Brunswick are also available. In addition, the college sponsors an extension program for the benefit of practicing pharmacists throughout the state.

Mason Gross School of the Arts
Marilyn Feller Somville, Ph.D., Dean

This branch of Rutgers opened in July 1976. The school grants both undergraduate and graduate degrees. Formed to provide an education in the arts of the highest professional caliber, the school offers an M.F.A. degree in visual arts and theater arts; D.M.A., A.Dipl., M.M., and B.Mus. degrees in music; and a B.F.A. degree in visual arts, dance, and theater arts.

School of Business–New Brunswick
Howard Tuckman, Ph.D., Dean

Approved by the New Jersey Department of Higher Education in 1986, the School of Business–New Brunswick offers both undergraduate and graduate degrees. On the undergraduate level, it is a two-year, upper-division school offering programs in accounting, finance, management, and marketing. The school admits students from Douglass, Livingston, Rutgers, and University colleges in their junior year. The Bachelor of Science degree is jointly awarded by the School of Business–New Brunswick and the undergraduate college. The school’s graduate program offers the Master of Accounting degree.

School of Communication, Information and Library Studies
Gustav Friedrich, Ph.D., Dean

This school was formed in 1982 by a merger of two schools to provide academic programs that focus on various facets of communication and information science. The school offers undergraduate programs of study in communication, and journalism and mass media. Students are admitted to the school in their junior year from the five residential undergraduate colleges in New Brunswick: Cook, Douglass, Livingston, Rutgers, and University colleges. Bachelor of Arts degrees are awarded jointly by the School of Communication, Information and Library Studies and the undergraduate college. At the graduate level, programs are offered that lead to the degree of Master of Library Service, the Master of Communication and Information Studies, and, jointly with the Graduate School–New Brunswick, to the Doctor of Philosophy degree. Courses for in-service librarians are also provided.

School of Engineering
Michael T. Klein, Sc.D., Dean

Instruction in engineering began at Rutgers in 1864, when New Jersey designated Rutgers College to be the State College for the Benefit of Agriculture and Mechanic Arts. The College of Engineering became a separate unit in 1914, and was renamed the School of Engineering in 1999. The school is dedicated to the sound technical and general education of the student. It offers a Bachelor of Science degree in even disciplines as well as a curriculum in applied sciences. Its graduate programs are conducted through the Graduate School–New Brunswick.

Edward J. Bloustein School of Planning and Public Policy
James W. Hughes, Ph.D., Dean

Founded in 1992, the Edward J. Bloustein School of Planning and Public Policy provides focus for all of Rutgers’ programs of instruction, research, and service in planning and public policy. The school offers undergraduate programs in urban studies and public health, each leading to the baccalaureate degree. On the graduate level, the school confers Master of City and Regional Planning, Master of Public Health, and Doctor of Public Health degrees; the latter two degrees are offered jointly with the University of Medicine and Dentistry of New Jersey–Robert Wood Johnson Medical School. A dual-degree program in public health and applied psychology leading to the Master of Public Health and Doctor of Psychology degrees is offered with the Graduate School of Applied and Professional Psychology. Programs are also offered that lead to the Master of Science and Doctor of Philosophy degrees in urban planning and policy development; these latter two degrees are conferred by the Graduate School–New Brunswick.

School of Management and Labor Relations
John F. Burton, Ph.D., Dean

The School of Management and Labor Relations, formed in 1994, provides undergraduate instruction in labor studies. At the graduate level, programs are offered that lead to the degrees of Master of Science in Human Resource Management, Master of Arts in Labor and Employment Relations, and Doctor of Philosophy in Industrial Relations and Human Resources.
Graduate School–New Brunswick
Richard F. Foley, Ph.D., Dean
Graduate programs in the arts and sciences have been offered since 1876. The Graduate School–New Brunswick awards advanced degrees in more than sixty disciplines and is responsible for all Doctor of Philosophy degrees at Rutgers–New Brunswick. The faculty is drawn from virtually all academic divisions of the university.

Graduate School of Applied and Professional Psychology
Sandra L. Harris, Ph.D., Dean
The GSAPP was established in 1974 to train direct-service psychologists who have a special commitment to community involvement. It offers the Doctor of Psychology (Psy.D.) degree in professional psychology with specializations in the areas of clinical psychology, school psychology, and organizational psychology. The GSAPP also awards the Master of Psychology (Psy.M.) degree en passant to the doctorate; the Psy.M. is not offered as a terminal degree.

Graduate School of Education
Louise C. Wilkinson, Ed.D., Dean
Courses in education were first offered by Rutgers College in the late nineteenth century. A separate school offering its own curricula was organized in 1924. The GSE offers programs leading to the degrees of Master of Education, Specialist in Education, and Doctor of Education.

School of Social Work
Mary E. Davidson, Ph.D., Dean
Established in 1954 to prepare students for professional social work practice, the SSW offers a two-year graduate curriculum leading to the Master of Social Work degree. Jointly with the Graduate School–New Brunswick, it offers a program leading to the Doctor of Philosophy degree, and its faculty also teaches an undergraduate social work program.

Summer Session–New Brunswick
Thomas A. Kujawski, Ed.M.
The Summer Session, begun in 1913 and established as a division of the university in 1960, offers a wide variety of graduate and undergraduate courses during three sessions in the summer months.

