About the Cover

Pure mathematics, applied research, art, and innovative teaching converge in the image on the cover. Professor Bahman Kalantari, who developed this novel way to visualize polynomials as images, describes his method as a marriage of art and science made possible by modern computers.

The software that produced the image grew out of Professor Kalantari’s efforts to find faster ways to approximate the zeros in polynomials, an important issue in mathematics. The tool he developed has practical applications in such professions as weather forecasting and economics. In addition, Professor Kalantari says that by helping people visualize abstract concepts, his method could stimulate interest in mathematics among younger students.

Important Notice

Please note that only the printed version of this catalog is the official document of Rutgers, The State University of New Jersey. While Rutgers offers its catalogs on the Internet as a convenience, the university’s online catalogs are unofficial, as is academic information offered at other Rutgers web sites.

The university reserves the right for any reason to cancel or modify any course or program listed herein. In addition, individual course offerings and programs may vary from year to year as circumstances dictate.
Academic Calendars

Dates are subject to change.

2001–2002

<table>
<thead>
<tr>
<th>September</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Tuesday</td>
<td></td>
<td>Fall term begins.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>November</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20 Tuesday</td>
<td></td>
<td>Thursday classes meet.</td>
</tr>
<tr>
<td>21 Wednesday</td>
<td></td>
<td>Friday classes meet.</td>
</tr>
<tr>
<td>22 Thursday</td>
<td></td>
<td>Thanksgiving recess begins.</td>
</tr>
<tr>
<td>25 Sunday</td>
<td></td>
<td>Thanksgiving recess ends.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>December</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12 Wednesday</td>
<td></td>
<td>Regular classes end.</td>
</tr>
<tr>
<td>13 Thursday</td>
<td></td>
<td>Reading period.</td>
</tr>
<tr>
<td>14 Friday</td>
<td></td>
<td>Fall exams begin.</td>
</tr>
<tr>
<td>21 Friday</td>
<td></td>
<td>Fall exams end.</td>
</tr>
<tr>
<td>22 Saturday</td>
<td></td>
<td>Winter recess begins.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>January</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>21 Monday</td>
<td></td>
<td>Winter recess ends.</td>
</tr>
<tr>
<td>22 Tuesday</td>
<td></td>
<td>Spring term begins.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>March</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17 Sunday</td>
<td></td>
<td>Spring recess begins.</td>
</tr>
<tr>
<td>24 Sunday</td>
<td></td>
<td>Spring recess ends.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>May</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6 Monday</td>
<td></td>
<td>Regular classes end.</td>
</tr>
<tr>
<td>7 Tuesday</td>
<td></td>
<td>Reading period.</td>
</tr>
<tr>
<td>8 Wednesday</td>
<td></td>
<td>Reading period.</td>
</tr>
<tr>
<td>9 Thursday</td>
<td></td>
<td>Spring exams begin.</td>
</tr>
<tr>
<td>15 Wednesday</td>
<td></td>
<td>Spring exams end.</td>
</tr>
<tr>
<td>23 Thursday</td>
<td></td>
<td>University commencement.</td>
</tr>
</tbody>
</table>

2002–2003

<table>
<thead>
<tr>
<th>September</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Tuesday</td>
<td></td>
<td>Fall term begins.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>November</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>26 Tuesday</td>
<td></td>
<td>Thursday classes meet.</td>
</tr>
<tr>
<td>27 Wednesday</td>
<td></td>
<td>Friday classes meet.</td>
</tr>
<tr>
<td>28 Thursday</td>
<td></td>
<td>Thanksgiving recess begins.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>December</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Sunday</td>
<td></td>
<td>Thanksgiving recess ends.</td>
</tr>
<tr>
<td>11 Wednesday</td>
<td></td>
<td>Regular classes end.</td>
</tr>
<tr>
<td>12 Thursday</td>
<td></td>
<td>Reading period.</td>
</tr>
<tr>
<td>13 Friday</td>
<td></td>
<td>Reading period.</td>
</tr>
<tr>
<td>16 Monday</td>
<td></td>
<td>Fall exams begin.</td>
</tr>
<tr>
<td>23 Monday</td>
<td></td>
<td>Fall exams end.</td>
</tr>
<tr>
<td>24 Tuesday</td>
<td></td>
<td>Winter recess begins.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>January</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20 Monday</td>
<td></td>
<td>Winter recess ends.</td>
</tr>
<tr>
<td>21 Tuesday</td>
<td></td>
<td>Spring term begins.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>March</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16 Sunday</td>
<td></td>
<td>Spring recess begins.</td>
</tr>
<tr>
<td>23 Sunday</td>
<td></td>
<td>Spring recess ends.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>May</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Monday</td>
<td></td>
<td>Regular classes end.</td>
</tr>
<tr>
<td>6 Tuesday</td>
<td></td>
<td>Reading period.</td>
</tr>
<tr>
<td>7 Wednesday</td>
<td></td>
<td>Reading period.</td>
</tr>
<tr>
<td>8 Thursday</td>
<td></td>
<td>Spring exams begin.</td>
</tr>
<tr>
<td>14 Wednesday</td>
<td></td>
<td>Spring exams end.</td>
</tr>
<tr>
<td>22 Thursday</td>
<td></td>
<td>University commencement.</td>
</tr>
</tbody>
</table>
About the University

Rutgers, The State University of New Jersey, with more than 48,000 students on campuses in Camden, Newark, and New Brunswick, is one of the nation’s major state university systems. The university comprises twenty-nine degree-granting divisions: twelve undergraduate colleges, eleven graduate schools, and six schools offering both undergraduate and graduate degrees. Five are located in Camden, eight in Newark, and sixteen in New Brunswick.

Rutgers has a unique history as a colonial college, a land-grant institution, and a state university. Chartered in 1766 as Queen’s College, it was the eighth institution of higher learning to be founded in the colonies. The school opened its doors in New Brunswick in 1771 with one instructor, one sophomore, and a handful of first-year students. During this early period, the college developed as a classical liberal arts institution. In 1825, the name of the college was changed to Rutgers to honor a former trustee and Revolutionary War veteran, Colonel Henry Rutgers.

Rutgers College became the land-grant college of New Jersey in 1864, resulting in the establishment of the Rutgers Scientific School with departments of agriculture, engineering, and chemistry. Further expansion in the sciences came with the founding of the New Jersey Agricultural Experiment Station in 1880, the College of Engineering in 1914 (now the School of Engineering), and the College of Agriculture (now Cook College) in 1921. The precursors to several other Rutgers divisions also date from this period: the College of Pharmacy in 1892, the New Jersey College for Women (now Douglass College) in 1918, and the School of Education (now a graduate school) in 1924.

Rutgers College became a university in 1924. The legislature passed laws in 1945 and 1956 designating all divisions of Rutgers as the state university of New Jersey. During these years, the university expanded dramatically. An evening division, University College, opened in 1934. The University of Newark joined the system in 1946, and the College of South Jersey at Camden was added in 1950.

Since the 1950s, Rutgers has continued to expand, especially in graduate education. The Graduate School–New Brunswick, the Graduate School–Newark, and the Graduate School–Camden serve their respective campuses. In addition, the university has established professional schools in applied and professional psychology; communication, information, and library studies; criminal justice; the fine arts; management; and social work. Several of these schools offer undergraduate programs as well. In 1969, the university founded Livingston College to provide undergraduate degrees to a diverse community of students.

Today, Rutgers continues to grow, both in its facilities and in the variety and depth of its educational and research programs. The university’s goals for the future include the continued provision of the highest quality undergraduate and graduate education along with increased support for outstanding research to meet the needs of society and to fulfill Rutgers’ role as the State University of New Jersey.

Institutional and Specialized Accreditation

Rutgers, The State University of New Jersey, is accredited by the Commission on Higher Education of the Middle States Association of Colleges and Schools (http://www.msache.org), 3624 Market Street, Philadelphia, PA 19104-2680 (215/662-5606). The Commission on Higher Education of the Middle States Association of Colleges and Schools is an institutional accrediting agency recognized by the U.S. secretary of education and the Council for Higher Education Accreditation. That accreditation was renewed and endorsed in 1998. Documents describing the institution’s accreditation may be downloaded from the university’s web site at http://oirap.rutgers.edu/reports/MSA/index.html. They may be reviewed during regular office hours by contacting the Office of Institutional Research and Academic Planning, Rutgers, The State University of New Jersey, 85 Somerset Street, New Brunswick, NJ 08901-1281 (732/932-7956).

Certain undergraduate programs on the Camden, Newark, and New Brunswick campuses of Rutgers are subject to specialized accreditation. For further information about specialized accreditation, including the names of associations that accredit university programs, contact the Office of Institutional Research and Academic Planning.

Licensure

Rutgers, The State University of New Jersey, is licensed by the New Jersey Commission on Higher Education. For more information, contact its Office of Programs and Services at 609/292-2955.
Graduate Study at the University

GRADUATE SCHOOL–NEW BRUNSWICK

Graduate instruction at the university began in 1876 with courses at Rutgers College, which conferred its first Doctor of Philosophy degree in 1884. The college issued detailed regulations governing graduate degrees in 1912 and set up a separate graduate faculty in 1932. The Graduate School–New Brunswick was established in 1952. The expansion of graduate programs on the Newark and Camden campuses led to the formation of the Graduate School–Newark in 1974 and the Graduate School–Camden in 1981.

Seventeen units grant graduate degrees at the university. In addition to the three graduate schools mentioned above, there are schools offering graduate professional degrees in the arts; criminal justice; education; law; communication, information, and library studies; management; management and labor relations; planning and public policy; applied and professional psychology; and social work. The Graduate School–New Brunswick has faculties in the academic arts and sciences, as well as several professional fields. Together with the Graduate School–Newark, it is responsible for all philosophical degrees awarded by the university at the doctoral level. The school’s enrollment of 3,600 students is distributed among fifty-seven graduate programs, and its faculty comes from virtually all the university’s academic divisions.

The traditional goal of undergraduate instruction is a liberal education in the arts and sciences, while the traditional goal of graduate instruction is an education that fosters creative research, criticism, and scholarship in a particular discipline. The two goals are complementary. Most members of the graduate faculty at the university teach both graduate and undergraduate courses and are as concerned with general education as with specialization. They know that a university is supposed to be an organization of men and women dedicated to bringing about advances in human knowledge. The measure of a university’s success is the degree to which its faculty and students are able to enrich the life of human societies.

The size of the graduate community stems from the large number of departmental and interdepartmental programs offered. Yet, actual enrollment is limited. Thus, the college can provide small classes and seminars in most degree programs, which permits close association between students and faculty members and encourages independent study. The graduate school stresses flexible programs to meet diverse student needs. Students and faculty members are engaged in the common pursuit of learning, and the Graduate School–New Brunswick encourages their joint exploration without imposing rigid, mechanical requirements.

Graduate students who earn their degrees at the university leave with a rigorous grounding in their disciplines and possess markedly broader intellectual experience and agility than they had when they began their studies. They will go into careers in the professions, industry, business, museums, research institutions, or into college or university teaching or other work with enhanced leadership abilities. They will carry with them the potential to contribute value to their own lives and to the lives of others.
Other Graduate Study at the University

In addition to degree programs offered by the Graduate School–New Brunswick, the following divisions of the university provide postbaccalaureate programs in New Brunswick and Piscataway.

College of Pharmacy. The college offers the Pharm.D. degree.

Edward J. Bloustein School of Planning and Public Policy. M.P.H. and D.P.H. degrees in public health are awarded. The school also offers an M.P.P. degree and an M.P.A.P. in policy development, and an M.C.R.P. degree and an M.C.R.S. in urban planning and policy development. In addition, the school awards several joint degrees in public policy, urban planning and policy development, and urban studies and community health. These programs are described in the school’s catalog.

Graduate School of Applied and Professional Psychology. The school offers the Doctor of Psychology (Psy.D.) degree in professional psychology, with specializations in clinical psychology, school psychology, and organizational psychology. It awards the Master of Psychology (Psy.M.) en passant to the doctorate.

Graduate School of Education. In educational psychology, the school offers Ed.M. and Ed.D. degrees in counseling psychology; educational statistics and measurement; learning, cognition, and development; and special education.

In the area of educational theory, policy, and administration, the school offers an Ed.M. degree in administration and supervision in elementary education; administration and supervision in secondary education; adult and continuing education; school business administration; social and philosophical foundations; and social studies education. Also offered are Ed.S. and Ed.D. degrees in educational administration and supervision and school business administration.

For teachers, the school offers Ed.M., Ed.S., and Ed.D degrees in elementary/early childhood education and for instruction in English/language arts, languages, mathematics, and science. Finally, the school confers the same three degrees in literacy education.

Mason Gross School of the Arts. The school grants M.F.A. degrees in theater arts and visual arts and the M.M., D.M.A., and A.Dipl. degrees in music.

School of Communication, Information and Library Studies. The school offers an M.C.I.S. degree in communication and information studies and an M.L.S. degree in library and information science.

School of Management and Labor Relations. The school awards an M.H.R.M. degree in human resource management and an M.L.E.R. degree in labor and employment relations.

School of Social Work. M.S.W. degrees are offered in administration, policy, and planning, and in direct practice.

At Rutgers–Newark, programs are offered by the Graduate School–Newark, the Graduate School of Management, the School of Criminal Justice, and the School of Law–Newark. At Rutgers–Camden, programs are offered by the Graduate School–Camden, the School of Law–Camden, and the School of Business–Camden.

Each of the university’s graduate-level schools publishes a catalog that is available upon request. More complete descriptions of the schools located in New Brunswick can be found under their respective program listings in this catalog.

LOCATION

New Brunswick, with a population of about 42,000, is located in central New Jersey at Exit 9 of the New Jersey Turnpike and along the New York-Philadelphia railroad line. It is approximately thirty-three miles from New York City, and frequent express bus service is available from a station near the College Avenue campus to central Manhattan. Princeton is sixteen miles to the south, Philadelphia about sixty miles to the southwest, and Washington fewer than two hundred miles to the southwest. The libraries, theaters, concert halls, museums, galleries, research institutes, clubs, and other educational, cultural, and recreational resources of the New York-Philadelphia region are easily accessible to students. In addition, Rutgers attracts many distinguished visitors, lecturers, and performing artists not always available to less favorably situated institutions.

Newark, the state’s largest city, and Camden, which faces Philadelphia across the Delaware River, are characteristic northeastern American metropolitan centers. The university’s Newark campus is about twenty miles from its New Brunswick-Piscataway campuses, and a few faculty members get involved in activities at both locations. The distance between New Brunswick and Camden is about fifty-five miles, making interchanges between these campuses less frequent. Nevertheless, the faculty participating in New Brunswick-Piscataway programs does include members from Camden and Newark.
Degree Programs Available

Advanced degrees in the subjects listed below are conferred by the university upon recommendation of the faculty of the Graduate School–New Brunswick. Further information about areas of specialization in which degree programs are conducted may be found under the general subject headings in the Programs, Faculty, and Courses chapter.