ACADEMIC CENTERS, BUREAUS, AND INSTITUTES

Advanced Food Technology, Center for. Nabisco Institute for Advanced Food Technology, Cook Campus
Agricultural Experiment Station, New Jersey. Martin Hall, Cook Campus
Alcohol Studies, Center of. Smithers Hall, Busch Campus
American Affordable Housing Institute. 33 Livingston Avenue, College Avenue Campus
American Woman and Politics, Center for the. Wood Lawn, Douglass Campus
Animal Behavior, Institute of. Smith Hall, Newark Campus
Art Museum, Jane Voorhees Zimmerli. College Avenue Campus
Biological Research, Bureau of. Nelson Biology Laboratories, Busch Campus
Biostatistics, Institute for. Hill Center, Busch Campus
Biotechnology Center for Agriculture and the Environment. Cook Campus
Ceramic Research, Malcolm G. McLaren Center for. 607 Taylor Road, Busch Campus
Coastal and Environmental Studies, Center for. Doolittle Hall, Busch Campus
Computer Aids for Industrial Productivity, Center for. CoRE Building, Busch Campus
Computer Science Research, Laboratory for. Hill Center, Busch Campus
Controlled Drug-Delivery Research Center. Pharmacy Building, Busch Campus
Crime Prevention Studies, Center for. S.I. Newhouse Center for Law and Justice, Newark Campus
Criminological Research, Institute for. Lucy Stone Hall, Livingston Campus
Critical Analysis of Contemporary Culture, Center for the. 8 Bishop Place, College Avenue Campus
Discrete Mathematics and Theoretical Computer Science, Center for. CoRE Building, Busch Campus
Eagleton Institute of Politics. Wood Lawn, Douglass Campus
Economic Research, Bureau of. New Jersey Hall, College Avenue Campus
Edison Papers, Thomas A. 16 Seminary Place, College Avenue Campus
Engineered Materials, Institute for. Engineering Building, Busch Campus
Engineering Research, Bureau of. Engineering Building, Busch Campus
Fiber Optic Materials Research Program. 607 Taylor Road, Busch Campus
Fisheries and Aquaculture Technology Extension Center. Martin Hall, Cook Campus
Government Services, Center for. Edward J. Bloustein School of Planning and Public Policy, 33 Livingston Avenue, College Avenue Campus
Health, Health Care Policy, and Aging Research, Institute for. 30 College Avenue, College Avenue Campus
Historical Analysis, Rutgers Center for. 88 College Avenue, College Avenue Campus
Human Evolutionary Studies, Center for. 131 George Street, College Avenue Campus
International Business Education, Center for. Janice H. Levin Building, Livingston Campus
International Conflict Resolution and Peace Studies, Center for. Hickman Hall, Douglass Campus
International Faculty and Student Services, Center for. 180 College Avenue, College Avenue Campus
Jazz Studies, Institute of. Dana Library, Newark Campus
Jewish Life, Center for the Study of. 12 College Avenue, College Avenue Campus
Journalism Resources Institute. 185 College Avenue, College Avenue Campus
Marine and Coastal Sciences, Institute of. 71 Dudley Road, Cook Campus
Materials Synthesis, Center for. Engineering Building, Busch Campus
Mathematical Sciences Research, Center for. Hill Center, Busch Campus
Molecular and Behavioral Neuroscience, Center for. Newark Campus
Negotiation and Conflict Resolution, Center for. Edward J. Bloustein School of Planning and Public Policy, 33 Livingston Avenue, College Avenue Campus
Operations Research, Center for. Hill Center, Busch Campus
Packaging Science and Engineering, Center for. Engineering Building, Busch Campus
Physics Research, Bureau of. Serin Physics Laboratories, Busch Campus
Rutgers Cooperative Extension. Martin Hall, Cook Campus
Surface Modification, Laboratory for. Serin Physics Laboratories, Busch Campus
Transportation Policy Institute. Edward J. Bloustein School of Planning and Public Policy, 33 Livingston Avenue, College Avenue Campus
Urban Policy Research, Center for. 33 Livingston Avenue, College Avenue Campus
Waksman Institute of Microbiology. 190 Frelinghuysen Road, Busch Campus
Wall Whitman Center for the Culture and Politics of Democracy. Hickman Hall, Douglass Campus
Wireless Information Network Laboratory. Electrical Engineering Building, Busch Campus
Women, Institute for Research on. 160 Ryders Lane, Douglass Campus
Workforce Development, John J. Heldrich Center for. Edward J. Bloustein School of Planning and Public Policy, 33 Livingston Avenue, College Avenue Campus

Centers Operated Jointly
Biotechnology and Medicine, Center for Advanced. Environmental and Occupational Health Sciences Institute. Hazardous Substance Management Research Center.

UNIVERSITY LIBRARY SYSTEM

Alcohol Studies Library. Smithers Hall, Busch Campus
Annex. Annex Building, Busch Campus
Archibald Stevens Alexander Library. 169 College Avenue, College Avenue Campus
Art Library. Hamilton Street, College Avenue Campus
Bailey B. Pepper Entomology Library. John B. Smith Hall, Georges Road and Jones Street, Cook Campus
Blanche and Irving Laurie Music Library. Douglass Library, Chapel Drive and George Street, Douglass Campus
Chemistry Library. Wright Chemistry Laboratory Building, Busch Campus
Chrysler Herbarium Library. Nelson Biology Laboratories, Busch Campus
Criminal Justice Library. S.I. Newhouse Center, 15 Washington Street, Newark Campus
East Asian Library. Alexander Library, College Avenue Campus
Institute of Jazz Studies Library. Bradley Hall, Newark Campus
John Cotton Dana Library. 185 University Avenue, Newark Campus
Kilmer Area Library. Avenue E, Livingston Campus
Library of Science and Medicine. Bevier Road, Busch Campus
Mabel Smith Douglass Library. Chapel Drive and George Street, Douglass Campus
Mathematical Sciences Library. Hill Center, Busch Campus
Media Services. Kilmer Area Library, Livingston Campus
Paul Robeson Library. 300 North Fourth Street, Camden Campus
Physics Library. Serin Physics Laboratories, Busch Campus
School of Law–Camden Library. Fifth and Penn Streets, Camden Campus
School of Law–Newark Library. S.I. Newhouse Center, Washington Street, Newark Campus
School of Management and Labor Relations Library. Ryders Lane, Cook Campus
SERC Reading Room. Science and Engineering Resource Center, Frelinghuysen Road, Busch Campus
Special Collections and University Archives. Alexander Library, College Avenue Campus
Stephen and Lucy Chang Science Library. Foran Hall, Cook Campus
COLLEGE AVENUE CAMPUS BUILDING DIRECTORY

<table>
<thead>
<tr>
<th>Accessible</th>
<th>#</th>
<th>BLDG. NAME</th>
<th>CODE</th>
<th>GRID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>3 Bartlett St.</td>
<td>C17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>18 Bishop Place (Bevier House)</td>
<td>D17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>24 College Ave.</td>
<td>D19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>73 Easton Ave.</td>
<td>C19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>43 Mine St.</td>
<td>MIN</td>
<td>C18</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>7 Union St.</td>
<td>C18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Air Force ROTC (5 Senior St.)</td>
<td>B16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>Air Force ROTC (9 Senior St.)</td>
<td>B16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>Alexander Johnston Hall</td>
<td>E19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>Army ROTC</td>
<td>ARM</td>
<td>B16</td>
</tr>
<tr>
<td></td>
<td>79</td>
<td>Edward J. Bloustein School of Planning and Public Policy</td>
<td>B16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>Brett Hall</td>
<td>D17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>43</td>
<td>Campbell Hall</td>
<td>CA</td>
<td>C15</td>
</tr>
<tr>
<td></td>
<td>53</td>
<td>Career Services (College Ave.)</td>
<td>D18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>51</td>
<td>Career Services (Admin. Bldg.)</td>
<td>D18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>Catholic Center</td>
<td>C17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>Center for Critical Analysis of Contemporary Culture</td>
<td>CCA</td>
<td>D17</td>
</tr>
<tr>
<td></td>
<td>66</td>
<td>Center for Historical Analysis</td>
<td>CHA</td>
<td>D17</td>
</tr>
<tr>
<td></td>
<td>71</td>
<td>Center for the History of Electrical Engineering</td>
<td>C18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>67</td>
<td>Center for International Faculty and Student Services</td>
<td>B15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>68</td>
<td>Center for Latino Arts and Culture</td>
<td>C17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>Center for Russian, Central and East European Studies</td>
<td>B15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Center for the Study of Jewish Life</td>
<td>D19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>74</td>
<td>Chabad House</td>
<td>B16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>78</td>
<td>Christus House (194 College Ave.)</td>
<td>B15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>82</td>
<td>Clother Hall</td>
<td>D16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>305</td>
<td>College Avenue Gym (the Barn)</td>
<td>CAG</td>
<td>B16</td>
</tr>
<tr>
<td></td>
<td>85</td>
<td>College of Nursing</td>
<td>B15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>86</td>
<td>College of Nursing Lab</td>
<td>C17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>87</td>
<td>Community Service House</td>
<td>D18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>102</td>
<td>Convenience Store, CAC</td>
<td>D18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>115</td>
<td>De Win Building (Simon)</td>
<td>B15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>117</td>
<td>Demoart Hall</td>
<td>C16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>118</td>
<td>Dining Hall-Brower Commons</td>
<td>C16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>131</td>
<td>Employee and Labor Relations</td>
<td>D18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>140</td>
<td>Facilities Maintenance (College Ave.)</td>
<td>D18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>143</td>
<td>Faculty of Arts and Sciences-Dean’s Office</td>
<td>EAS</td>
<td>D19</td>
</tr>
<tr>
<td></td>
<td>148</td>
<td>Financial Aid</td>
<td>C16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>153</td>
<td>Ford Hall</td>
<td>D18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>154</td>
<td>Fraternity and Sorority Affairs Office</td>
<td>C17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>155</td>
<td>Fraternal House</td>
<td>FH</td>
<td>D16</td>
</tr>
<tr>
<td></td>
<td>158</td>
<td>Geology Hall</td>
<td>E9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>160</td>
<td>German House</td>
<td>GH</td>
<td>D18</td>
</tr>
<tr>
<td></td>
<td>161</td>
<td>Global Programs</td>
<td>C17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>164</td>
<td>Graduate School-New Brunswick</td>
<td>C17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>165</td>
<td>Graduate School of Education (GSE)</td>
<td>ED</td>
<td>E17</td>
</tr>
<tr>
<td></td>
<td>49</td>
<td>Graduate Student Lounge</td>
<td>C16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>167</td>
<td>Hardenbergh Hall</td>
<td>HH</td>
<td>D15</td>
</tr>
<tr>
<td></td>
<td>170</td>
<td>Health Center-Hurtado</td>
<td>D16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>172</td>
<td>Hebraic Studies</td>
<td>B16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>173</td>
<td>Hegeman Hall</td>
<td>D16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>178</td>
<td>Hillel</td>
<td>D17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>184</td>
<td>Institute for Health, Health Care Policy, and Aging</td>
<td>D19</td>
<td></td>
</tr>
</tbody>
</table>

Accessible to the ground floor and to other floors.