Agricultural Economics (M.S.)
Animal Sciences (M.S., Ph.D.)
Anthropology (M.A., Ph.D.)
Art History (M.A., Ph.D.)
Biochemistry (M.S., Ph.D.)
BioMaPS (Ph.D. pending)
Biomedical Engineering (M.S., Ph.D.)
Bioresource Engineering (M.S.)
Cell and Developmental Biology (M.S., Ph.D.)
Ceramic and Materials Science and Engineering (M.S., Ph.D.)
Chemical and Biochemical Engineering (M.S., Ph.D.)
Chemistry (M.S., M.S.T., Ph.D.)
Civil and Environmental Engineering (M.S., Ph.D.)
Classics (M.A., M.A.T., Ph.D.)
Communication, Information, and Library Studies (Ph.D.)
Comparative Literature (M.A., Ph.D.)
Computer Science (M.S., Ph.D.)
Ecology and Evolution (M.S., Ph.D.)
Economics (M.A., Ph.D.)
Education (Ph.D.)
Electrical and Computer Engineering (M.S., Ph.D.)
English, Literatures in (M.A., Ph.D.)
Entomology (Ph.D.)
Environmental Sciences (M.S., Ph.D.)
Food Science (M.S., Ph.D.)
French (M.A., M.A.T., Ph.D.)
Geography (M.A., M.S., Ph.D.)
Geological Sciences (M.S., Ph.D.)
German (M.A., Ph.D.)
History (M.A., Ph.D.)
Industrial and Systems Engineering (M.S., Ph.D.)
Industrial Relations and Human Resources (Ph.D.)
Italian (M.A., M.A.T., Ph.D.)
Linguistics (M.A., Ph.D.)
Mathematics (M.S., Ph.D.)
Mechanical and Aerospace Engineering (M.S., Ph.D.)
Mechanics (M.S., Ph.D.)
Microbiology and Molecular Genetics (M.S., Ph.D.)
Music (M.A., Ph.D.)
Nutritional Sciences (M.S., Ph.D.)
Oceanography (M.S., Ph.D.)
Operations Research (M.S., Ph.D.)
Pharmaceutical Science (M.S., Ph.D.)
Pharmacology, Cellular and Molecular (M.S., Ph.D.)
Philosophy (M.A., Ph.D.)
Physics and Astronomy (M.S., M.S.T., Ph.D.)
Physics and Neurobiology (M.S., Ph.D.)
Plant Biology (M.S., Ph.D.)
Political Science (M.A., Ph.D.)
Psychology (M.S., Ph.D.)
Public Health (Ph.D.) (offered jointly with and administered by UMDNJ-School of Public Health)
Social Work (Ph.D.)
Sociology (M.A., Ph.D.)
Spanish (M.A., M.A.T., Ph.D.)
Statistics (M.S., Ph.D.)
Toxicology (M.S., Ph.D.)
Urban Planning and Policy Development (Ph.D.)
Women’s and Gender Studies (M.A.; Ph.D. pending)

SPECIAL PROGRAMS

Interdisciplinary Ph.D. Programs

In addition to the formal doctoral programs, special interdisciplinary Ph.D. programs may be arranged for students who wish to pursue subjects that cut across program boundaries. A student who seeks the Ph.D. in an area requiring the services of two or more program faculties should consult interested faculty members and then submit a formal proposal outlining a program of study to the dean of the Graduate School–New Brunswick. Courses, examinations, the dissertation topic, and the names of faculty members who have agreed to serve as the student’s committee must have the approval of the directors of the graduate programs involved. Requests for special programs normally are considered only after the student has completed satisfactorily at least one year of work in the Graduate School–New Brunswick. Upon receiving written approval of the faculties concerned, the dean appoints an ad hoc committee to supervise the remainder of the student’s program of graduate study and research. The university transfers the student to the interdisciplinary Ph.D. program (curriculum code 554).

Joint Programs

Rutgers, The State University of New Jersey, and the University of Medicine and Dentistry of New Jersey–Graduate School of Biomedical Sciences also offer joint Ph.D. and M.S. degrees to candidates in biochemistry, biomedical engineering, cell and developmental biology/anatomy, microbiology and molecular genetics, cellular and molecular pharmacology, physiology and neurobiology, and toxicology.

A joint doctoral program in public health is offered in cooperation with the University of Medicine and Dentistry of New Jersey–Robert Wood Johnson Medical School. This program is administered by UMDNJ-RWJMS. Students should address inquiries to the New Jersey Graduate Program in Public Health, Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, 170 Frelinghuysen Road, Piscataway, NJ 08854-8020.

Combined M.D./Ph.D. Degree

The University of Medicine and Dentistry of New Jersey–Robert Wood Johnson Medical School and the Graduate School–New Brunswick/University of Medicine and Dentistry of New Jersey–Graduate School of Biomedical Sciences offer a combined M.D./Ph.D. program.

Students will be selected for the program on the basis of previous academic work, M.C.A.T. or G.R.E. test scores, and letters of recommendation.
For further information and an application form, contact the Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey–Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854-5635.

Simultaneous Degrees

A student admitted to one degree program may pursue simultaneously a second degree in another program. The director of the graduate program offering the second degree must notify the Office of the Dean of the Graduate School in writing of the student’s acceptance by that program. Students may be registered in only one program at a time.

Certificate Programs and Core Curricula

The Graduate School–New Brunswick offers programs of concentration that complement formal degree programs. While these programs do not offer degrees, they do permit students to pursue interdisciplinary specializations without impeding their progress toward their degrees. There are several options for specialization. Some are done without formal acknowledgment, such as the program in packaging science and engineering. Others, however, are extensions of existing degree programs, such as the museum studies certificate offered in connection with the M.A. degree in art history. Programs leading to an interdisciplinary Ph.D. also may be arranged (see the section on Interdisciplinary Ph.D. Programs).

Interdisciplinary certificate programs and core curricula provide a more formal means for participating in a cross-disciplinary area and for encouraging collaborative work. Students who complete their degrees while also meeting the requirements of a certificate program will receive a certificate indicating their concentration of study. All certificate options require students to take courses outside their degree programs and to write a major paper or thesis on a topic appropriate to the certificate. Some programs also offer interdisciplinary seminars.

Core curricula are designed differently. In contrast to the informal structure that prevails in certificate programs, students must apply formally and receive admission into core curricula. Typically, these programs provide fellowship or traineeship support for enrolled students. Basic courses, seminars, and laboratory rotations allow students to explore problems at the boundaries of degree programs and to postpone commitment to a given degree program for a time. Students completing such curricula also must meet the requirements of the degree program in which they are matriculated.

Details concerning certificate programs and core curricula may be found in the Programs, Faculty, and Courses chapter.