Public bathrooms (Handicap Accessible) and (Handicap Non-Accessible).

213
COOK/DOUGLAS BUILDING DIRECTORY

<table>
<thead>
<tr>
<th>ACCESSIBLE #</th>
<th>BLDG. NAME</th>
<th>CODE</th>
<th>GRID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jameson Residence Campus</td>
<td>JAM</td>
<td>STU</td>
</tr>
<tr>
<td>2</td>
<td>Kenan Hall</td>
<td>K</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Key Shop</td>
<td>K</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>Labor Education Center</td>
<td>LC</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>Levin Theater</td>
<td>LEV</td>
<td>HBR</td>
</tr>
<tr>
<td>6</td>
<td>Bailey B. Pepper Entomology Library</td>
<td>B</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>Blanche and Irving Laurie Music Library</td>
<td>B</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>Chang Science Library</td>
<td>CH</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>Mabel Smith Douglass Library</td>
<td>M</td>
<td>S</td>
</tr>
<tr>
<td>10</td>
<td>School of Management and Labor Relations Library</td>
<td>SL</td>
<td>R</td>
</tr>
<tr>
<td>11</td>
<td>Lipman Hall</td>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>12</td>
<td>Lippincott Residence Hall</td>
<td>L</td>
<td>I</td>
</tr>
<tr>
<td>13</td>
<td>Little Theater</td>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>14</td>
<td>Livestock Barn</td>
<td>L</td>
<td>S</td>
</tr>
<tr>
<td>15</td>
<td>Log Cabin</td>
<td>L</td>
<td>O</td>
</tr>
<tr>
<td>16</td>
<td>New Theater</td>
<td>N</td>
<td>T</td>
</tr>
<tr>
<td>17</td>
<td>Newell Apartments</td>
<td>N</td>
<td>W</td>
</tr>
<tr>
<td>18</td>
<td>Nicholas Music Center</td>
<td>N</td>
<td>H</td>
</tr>
<tr>
<td>19</td>
<td>Nicholas Residence Hall</td>
<td>N</td>
<td>K</td>
</tr>
<tr>
<td>20</td>
<td>NIAES Research Greenhouse</td>
<td>N</td>
<td>I</td>
</tr>
<tr>
<td>21</td>
<td>NSF Federation of Women's Clubs</td>
<td>N</td>
<td>F</td>
</tr>
<tr>
<td>22</td>
<td>Old Gibbons Residence Campus</td>
<td>O</td>
<td>I</td>
</tr>
<tr>
<td>23</td>
<td>New Jersey Museum of Agriculture</td>
<td>N</td>
<td>J</td>
</tr>
<tr>
<td>24</td>
<td>Plant Pathology Research Labs</td>
<td>P</td>
<td>L</td>
</tr>
<tr>
<td>25</td>
<td>Plant Physiology Building</td>
<td>P</td>
<td>F</td>
</tr>
<tr>
<td>26</td>
<td>Post Office</td>
<td>P</td>
<td>A</td>
</tr>
<tr>
<td>27</td>
<td>Post Office-DOE</td>
<td>P</td>
<td>E</td>
</tr>
<tr>
<td>28</td>
<td>Poultry Farm</td>
<td>P</td>
<td>D</td>
</tr>
<tr>
<td>29</td>
<td>Practice Building (Music)</td>
<td>P</td>
<td>X</td>
</tr>
<tr>
<td>30</td>
<td>Publications Distribution Center</td>
<td>P</td>
<td>T</td>
</tr>
<tr>
<td>31</td>
<td>Recreation Center</td>
<td>R</td>
<td>D</td>
</tr>
<tr>
<td>32</td>
<td>Recreation Center</td>
<td>R</td>
<td>A</td>
</tr>
<tr>
<td>33</td>
<td>Round House</td>
<td>R</td>
<td>C</td>
</tr>
<tr>
<td>34</td>
<td>Rutgers Cooperative Extension Computer Office</td>
<td>S</td>
<td>O</td>
</tr>
<tr>
<td>35</td>
<td>Rutgers Adams Building</td>
<td>S</td>
<td>R</td>
</tr>
<tr>
<td>36</td>
<td>School of Management and Labor Relations</td>
<td>S</td>
<td>M</td>
</tr>
<tr>
<td>37</td>
<td>Sheep Barn</td>
<td>S</td>
<td>E</td>
</tr>
<tr>
<td>38</td>
<td>Sturkey Apartments</td>
<td>S</td>
<td>Y</td>
</tr>
<tr>
<td>39</td>
<td>Thompson Hall</td>
<td>S</td>
<td>H</td>
</tr>
<tr>
<td>40</td>
<td>University Inn and Conference Center</td>
<td>U</td>
<td>H</td>
</tr>
<tr>
<td>41</td>
<td>Vivarium</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>42</td>
<td>Voorhees Chapel</td>
<td>V</td>
<td>G</td>
</tr>
<tr>
<td>43</td>
<td>Voorhees Residence Hall</td>
<td>V</td>
<td>J</td>
</tr>
<tr>
<td>44</td>
<td>Waller Hall</td>
<td>W</td>
<td>A</td>
</tr>
<tr>
<td>45</td>
<td>Waller Hall (Cook/Douglass-Cabinet's Office)</td>
<td>W</td>
<td>I</td>
</tr>
<tr>
<td>46</td>
<td>Waller Halls</td>
<td>W</td>
<td>L</td>
</tr>
<tr>
<td>47</td>
<td>Women's Scholarship and Leadership Conference</td>
<td>W</td>
<td>T</td>
</tr>
<tr>
<td>48</td>
<td>Woodbury Hall</td>
<td>W</td>
<td>B</td>
</tr>
<tr>
<td>49</td>
<td>Wood Lawn</td>
<td>W</td>
<td>D</td>
</tr>
</tbody>
</table>

Accessible to the ground floor, not accessible to other floors.
<table>
<thead>
<tr>
<th>ACCESSIBLE</th>
<th>BLDG.NAME</th>
<th>CODE</th>
<th>GRID</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔</td>
<td>108 S5 Davidson Rd</td>
<td>F2</td>
<td></td>
</tr>
<tr>
<td>✔</td>
<td>Administrative Services Bldg Annexes I & II</td>
<td>G3</td>
<td></td>
</tr>
<tr>
<td>✔</td>
<td>Administrative Services Building (ASB)</td>
<td>F3</td>
<td></td>
</tr>
<tr>
<td>✔</td>
<td>Allen Hall</td>
<td>G3</td>
<td></td>
</tr>
<tr>
<td>✔</td>
<td>206A Allison Road Classroom Building</td>
<td>D2</td>
<td></td>
</tr>
<tr>
<td>✔</td>
<td>Allison Road Classroom-Building-Computing Facilities</td>
<td>D2</td>
<td></td>
</tr>
<tr>
<td>✔</td>
<td>Allison Road Classroom-Bldg-Math and Science Learning Center</td>
<td>D2</td>
<td></td>
</tr>
<tr>
<td>✔</td>
<td>22 Barr Hall</td>
<td>G3</td>
<td></td>
</tr>
<tr>
<td>✔</td>
<td>26 Biochemistry Labs</td>
<td>E2</td>
<td></td>
</tr>
<tr>
<td>✔</td>
<td>Biological Sciences Teaching Lab</td>
<td>E2</td>
<td></td>
</tr>
<tr>
<td>✔</td>
<td>Biomedical Engineering</td>
<td>F3</td>
<td></td>
</tr>
<tr>
<td>✔</td>
<td>Buell Apartments</td>
<td>F4</td>
<td></td>
</tr>
<tr>
<td>✔</td>
<td>Busch Bubble (Football Bubble)</td>
<td>D5</td>
<td></td>
</tr>
<tr>
<td>✔</td>
<td>Busch Bubble (Tennis)</td>
<td>G4</td>
<td></td>
</tr>
<tr>
<td>✔</td>
<td>Busch Campus Center (BCC)</td>
<td>F3</td>
<td></td>
</tr>
<tr>
<td>✔</td>
<td>41 Bus Cogeneration Project (Central Heating Plant)</td>
<td>E2</td>
<td></td>
</tr>
<tr>
<td>✔</td>
<td>Career Services (Busch/Livingston)</td>
<td>F3</td>
<td></td>
</tr>
<tr>
<td>✔</td>
<td>Center for Advanced Biotechnology and Medicine</td>
<td>C2</td>
<td></td>
</tr>
<tr>
<td>✔</td>
<td>Center for Ceramic Research (CCR)</td>
<td>E1</td>
<td></td>
</tr>
<tr>
<td>✔</td>
<td>Center for Packaging Engineering</td>
<td>CPE</td>
<td></td>
</tr>
<tr>
<td>✔</td>
<td>Center of Alcohol Studies</td>
<td>D2</td>
<td></td>
</tr>
<tr>
<td>✔</td>
<td>Chemistry</td>
<td>E2</td>
<td></td>
</tr>
<tr>
<td>✔</td>
<td>Civil and Environmental Engineering</td>
<td>CEB</td>
<td></td>
</tr>
<tr>
<td>✔</td>
<td>Civil Engineering Annex</td>
<td>CEX</td>
<td></td>
</tr>
<tr>
<td>✔</td>
<td>Computing, Research, and Education Building (CoRE)</td>
<td>COR</td>
<td></td>
</tr>
<tr>
<td>✔</td>
<td>Crosby Hall</td>
<td>F2</td>
<td></td>
</tr>
<tr>
<td>✔</td>
<td>Davidson Residence Hall</td>
<td>F2</td>
<td></td>
</tr>
<tr>
<td>✔</td>
<td>Dining Hall-Busch Dining Hall</td>
<td>F3</td>
<td></td>
</tr>
<tr>
<td>✔</td>
<td>Dining Hall-Davidson Dining Hall</td>
<td>F2</td>
<td></td>
</tr>
<tr>
<td>✔</td>
<td>Doolittle Hall</td>
<td>D00</td>
<td></td>
</tr>
<tr>
<td>✔</td>
<td>Electrical Engineering</td>
<td>E3</td>
<td></td>
</tr>
<tr>
<td>✔</td>
<td>Engineering (Buildings)</td>
<td>EN</td>
<td></td>
</tr>
<tr>
<td>✔</td>
<td>Environmental and Occupational Health Sciences Institutes (EOHSI)</td>
<td>C2</td>
<td></td>
</tr>
<tr>
<td>✔</td>
<td>Environmental Services Building (REHS)</td>
<td>E1</td>
<td></td>
</tr>
<tr>
<td>✔</td>
<td>Fiber Optic Materials Research Program</td>
<td>E3</td>
<td></td>
</tr>
<tr>
<td>✔</td>
<td>Fire and Emergency Services</td>
<td>E2</td>
<td></td>
</tr>
<tr>
<td>✔</td>
<td>Geology</td>
<td>E2</td>
<td></td>
</tr>
<tr>
<td>✔</td>
<td>Golf Course Office</td>
<td>B3</td>
<td></td>
</tr>
<tr>
<td>✔</td>
<td>Hale Center</td>
<td>D6</td>
<td></td>
</tr>
<tr>
<td>✔</td>
<td>Hill Center</td>
<td>D6</td>
<td></td>
</tr>
<tr>
<td>✔</td>
<td>Housing Services</td>
<td>E2</td>
<td></td>
</tr>
<tr>
<td>✔</td>
<td>Johnson Apartments</td>
<td>D1</td>
<td></td>
</tr>
<tr>
<td>✔</td>
<td>Judson Hall</td>
<td>F2</td>
<td></td>
</tr>
</tbody>
</table>