<table>
<thead>
<tr>
<th>Certificate Programs</th>
<th>Core Curricula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol Studies</td>
<td>Biotechnology</td>
</tr>
<tr>
<td>Asian Studies</td>
<td>Molecular and Cell Biology</td>
</tr>
<tr>
<td>Cognitive Science</td>
<td>Molecular Biophysics</td>
</tr>
<tr>
<td>Curatorial Studies</td>
<td>Molecular Biosciences</td>
</tr>
<tr>
<td>Engineering Geophysics</td>
<td></td>
</tr>
<tr>
<td>Human Dimensions of</td>
<td></td>
</tr>
<tr>
<td>Environmental Change</td>
<td></td>
</tr>
<tr>
<td>Medieval Studies</td>
<td></td>
</tr>
<tr>
<td>Quaternary Studies</td>
<td></td>
</tr>
<tr>
<td>Russian, Central and</td>
<td></td>
</tr>
<tr>
<td>East European Studies</td>
<td></td>
</tr>
<tr>
<td>Teaching of Writing</td>
<td></td>
</tr>
<tr>
<td>Wireless Communications</td>
<td></td>
</tr>
<tr>
<td>Women’s Studies</td>
<td></td>
</tr>
</tbody>
</table>

Nondegree Graduate Study

The Nondegree Graduate Study Office, 18 Bishop Place (732/932-7711), cooperates with the Graduate School–New Brunswick in arranging the admission of part-time, nonmatriculated students. Nondegree graduate study is available at the discretion of the academic programs.

With the approval of the appropriate graduate program director, as many as 12 credits earned in courses successfully completed in the nondegree program may be applied to satisfy requirements for students subsequently admitted to degree programs. Admission to a nondegree program, however, is independent and distinct from admission to a degree program. Each requires a separate application and fee, and admission to nondegree study does not guarantee admission to a degree program. Students are not permitted to accumulate more than 12 credits in nondegree study prior to matriculation in a degree program. Students admitted to nondegree study must comply with the rules, regulations, and deadlines of the Graduate School–New Brunswick.
Admission

Requirements

A bachelor’s degree, or its equivalent, from a recognized institution of higher education is required of applicants to the Graduate School–New Brunswick. An average of B or better in previous academic work is expected. Additional evidence of potential for graduate study must be demonstrated by letters of recommendation and by scores on the Graduate Record Examination, which all programs require. Applicants should refer to the current application form and instructions for the specific requirements and prerequisites of each program. The applicant’s character, integrity, and fitness to practice a particular profession also may be considered in the admissions process. Admission is competitive, and some applicants who meet or surpass minimum requirements may be denied acceptance. Admission is recommended by faculty of the graduate program that a student seeks to enter, and it must be approved by the dean of the Graduate School–New Brunswick or the dean’s representative.

Applications

Admission materials are available from the Office of Graduate and Professional Admissions, Rutgers, The State University of New Jersey, 18 Bishop Place, New Brunswick, NJ 08901-8530 (732/932-7711). These materials may be downloaded from the Graduate Admissions web site at http://gradstudy.rutgers.edu, and students can apply electronically from this site. A complete application consists of the application form, the application fee, letters of recommendation, official transcripts of previous academic work, a personal statement or essay, and test scores. Additional materials may be required by some programs. Detailed procedures and instructions accompany the application form.

Deadlines

Application deadlines, which vary by program, are listed in current admissions materials. Applications for assistantships and fellowships that are received after March 1 are at a disadvantage, but they will be considered as long as awards are available. Many programs have established different financial-aid deadlines, which are cited in the application information. International students applying from abroad must submit application materials by November 1 for spring-term admission and by April 1 for fall-term admission, unless the individual program deadline is earlier. Programs reserve the right to change stated deadlines.

Tests

The Graduate School–New Brunswick requires applicants for matriculated status to submit results of the General Graduate Record Examination (GRE). GRE information may be obtained from the Graduate Record Examination Program, Educational Testing Service, P.O. Box 6000, Princeton, NJ 08541-6000 (609/771-7670). Some programs also require additional tests.

Graduate programs may require that test scores more than five years old be validated, either by evidence of continued work in the field or by reexamination.

International Applicants

International applicants are required to submit scores from the Test of English as a Foreign Language (TOEFL) or the International English Language Testing System (IELTS) if English is not their native language. For information about the TOEFL, contact TOEFL/TSE Services, P.O. Box 6151, Princeton, NJ 08541-6151 (609/771-7100). For information about the IELTS, contact IELTS International, 1024 West Orange Grove Avenue, Arcadia, CA 91006 (626/355-0650). English proficiency is a prerequisite for graduate study at the university. Admitted students may be required to take a test of English proficiency soon after arrival at the university and may have to take course work in English as a Second Language (ESL). These courses are cited in the Programs, Faculty, and Courses chapter.

New international students appointed as teaching assistants are required to take an oral proficiency test regardless of their TOEFL or IELTS scores. Nonimmigrant students also must present evidence of adequate financial resources to meet educational and living expenses.

Notification of Decisions

Applicants will receive written notification of admissions decisions from the Office of Graduate and Professional Admissions. Admission will be confirmed on a Certificate of Admission, which may list certain conditions. Such conditions should be satisfied before registration unless otherwise indicated. Admission to the Graduate School–New Brunswick does not constitute admission to candidacy for an advanced degree. Candidacy is explained elsewhere in this catalog.

Students who fail to register for the term to which they were admitted should contact the graduate admissions office for further instructions.
Tuition and Fees

FEE SCHEDULE

2001–2002 Academic Year

Note: The university reserves the right to alter the amounts indicated on the following schedule at any time before the first day of classes of a term.

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Fee, nonrefundable</td>
<td>$50.00</td>
</tr>
<tr>
<td>Tuition *</td>
<td></td>
</tr>
<tr>
<td>Full-time New Jersey resident, per term</td>
<td>3,736.00</td>
</tr>
<tr>
<td>Full-time non-New Jersey resident, per term</td>
<td>5,478.00</td>
</tr>
<tr>
<td>Part-time New Jersey resident, per credit</td>
<td>308.00</td>
</tr>
<tr>
<td>Part-time non-New Jersey resident, per credit</td>
<td>454.50</td>
</tr>
<tr>
<td>Student Fee, per term</td>
<td></td>
</tr>
<tr>
<td>Full time (12 or more credits)</td>
<td>348.00</td>
</tr>
<tr>
<td>Part time (11 or fewer credits)</td>
<td>92.00</td>
</tr>
<tr>
<td>Off-campus college fee, full time</td>
<td>400.00</td>
</tr>
<tr>
<td>Off-campus college fee, part time</td>
<td>100.00</td>
</tr>
<tr>
<td>Matriculation continued or 1 credit of research</td>
<td>7.00</td>
</tr>
<tr>
<td>Computer Fee</td>
<td></td>
</tr>
<tr>
<td>Full time</td>
<td>100.00</td>
</tr>
<tr>
<td>Part time ($20.00–47.00 based on credit hours)</td>
<td>20.00+</td>
</tr>
<tr>
<td>NJ PIRG Fee (full-time students only; optional fee)</td>
<td>8.75</td>
</tr>
<tr>
<td>Housing †</td>
<td></td>
</tr>
<tr>
<td>Dormitory, including breaks</td>
<td>2,260.00</td>
</tr>
<tr>
<td>Dormitory, calendar year</td>
<td>2,662.00</td>
</tr>
<tr>
<td>University apartments, including breaks</td>
<td>2,460.00</td>
</tr>
<tr>
<td>University apartments, calendar year</td>
<td>2,893.00</td>
</tr>
<tr>
<td>Meal Plans, per term</td>
<td></td>
</tr>
<tr>
<td>Any 105 meals to any 285 meals</td>
<td>1,050.00–1,470.00</td>
</tr>
<tr>
<td>Any 50 meals to any 75 meals (commuter)</td>
<td>435.00–625.00</td>
</tr>
<tr>
<td>Miscellaneous Fees</td>
<td></td>
</tr>
<tr>
<td>Basic health insurance program, per term</td>
<td>95.16</td>
</tr>
<tr>
<td>Part-time students only (optional)</td>
<td></td>
</tr>
<tr>
<td>Major medical insurance plan, per term §</td>
<td>152.50</td>
</tr>
<tr>
<td>Spouse, per term</td>
<td>152.50</td>
</tr>
<tr>
<td>Each child, per term</td>
<td>152.50</td>
</tr>
<tr>
<td>Late registration fee</td>
<td>50.00</td>
</tr>
<tr>
<td>Late payment fee</td>
<td>125.00</td>
</tr>
<tr>
<td>Returned check fee</td>
<td>50.00</td>
</tr>
<tr>
<td>Returned check processing fee</td>
<td>10.00</td>
</tr>
<tr>
<td>Partial-payment fee</td>
<td>25.00</td>
</tr>
<tr>
<td>Late payment fee for partial payments</td>
<td>25.00</td>
</tr>
<tr>
<td>Microfilming of doctoral dissertation</td>
<td>55.00</td>
</tr>
<tr>
<td>Student ID fee</td>
<td>15.00</td>
</tr>
<tr>
<td>Restoral Fee</td>
<td></td>
</tr>
<tr>
<td>Fee, per term</td>
<td>308.00</td>
</tr>
<tr>
<td>Maximum fees (through five terms)</td>
<td>1,540.00</td>
</tr>
<tr>
<td>(applies to certain students who allow their registration to lapse and wish to be restored to active status as degree candidates)</td>
<td></td>
</tr>
</tbody>
</table>

Note: All breakage and damage to university property is charged for in full. The university is not responsible for loss by fire or theft of private property in its buildings.

STUDENT FEE AND OTHER CHARGES

The student fee covers use of the student centers and the health centers, membership in the Graduate Student Association, and certain administrative services. The low fees charged to graduate students do not include the fee for intercollegiate athletics, which entitles undergraduates to discounted prices for tickets.

Special fees charged for some undergraduate courses apply also to graduate students enrolling in those courses. Deposits of varying amounts, covering the cost of materials and breakage, are required in certain laboratory courses in the sciences; unused portions of such fees are returned.

TERM BILLS

Instructions for registration and payment of term bills, with due dates indicated, are sent by mail to the student’s home address for the first and second terms.

It is the student’s responsibility to obtain, complete, and return the term bill on time. Students who fail to do so are charged a late payment fee of $125. In addition, when all balances that a student owes are not paid in full when due, that student is responsible for any costs incurred by the university to collect such debt. This may include, but is not limited to, collection costs, litigation and attorney fees, and court costs. Graduate students enrolled for 6 or more credits may pay their bills according to the partial-payment plan outlined below. Teaching assistants, graduate assistants, and graduate fellows may be eligible to elect a payroll-deduction plan to pay for housing, dining, and required student fees. Interested students must complete the authorization form no later than the second week of the term. The form and details are available at student accounting/cashiering offices.

Payment of the term bill may be made in person or by mail. Checks or money orders are preferred and should be made payable to Rutgers, The State University of New Jersey. Cash should not be sent through the mail. Payment also may be made by Visa®, MasterCard®, or Discover® Card. Transactions that are declined by the bank are considered unpaid and are returned to the student. Refunds of credit card payments will be made by a check issued by Rutgers to the student.

PARTIAL-PAYMENT PLAN

Students enrolled for 6 or more credits may arrange with the local cashier’s office to pay their bills in three installments if the net balance that they owe is $200 or more. The partial-payment plan requires:

1. First payment: 50 percent of the net balance due plus a $25 nonrefundable partial-payment fee payable on or before the date indicated on the term bill.

* For an explanation of New Jersey residency status, see Student Residency for Tuition Purposes in the Academic Policies and Procedures chapter.
† Housing rates may be slightly higher or lower depending on whether it is single or double occupancy.
‡ Required for international students.
§ This insurance is optional.
2. Second payment: 25 percent of the net balance due on or before September 15 for the fall term and on or before February 1 for the spring term.
3. Third payment: net balance due on or before October 15 for the fall term and on or before March 1 for the spring term.

Any student submitting a term bill after classes have begun for the term must make payment according to the following schedule:

1. First payment: 75 percent of net balance due plus a $25 nonrefundable partial-payment fee.
2. Second payment: net balance due on or before October 15 for the fall term and on or before March 1 for the spring term.

The nonrefundable fee for this partial-payment plan, $25 per term, must be included with the first payment. Any subsequent installment not paid on time incurs an initial late fee of $25. The university reserves the right to increase the partial-payment plan fee.

LIVING EXPENSES

Full-time graduate students, who were New Jersey residents and who received no financial assistance from the university, paid tuition and student fees totaling $7,557 for the 2000–2001 academic year. Single students living in university housing paid rent of $4,658 for the academic year. Food for the academic year came to $2,700 if the full meal plan was selected. Books and supplies may have cost another $1,000. The expenses of clothing, laundry, travel, treats, and other items vary according to individual circumstances, but these items may be estimated at $3,000. Based on these figures, a total figure of approximately $19,000 per academic year is realistic. In its June meeting, the Rutgers Board of Governors voted to increase rates for room and board by 6 percent and 4 percent, respectively.

Students who are not New Jersey residents pay higher tuition and may incur additional expenses during the summer period. As much as $5,000 more may be required.

REGISTRATION

Activation of Registration

A student's registration is activated through the proper submission of a term bill, accompanied by payment, or through an appropriate claim of financial aid. Activation of registration will not take place if there are “holds” placed on a student's records because of failure to meet outstanding obligations.

Termination of Registration

Rutgers exercises the right to terminate the registration of any student who has an outstanding financial obligation to the university after giving sufficient notice to the student. The university reserves the right to “hold” transcripts and diplomas because of nonpayment of obligations, to forward delinquent accounts to collection agencies, and to levy a collection fee. “Holds” are removed upon satisfaction of the outstanding obligation. The terminated student may petition for reinstatement of enrollment by satisfying the indebtedness to the university and paying a $50 reinstatement fee.

Cancellation of Registration

To cancel registration and obtain a full refund of tuition and fees, students must notify the registrar in writing before the first day of classes. A student whose registration is canceled by the registrar will receive a full refund of tuition and fees, and prorated charges for room and board, if applicable. Notification of cancellation received on or after the first day of classes is treated, for billing purposes, as a withdrawal, and a refund will be made based on the general refund policy.

GENERAL REFUND POLICY

A student who voluntarily withdraws from all courses during the first six weeks of a term will receive a partial reduction of tuition (and charges for room and board, if applicable) according to the week of withdrawal as follows:

- First and second week: 80%
- Third and fourth week: 60%
- Fifth and sixth week: 40%

No reduction is granted after the sixth week.

The effective date of withdrawal is the date on which a written statement of withdrawal is received by the registrar. Student fees are not refundable.

When students withdraw from one or more courses after the second week of classes but remain registered in others, the university will assign W grades for the courses dropped. No reductions will be granted after the tenth day of classes to students who withdraw from one or more courses but who remain in other courses. If withdrawal from one or more courses amounts to complete withdrawal from a program, the policy for full withdrawal applies.

Failure to attend class is not equivalent to a withdrawal. A student will not receive an adjustment of charges from the university unless he or she files a formal withdrawal and receives approval from the registrar. Whether the student actually attended classes or took examinations has nothing to do with the withdrawal process.