Public Bathrooms

- Handicap Accessible: ![Public bathrooms (Handicap Accessible)]
- Non-Accessible: ![Public bathrooms (Handicap Non-Accessible)]

- to the ground floor
- to other floors
Livingston Campus Directory

<table>
<thead>
<tr>
<th>Accessible #</th>
<th>Bldg. Name</th>
<th>Code</th>
<th>Grid</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>AAUP/AFSCME</td>
<td>K6</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Beck Hall</td>
<td>BE-AUD</td>
<td>J3</td>
</tr>
<tr>
<td>169</td>
<td>Busch/Livingston Health Center</td>
<td>J3</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>Ceramic/Sculpture Laboratory</td>
<td>K6</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>Consortium for Educational Equity</td>
<td>K6</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>Construction Management</td>
<td>J6</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>Day Care Center (Livingston DCC)</td>
<td>K3</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>Eating Disorders Clinic</td>
<td>L2</td>
<td></td>
</tr>
<tr>
<td>137</td>
<td>Facilities Design</td>
<td>J6</td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>Facilities Maintenance (Busch/Livingston)</td>
<td>J7</td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>Facilities Maintenance Shops (Livingston)</td>
<td>K6</td>
<td></td>
</tr>
<tr>
<td>187</td>
<td>interior Design</td>
<td>K6</td>
<td></td>
</tr>
<tr>
<td>197</td>
<td>Key Shop (Livingston)</td>
<td>K6</td>
<td></td>
</tr>
<tr>
<td>208</td>
<td>Levin Building, Jancie H.</td>
<td>JLB</td>
<td>J3</td>
</tr>
<tr>
<td>217</td>
<td>Kilmer Area Library</td>
<td>KIL-LBR</td>
<td>J4</td>
</tr>
<tr>
<td>222</td>
<td>Media Services</td>
<td>J4</td>
<td></td>
</tr>
<tr>
<td>232</td>
<td>Livingston Art Center</td>
<td>LAC</td>
<td>K3</td>
</tr>
<tr>
<td>233</td>
<td>Livingston Art Studio</td>
<td>LAS</td>
<td>K6</td>
</tr>
<tr>
<td>234</td>
<td>Livingston Bookstore</td>
<td>K3</td>
<td></td>
</tr>
<tr>
<td>307</td>
<td>Livingston Gymnasium</td>
<td>K4</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Livingston Student Center (LSC)</td>
<td>J3</td>
<td></td>
</tr>
<tr>
<td>235</td>
<td>Livingston Theater</td>
<td>K3</td>
<td></td>
</tr>
<tr>
<td>238</td>
<td>Louis Brown Athletic Center (the “RAC”)</td>
<td>J3</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Lucy Stone Hall (Livingston-Cashier’s Office)</td>
<td>LSH-AUD</td>
<td>K4</td>
</tr>
<tr>
<td>239</td>
<td>Lucy Stone Hall B103</td>
<td>LSH-AUD</td>
<td>K4</td>
</tr>
<tr>
<td>243</td>
<td>Material Services (Surplus Property)</td>
<td>K7</td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>North Tower (Ernest Lynton Tower)</td>
<td>K3</td>
<td></td>
</tr>
<tr>
<td>271</td>
<td>Office of Television and Radio</td>
<td>OTR</td>
<td>K3,L3</td>
</tr>
<tr>
<td>291</td>
<td>Post Office-LPO, Tillett Hall</td>
<td>TIL</td>
<td>J4</td>
</tr>
<tr>
<td>298</td>
<td>Quad One Residence Hall</td>
<td>J4</td>
<td></td>
</tr>
<tr>
<td>299</td>
<td>Quad Three Residence Hall</td>
<td>K4</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>Quad Two Residence Hall</td>
<td>K4</td>
<td></td>
</tr>
<tr>
<td>236</td>
<td>RAC (Louis Brown Athletic Center)</td>
<td>LBAC</td>
<td>J3</td>
</tr>
<tr>
<td>321</td>
<td>Rutgers Environmental Health and Safety (REHS)</td>
<td>L6</td>
<td></td>
</tr>
<tr>
<td>331</td>
<td>Social Work, Continuing Education</td>
<td>LSW</td>
<td>K6</td>
</tr>
<tr>
<td>340</td>
<td>South Tower (Ernest Lynton Tower)</td>
<td>K3</td>
<td></td>
</tr>
<tr>
<td>352</td>
<td>Tillett Hall</td>
<td>TIL</td>
<td>K4</td>
</tr>
<tr>
<td>96</td>
<td>Tillett Hall (Computing Facilities)</td>
<td>TIL</td>
<td>K4</td>
</tr>
<tr>
<td>123</td>
<td>Tillett Hall (Dining Hall)</td>
<td>TIL</td>
<td>K4</td>
</tr>
<tr>
<td>203</td>
<td>Tillett Hall (Language Labs)</td>
<td>TIL</td>
<td>K4</td>
</tr>
<tr>
<td>206</td>
<td>Tillett (Learning Resource Center)</td>
<td>TIL</td>
<td>K4</td>
</tr>
<tr>
<td>354</td>
<td>Transaction Press/Telecommunications</td>
<td>K3</td>
<td></td>
</tr>
<tr>
<td>358</td>
<td>University Post Office</td>
<td>K5</td>
<td></td>
</tr>
<tr>
<td>360</td>
<td>University Travel</td>
<td>K7</td>
<td></td>
</tr>
<tr>
<td>363</td>
<td>Visual Arts Building</td>
<td>VIS/VIX</td>
<td>K3</td>
</tr>
</tbody>
</table>
TRANSPORTATION TO THE
NEW BRUNSWICK AREA CAMPUS