Refund Policies for Title IV Funds Recipients

For recipients of Title IV funds, there are two additional refund schedules that differ from the general refund policy. First-time Title IV funds recipients who withdraw completely from Rutgers are provided with a separate schedule under the Pro-Rata Refund policy. Title IV funds recipients who are not first-time attendees are provided a schedule of refunds via the Appendix A Refund Policy.

For further information, contact the Office of Financial Aid.
Financial Aid

A majority of full-time graduate students at the university receive some financial aid. The amount of support each student receives depends, in part, upon the availability of funds. The level of support often is dependent upon the specific graduate program and the student’s degree status. Aid ranges from loans to grants covering tuition charges to awards sufficient to pay all educational and most living expenses. The sources of support include university funds, federal and state government funds, corporate and individual bequests to the university, and grants from educational and scientific foundations.

MERIT-BASED FINANCIAL AID

Assistantships, Fellowships, Grants, and Scholarships

All applicants are considered automatically for university-based assistantships, fellowships, and scholarships. Inquiries should be addressed to the director of the graduate program to which the student has applied.

Students are encouraged to apply for externally funded fellowships as well. See the Nonuniversity Fellowships heading later in this chapter.

Assistantships Awarded by the University. The minimum beginning salary for teaching and graduate assistantships is $14,300 (2002–2003) for an academic year, although higher salaries may be offered by some departments.

Bevier and University Fellowships. Graduates of Rutgers, The State University of New Jersey, and postqualifying students already at the university may apply for Louis Bevier Fellowships and University Fellowships. Funds provided by the state and by the Louis Bevier Memorial Fund, respectively, support a limited number of fellowships that carry stipends of $13,000. The Louis Bevier Memorial Fund was established through the generosity of Dr. and Mrs. Ralph G. Wright in honor of the late Dean Bevier.

Ralph Johnson Bunche Distinguished Graduate Award. Established in 1979, this distinguished graduate award is named after Ralph Johnson Bunche, the African-American statesman, Nobel Peace Laureate, and recipient of an honorary Doctor of Laws from Rutgers in 1949.

Bunche fellowships provide $13,000 plus tuition remission for as many as two years to exceptional, full-time students with backgrounds of substantial educational or cultural disadvantage.

Bunting-Cobb Graduate Residential Fellowship for Women in Mathematics, Science, and Engineering. Bunting-Cobb Graduate Fellowships for Women in Mathematics, Science, and Engineering are offered by Douglass College, the women’s undergraduate unit of Rutgers, for women enrolled as full-time students in mathematics, science, and engineering programs in the Graduate School–New Brunswick. The award provides a two-year fellowship to women graduate students in mathematics, science, or engineering. Bunting-Cobb Graduate Fellows live in residence in the Bunting-Cobb Math and Science Hall at Douglass and serve as mentors to undergraduate women in mathematics, science, and engineering. The award includes a stipend and a single room with board for the academic year. Stipend and responsibilities are based upon the fellow’s year in graduate study. Bunting-Cobb Fellows have the opportunity to be part of a unique program of support for women in math, science, and engineering. For more information, contact the Douglass Project for Rutgers Women in Math, Science, and Engineering, Douglass College, Rutgers, The State University of New Jersey, 50 Bishop Street, New Brunswick, NJ 08901-8558, or call 732/932-9197.

Diversity Advancement Program in Teaching and Research. Through referral from graduate program directors and by other means, the Diversity Advancement Program identifies individuals whose ethnicity or background makes them unusual among students in their respective fields. Fellowships from various sources are allocated to encourage the enrollment of these students and thus diversify the graduate community. The fellowships awarded are comparable to those awarded through the schools and colleges. For more information, contact DAP, Rutgers, The State University of New Jersey, 25 Bishop Place, New Brunswick, NJ 08901-1181, or call 732/932-8122.

Eagleton Institute of Politics Graduate Fellowships. The Eagleton Institute of Politics offers fellowships to graduate students who seek a hands-on understanding of politics by supplementing their academic work with practical experience. Graduate students at all levels in disciplines at the Graduate School and many of the professional schools at Rutgers are eligible. Fourteen fellowships are awarded each year with stipends of $5,000 or $6,000; seven of them also provide tuition. Applications are due by April 1.

Fellowship Awards. Fellowship Awards are made by the Graduate School–New Brunswick and other units to doctoral students of exceptional promise. The awards typically carry stipends of $13,000 to $18,000 plus tuition for varying periods of time.

Nonuniversity Fellowships. Some graduate students at the university receive fellowships funded by sources outside the university. A major source of funding is the National Science Foundation, which offers talented graduate students in the sciences significant funding to pursue their academic programs. Information and applications are available from the Fellowship Office, National Research Council, 2101 Constitution Avenue NW, Washington, DC 20418. Other sources of prestigious fellowships are the Mellon Fellowships in the Humanities, administered by the Woodrow Wilson National Fellowship Foundation; the Jacob Javits Fellowships, administered by the U.S. Department of Education; and the National Defense Science and Engineering Fellowships, sponsored by the U.S. Department of Defense. Students may wish to consult standard reference material for other sources of nonuniversity fellowships.

Many national, state, and regional associations make special awards. Students should contact clubs; fraternal, religious, and national professional organizations; and local interest groups for possible aid through stipends and tuition credits. A student who receives any of these awards is required to notify the Office of Financial Aid.
Henry J. Raimondo Legislative Fellowships. The Eagleton Institute of Politics offers eight Henry J. Raimondo fellowships to graduate students on Rutgers’ three campuses who want to participate in state government. The one-year fellowship provides a $7,500 stipend plus tuition and fees. Fellows begin the program with a 3-credit state legislative process course. In the spring, they complement their academic study with fifteen hours a week of practical experience as interns in the legislature. Fellows enroll for 3 credits of independent study in their respective disciplines and work with a faculty member in their school or discipline to coordinate their legislative internship experience and their academic study. Applications are due by April 1.

Russell Scholarships. Walter C. Russell Graduate Scholarships provide for the cost of tuition. A student should apply to the director of his or her graduate program. Students seeking awards for the following academic year should apply by March 1 of the prior year. Those seeking aid for the spring term should apply by December 1 of the preceding term.

Robert White-Stevens Graduate Fellowship. The Robert White-Stevens Graduate Fellowship is named in memory of Dr. Robert White-Stevens, who was an agriculturist and former chairman of the Bureau of Conservation and Environmental Science. Dr. White also was the assistant director of the New Jersey Agricultural Experiment Station, a biology professor, and a faculty member of Cook College. The fellowship named for Dr. White supports an advanced doctoral student who is committed to alleviating world hunger by increasing the food supply through plant or animal research.

Other Fellowships and Scholarships. Each department continually seeks funds from outside agencies to help defray student expenses. Inquiries regarding the availability of such monies may be made through graduate program offices and advisers.

NEED-BASED FINANCIAL AID

Limited funds are available from grants, low-interest loans, and part-time employment. Application for such aid is made by completing the Free Application for Federal Student Aid (FAFSA). These forms are available from most college and university financial aid offices, as well as from the Office of Financial Aid. All students are encouraged to apply for federal and other forms of financial aid. The following is a description of each program.

How to Apply

All applicants must complete the Free Application for Federal Student Aid (FAFSA) annually and submit it to the federal processor at the address listed on the form’s envelope. Students should submit their aid applications by March 15 if they are seeking aid for the following academic year. The forms are available at all Rutgers financial aid offices. To ensure full consideration for funds, students should file their FAFSA at the time they submit their admission application, but no later than March 15.