BUSCH CAMPUS
College of Pharmacy
Rutgers College
School of Engineering

COLLEGE AVENUE
CAMPUS
Rutgers College
University College-
New Brunswick
School of Communication,
information and
Library Studies

COOK-DOUGLASS
CAMPUS'
Cook College
Douglas College
Mason Gross School
of the Arts
School of Management
and Labor Relations

LIVINGSTON CAMPUS
Livingston College
School of Business-
New Brunswick
School of Management
and Labor Relations

CIVIC SQUARE
BUILDING
Edward J. Bloustein School
of Planning and Public Policy
Mason Gross School
of the Arts
Index

Abbreviations (List of), 39 - 40
About the University, 3
Academic Calendars, 2
Academic Integrity Summary, 28 - 29
Policy on, 28 - 29
Academic Policies and Procedures, 21 - 32
Academic Programs, 6 - 7, 38 - 199
Academic Standing, 25 - 26, 33, 35, 36
Activation of Registration, 10
Add/Drop, 21 - 22
Administration: of the Graduate School, 205; of the University, 206
Admission, 8; to the Ph.D. Candidacy, 33 - 34
Advisers, 36
Aerospace Engineering, 134 - 137
Agricultural Economics, 40 - 41
Agricultural Engineering, 36
See Bioresource Engineering
Alcohol Studies, 41
Alumni Relations, 20
American Language Studies. See English as a Second Language
American Literature, 100 - 101
American Politics. See Political Science
Anthropology, 43 - 46
Anatomy. See Cell and Developmental Biology
Animal Sciences, 42. See also Cell and Developmental Biology; Nutritional Sciences
Anthropology, 43 - 46
Apartment, 15
Appeals, Academic, 25 - 26
Application: for Admission, 8; for Conferral of Degrees, 34, 37; for Financial Aid, 12
Applied Chemistry. See Biochemistry; Chemical and Biochemical Engineering
Archaeology. See Anthropology; Classics
Architectural History. See Art History
Art History, 46 - 49
Artificial Implants. See Biomedical Engineering
Artificial Intelligence. See Computer Science
Asian Studies, 49 - 50
Assault, Verbal, Policy against, 29 - 30
Assistantships, 11 - 12
Astronomy, 159 - 163
Athletic Facilities, 20
Athletic Ticket Policies, 20
Athletics Disclosure Act Reports, 21
Attendance, 24
Auditing Courses, 23
Bacteriology. See Microbiology and Molecular Genetics
Bills, 9
Biochemical Engineering, 64 - 67
Biochemistry, 50 - 52
Bioinstrumentation. See Biomedical Engineering
Biomechanics. See Biomedical Engineering; Mechanical and Aerospace Engineering
Biomedical Engineering, 53 - 56
Bioresource Engineering, 56 - 57
Biostatistics. See Public Health; Statistics
Biotechnology, 57
Board of Governors, 206
Board of Trustees, 206
Botany. See Plant Biology
Bureaus, 200 - 204, 210 - 211
Calendars: Academic, 2; for Ph.D., 34 - 35; for M.Phil., 35; for M.A./M.S., 37;
Summary of Time Limits, 35, 37
Cancellation of Classes, 24
Cancellation of Registration, 10
Candidacy Application, 33 - 34
Career Services, 17
Cell and Developmental Biology, 57 - 60
Center for Latino Arts and Culture, 19
Centers, Academic and Research, 200 - 204, 210 - 211
Ceramic and Materials Science and Engineering, 60 - 64
Certificate Programs, 7
Change of Program, 23
Change of Registration, 22
Change of Status, 23
Chemical and Biochemical Engineering, 64 - 67
Chemistry, 67 - 70
Child Care, 18
Civil and Environmental Engineering, 70 - 73
Class Schedules and Hours, 24
Classical Archaeology.
See Art History; Classics
Classics, 73 - 75
Code of Student Conduct, 27 - 28
Cognitive Science, 75 - 76
Combined M.D./Ph.D. Degree, 6 - 7
Committees, 36
Communication, Information, and Library Studies, 76 - 78
Comparative Literature, 79 - 80
Complaints about Grades, 26
Composition, 100 - 101
Computer Engineering, See Electrical and Computer Engineering
Computer Facilities, 15
Computer Science, 80 - 84
Concerts, Dramatic Productions, and Lectures, 20
Cooperative Exchange Program, 22
Core Curricula, 7
Costs, 9 - 10
Counseling Services, 17
Counselorships, 13
Course Codes, 39
Course Notations, 39
Course Information, 21 - 24, 38 - 40
Course Numbers, Explanation of, 38
Courses, 40 - 199
Courses "Not for Credit," 22 - 23
Credit Prefixes, 24
Credit, Transfer of, 22, 33, 35, 36
Cultural Activities, 19
Day - Care Centers, 18
Deadlines: for Applications, 8; for Ph.D. Program, 34; for Master's Program, 37
Defamation, Policy against, 29 - 30
Degree Application, 34, 37, 38
Degree Programs, 6 - 7
Degree Requirements, 32 - 38; for Ph.D., 32 - 35; for Master's, 35 - 38; Developing Countries, Planning for. See Urban Planning and Policy Development
Developmental Biology. See Cell and Developmental Biology
Dining Services, 16
Diploma Application, 34, 37, 38
Disabled Students, Assistance for, 17
Disruption Procedures, 28 - 29
Dissertation (Ph.D.), 37 - 38; Publication of, 34
Divisions of the University, 207 - 211
Doctor of Philosophy, 32 - 35
Drop/Add, 21 - 22
Due Process, 25
Eagleton Institute of Politics. See Political Science
Ecology and Evolution, 84 - 86. See also Anthropology; Microbiology and Molecular Genetics
Economics, 86 - 89. See also Agricultural Economics
Education, 89 - 91
Educational Opportunity Fund (EOF), 12
Electrical and Computer Engineering, 91 - 96
Employment, 13; Career Development, 17
Endocrinology. See Animal Sciences
Engineering Science. See Chemical and Biochemical Engineering
English, Literatures in, 96 - 101
English as a Second Language, 101
Endothelium, 101 - 102
Environmental Change, Human Dimensions of, 102 - 103
Environmental Economics. See Agricultural Economics
Environmental Health. See Environmental Sciences; Public Health
Environmental Sciences, 103 - 106
Epidemiology. See Public Health
Epistemology. See Philosophy
Evolution, 84 - 86. See also Anthropology; Microbiology and Molecular Genetics
Examinations: Language, 33; Master's, 37; Ph.D. Final, 34; Ph.D. Qualifying, 33 - 34; Doctorate Examination used for Master's, 37
Expenses, 9 - 10
Extensions of Time, 37