Letters announcing financial aid decisions are mailed to all students as soon as possible after admission. Awards are based on financial need and are limited by the March 15 priority filing date. Thus, there is a definite advantage to submitting an early, accurate, and complete application.

Counseling is available at the financial aid office to all students regardless of whether they qualify for financial aid. When comparing aid offers from Rutgers with those from other institutions, students should remember that costs often differ significantly from school to school. Therefore, the important thing to weigh is not the dollar value of a financial aid offer, but the difference between the total value of the financial aid package awarded by the institution and the cost of attending that institution.

Part-Time Students

Since financial need is determined by comparing a student’s resources with the cost of attending school, most part-time students who have jobs do not demonstrate financial need.

The university has extremely limited financial aid funds for part-time students. All application procedures and deadlines applicable to full-time students apply to part-time students.

Grants

State Grant. Full-time graduate students, who are classified as New Jersey residents for tuition purposes and who demonstrate financial need, are eligible to receive a New Jersey State Grant. Amounts, which vary from $200 to $1,000 per year, are dependent upon available funds. Application is made by submitting a FAFSA. EOF grant recipients are not eligible.

Educational Opportunity Fund (EOF). New Jersey residents who are full-time students and who can demonstrate backgrounds of financial and academic hardship are eligible for EOF grants ranging from $200 to $2,650. Students who received EOF grants as undergraduates are presumed eligible if they fall below the maximum income parameters required for all recipients of this state grant. Graduate students who did not receive EOF grants as undergraduates, but feel that they come from backgrounds of financial hardship and wish to be considered, should write to the financial aid office for consideration. The grants are renewable for the duration of a student’s degree work. The student must demonstrate continued eligibility and provide evidence of satisfactory academic progress. In addition, students must complete the FAFSA.

Loans

Federal Perkins Loans. Federal Perkins Loans are available to students who are enrolled in a minimum of 6 credits per term, who are citizens or permanent residents of the United States, and who demonstrate need through the FAFSA. Annual awards vary according to fund availability but cannot, by federal regulation, exceed $6,000. Federal regulation limits the maximum aggregate loan amount for graduate and professional students to $40,000, including National Direct Student and Perkins loans borrowed as an undergraduate student.
Interest at the rate of 5 percent begins nine months after
the borrower ceases to enroll in a minimum of 6 credits
per term. It extends over a maximum repayment period
of ten years. Monthly payments of at least $40 are required.
Deferral of repayment is permitted for certain kinds of
federal service, and cancellation of loans is permitted for
certain public-service positions.

All first-time Federal Perkins Loan borrowers at Rutgers
are required to attend an entrance interview to learn about
their rights and responsibilities regarding the loan. In addition,
Federal Perkins Loan recipients must attend an exit in-
terview before graduation or upon withdrawal from school.
Details and procedures regarding the repayment of the
Federal Perkins Loan are sent to each student recipient
by Rutgers, The State University of New Jersey; Office of
Student Loans; Division of Student Accounting, Billing,
Cashiering, and Collections; 65 Davidson Road; Piscataway,
NJ 08854-8094.

William D. Ford Federal Direct Loans. Federal Direct
Student Loans (Direct Loans) are available to students from
the federal government to pay for educational costs. These
loans eliminate the need for an outside lender, such as a
bank. To be considered for a Direct Loan, students must
complete the FAFSA. Subsequently, the award letter issued
by Rutgers will list eligibility for the program. Money
awarded to students will be credited directly to their
accounts. Because Rutgers has chosen to participate in
direct lending, the university cannot accept any Federal Stafford
applications from students or their lenders. Since the U.S.
Department of Education is the lender for the Federal Direct
Loan Program, borrowers will send all loan repayments to
the department, rather than to several lenders.

In general, to be eligible for a Direct Loan, a student must:
• have a high school diploma or a General Education
 Development (GED) certificate or meet other standards
 set by the U.S. Department of Education,
• provide evidence of U.S. citizenship or be an eligible
 noncitizen,
• be enrolled at least half time per term and be making
 satisfactory academic progress,
• have a valid Social Security number,
• sign a statement of educational purpose,
• not be in default on prior loans or owe refunds to a
 federal grant program, and
• register with the U.S. Selective Service, if required.

In addition to these requirements, all first-time Federal
Direct Loan borrowers must attend an entrance interview
in order to learn about rights and responsibilities regarding
the loan.

The aggregate limit for Federal Direct Loans, including
both subsidized and unsubsidized amounts is $138,500 for
a graduate or professional student (including loans for
undergraduate study).

Federal Direct Subsidized Loan. This loan is based on
financial need. The government pays the interest on the
loan while the student is attending school. The variable
interest rate is adjusted each year. Effective July 1, 2001, the
maximum rate for the Federal Direct Loan was 5.99 percent.
Additionally, borrowers are charged an origination fee of
1.5 percent. Graduate students may borrow $8,500 per year.
The total debt may not exceed $65,500, including loans for
undergraduate years.

Federal Direct Unsubsidized Loan. This loan is not based
on financial need, and all interest charges must be paid
by the student. The interest rate is the same as that of the
Federal Direct Subsidized Loan. Students may borrow as
much as $18,500 per year, less any amount from the sub-
sidized loan program. The total debt permitted for all
subsidized and unsubsidized Direct Loans is $138,500.

Emergency Loans. Students having a financial emergency
may apply for a university loan of as much as $300 (up to
$500 in an extreme case). The simple interest rate is 3 per-
cent. An emergency need must be demonstrated and funds
must be available.

Students should contact their local financial aid office for
additional information. If loans in excess of this amount are
required, an appointment with a counselor is recommended.
Students need not be recipients of financial aid or have filed
a financial aid application to be considered for these loans.

Note: Quoted interest rates may change at any time. Sub-
sequent program regulations may change the terms of eligibility
and repayment.

Employment on Campus

Federal Work-Study Program (FWSP). Federal work-study
employment may be offered as a self-help portion of the
financial aid award. Application for this program is made
by filing the FAFSA. On-campus jobs are available in many
departments. Selection for a particular job is based on the
applicant’s skills, job availability, university needs, and
student preference. In assigning students jobs, the program
assumes a student will work between six and twenty hours
a week during the fall and spring terms. For summer
assignments, students may work as many as thirty-five
hours a week.

Any change in work-study jobs must be made through
the Student Employment/Financial Aid Office. Off-campus
employment is available through the Federal Work-Study
Program. These jobs are paid community-service positions
in nonprofit agencies. No job assignments will be made
until financial aid requirements are met.

Preceptorships and Residence Counselorships. Appointment-
ments as preceptors or counselors in the various under-
graduate residence halls are available to a limited number
of graduate students. Upon request, the offices of the deans
of students will provide information about the duties
required of preceptors and counselors. In addition, they
will outline the benefits offered—such as room, board, and
tuition grants—and discuss application procedures.

Normally, applications for September appointments must
be received before May 1.

Other University Employment. Any graduate student
enrolled at the university may inquire with individual
academic or administrative offices for available non-FWSP
openings. All hiring decisions for non-FWSP jobs are made
by the department.
Job Location and Development Program (JLD). The JLD program is open to all students enrolled in the university. Most employment opportunities are located outside the university in local businesses. Information about jobs is available online at http://studentwork.rutgers.edu.