221
Privacy Rights, 30 - 31
Programs, Academic, 6, 33, 35, 36
Programs, Faculty, and Courses, 38 - 199
Prohibited Conduct, 27 - 30
Psychological Counseling, 17
Psychology, 173 - 177
Public Health, 178 - 180
Public Law. See Political Science
Public Policy, 180 - 182
Publication of Dissertation and Academic Data, 34
Qualifying Examination for Ph.D., 33 - 34;
Used for Master’s Degree, 37
Quaternary Studies, 182. See also
Geological Sciences
Radiation Science. See Environmental Sciences
Readmission, 23 - 24
Real Estate. See Urban Planning and Policy Development
Records and Privacy Rights, 30 - 31
Refund Policy, 10
Registration, 10, 21 - 24
Religious Observance, Absence Due to, 24
Requirements for Admission, 8
Research Centers, 200 - 204, 210 - 211
Research Policy and Research Centers, 31
Residence Requirements, 32
Residency for Tuition Purposes (New Jersey), 31
Responsibility to Keep Informed, 21
Restoration of Active Status, 23 - 24
Restrictions on Financial Aid and Employment, 14
Robert Wood Johnson Medical School (UMDNJ), Joint Programs with, 6
Robeson Cultural Center, 19
Robotics. See Industrial and Systems Engineering
Russian, Central and East European Studies, 182 - 183
Rutgers - Princeton Cooperative Exchange Program, 22
Rutgers, The State University of New Jersey: Divisions of, 207 - 211;
Governance of, 206; Graduate Study at, 4, 5; History of, 3; Location, 5
Rutgers University Foundation, 20
Safety and Security, 28
Schedules and Hours, 24
Scholarships, 11 - 12
Scholastic Standing, 25 - 26, 33, 35, 36
Sexual Assault Services and Crime Victim Assistance, 16
Sexual Harassment Policy, 29
Simultaneous Degrees, 7
Social Work, 183 - 184
Sociology, 185 - 187
Spanish, 187 - 190
Statistics, 190 - 193
Status: Change of, 23; Restoration of, 23 - 24
Student Academic Appeals, 25 - 26
Student Fee, 9
Student Government, 19
Student Information and Assistance, 17, 18
Student Records and Privacy Rights, 30 - 31; Transcripts, 25
Student Review, 25
Student Services, 14 - 20
Student Welfare, 18
Style Guide for Thesis and Dissertation Preparation, 34, 36, 37 - 38
Subject Codes, Summary of, 39
Submission of the Thesis, 36 - 37
Summer Registration, 21 - 22
Systems Engineering. See Industrial and Systems Engineering
Teaching Assistant Project (TAP), 15
Term Bills, 9
Termination of Registration, 10
Termination of Studies, 25
Test of English as a Foreign Language (TOEFL), 8
Tests, 8
Thesis (Master’s), 36 - 37; Preparation of, 37 - 38
Time Limits for Degrees, 35, 37
Toxicology, 193 - 194. See also Pharmacology
Transcripts, 25
Transfer of Credit, 22, 33, 35, 36
Transportation, 19
Tuition and Fees, 9
UMDNJ - RWJMS Exchange, 6 - 7
Undergraduate Courses, 23
Undergraduate Enrollment in Graduate Courses, 23
Urban Planning and Policy Development, 194 - 196
Verbal Assault, Defamation, and Harassment Policy, 29 - 30
Veterans Benefits, 13 - 14
Virology. See Microbiology and Molecular Genetics; Plant Biology
Wireless Communications Certificate, 196 - 197
Withdrawal, 22
Women’s Studies, 100 - 101, 197 - 199. See also English; History; Political Science
Work Study Program, 13
Writing Requirement, 35
Zoology. See Cell and Developmental Biology