Other Financial Resources

Veterans Benefits. The United States Veterans Administration operates various education-assistance programs for eligible veterans, war orphans, surviving spouses or children of veterans killed while on duty with the Armed Forces, disabled veterans, dependents of a veteran with service-related total disability, and certain members of the selected reserve. Inquiries concerning eligibility may be directed to the Veterans Administration office in Newark, NJ (800/827-1000); the New Jersey Department of Military and Veterans Affairs in New Brunswick, NJ (732/937-6347); or to the veterans coordinator on each campus. For New Brunswick, the number is 732/445-3557.

Veterans and others mentioned above who plan to use veterans’ education benefits should present the Veterans Administration Certificate of Eligibility Form(s) and/or discharge papers (certified copy of the DD214) when registering for courses. If applying for other financial aid with the university, veterans must report to the Office of Financial Aid that they will receive veterans’ education benefits.

Veterans planning to train under Chapter 32 VEAP, Chapter 30 of the New (Montgomery) GI Bill of 1984, or Chapter 106 for Reservists are required by the university to pay cash for tuition, fees, books, and supplies, when due. Veterans, in turn, receive an allowance for each month of schooling based upon credit hours and the number of dependents.

No veteran may withdraw officially from a course (or courses) without prior approval from the academic services and/or dean of students offices. All withdrawals must be submitted in writing. The date of official withdrawal will be the determining date for changes in benefits. Failure to comply with the official school withdrawal procedure may affect both past and future benefits. Any change in schedule must also be reported to the campus Office of Veterans Affairs.

RESTRICTIONS ON FINANCIAL AID AND EMPLOYMENT

Ordinarily, graduate students may not simultaneously hold two different fellowships, assistantships, or other substantial forms of employment. Students who have been offered two different awards should inquire at the Office of the Graduate School–New Brunswick before accepting either. Students who hold assistantships, fellowships, traineeships, or Russell Scholarships may not accept employment outside their academic department without the permission of the graduate director and the dean of the Graduate School–New Brunswick.

Graduate students who have received aid administered by the Office of Financial Aid must report to that office any change in income, such as scholarships, loans, gifts, assistantships, or other employment received subsequent to the original aid award.
Student Services

LIBRARIES

With holdings of more than three million volumes, the Rutgers University Libraries rank among the nation’s top research libraries. The twenty-six libraries, collections, and reading rooms located on Rutgers’ campuses in Camden, Newark, and New Brunswick, and RU-Online, a digital library, provide the resources and services necessary to support the university’s teaching, research, and service missions.

There are two large research libraries on the New Brunswick campuses: the Library of Science and Medicine, which houses the primary collections in behavioral, biological, earth, and pharmaceutical sciences, and engineering; and the Archibald S. Alexander Library, which provides extensive humanities and social-sciences collections. The Mabel Smith Douglass Library supports undergraduate education and houses the primary collections for women’s studies and the performing arts. The Kilmer Library, the primary business library in New Brunswick, provides support for undergraduate instruction. There are also several specialized libraries and collections in the New Brunswick area, including Alcohol Studies, Art, Stephen and Lucy Chang Science Library, Chemistry, East Asian, Entomology, Mathematical Sciences, Music, Physics, and Special Collections and University Archives.

The John Cotton Dana Library in Newark (which also houses the Institute of Jazz Studies) supports all undergraduate and graduate programs offered on the Newark campus with an emphasis on business, management, and nursing. The Robeson Library houses a broad liberal arts collection, which supports all undergraduate and graduate programs offered on the Camden campus. Law libraries on the Camden and Newark campuses have separate policies and online catalogs.

A reading room for graduate students is located in the Alexander Library. The Graduate Reading Room includes the graduate reserve collection, a noncirculating collection of standard works in the social sciences and the humanities; locked carrels for students working on their dissertations; and computer facilities.

Of interest to faculty and graduate students is Rutgers’ membership in the Research Libraries Group, a nationwide consortium that gives members of the university community access to the collections of the most distinguished research libraries in the country, including those at Berkeley, Stanford, Yale, and the New York Public Library. Through a shared database, students can access most of the books and other materials available by interlibrary loan.

The Libraries provide numerous electronic resources to the Rutgers community. Library users can search IRIS, the online catalog, through the Libraries’ web site at http://www.libraries.rutgers.edu. IRIS identifies materials owned by Rutgers libraries in Camden, Newark, and New Brunswick, and contains records for most items acquired since 1972. Students, faculty, and staff members also can access online a variety of electronic indexes and abstracts, full-text electronic journals, research guides, and library services. The Libraries provide hundreds of CD-ROM titles in addition to online resources.

Rutgers University students, faculty, staff members, and alumni are entitled to borrow materials from any of the Rutgers University Libraries. The Rutgers Request Service and Interlibrary Loan Service allow library users to request books and journal articles located at distant Rutgers libraries or outside the university. The loan period for faculty, staff members, and graduate students is one full term. All other borrowers, including undergraduate students, may keep materials for twenty-eight days. All materials, regardless of loan period or borrower’s privileges, are subject to recall.

Reference librarians are available at all of the major libraries to assist with research projects, classroom instruction, and research strategies. In addition to individual instruction at the reference desk, librarians provide in-class teaching at instructors’ requests. Members of the reference department are available to help with both computerized and noncomputerized reference searches. For a fee, librarians provide specialized subject database searching.

The Libraries are committed to providing equal access to services and collections for all library patrons. Users with disabilities may request special services through the circulation or reference department in each library.

COMPUTER FACILITIES

Rutgers University Computing Services (RUCS) provides extensive centralized and decentralized computing and network services for students, faculty, and staff members of all academic and administrative units of the university. In addition to the RUCS facilities, many departments and schools operate computing facilities of various types.

For instructional applications and general student use, a group of Sun computer systems, collectively called “eden,” is available. Any registered student can create his or her own account on these systems. These systems run the UNIX operating system and provide electronic mail; access to the Rutgers University data-communications network, RUNet; access to the Internet; applications software such as SAS and SPSS; and programming language compilers. Machine-readable data files are available for census data, social science data, and other information.

For research applications, a second group of Sun computer systems with greater capacity is available.

Public computing facilities are located on each campus. These facilities include Apple Macintosh and DOS/Windows personal computers and X-terminals. All of the workstations in the hubs are connected to RUNet. Software is available for word-processing, spreadsheets, desktop publishing, graphics, statistical analysis, and other applications.

For further information, call 732/445-2296 or write Rutgers University Computing Services, Information Center, Rutgers, The State University of New Jersey, 54 Joyce Kilmer Avenue, Piscataway, NJ 08854-8045.
TEACHING ASSISTANT PROJECT (TAP)

The Teaching Assistant Project (TAP) is designed to promote excellence in undergraduate and graduate education at Rutgers–New Brunswick through the professional development of teaching assistants. The four main components of this project are a preterm orientation, ongoing training during the term, discipline-specific training within each program, and written materials designed for TAs. The two major publications of TAP are the Teaching Assistant Handbook, a comprehensive introduction to the university and teaching, and TA Talk, a newsletter that focuses on topics of interest to TAs. A dedicated telephone line, the TA HelpLine (932-11TA), provides daily assistance to TAs who have questions about teaching. The TA Project’s web site, http://taproject.rutgers.edu, also provides extensive information for TAs about teaching at Rutgers. Videotaping equipment is available for TAs who wish to have a class videotaped to improve their teaching performance. TAP recognizes the dual role of TAs in the university and seeks to assist them in teaching on the college level while balancing their responsibilities as graduate students. Questions about TAP should be directed to the Office of the Dean, Graduate School–New Brunswick at 732/932-7747.

HOUSING

Attractive and comfortable residence facilities for graduate students are available on all five New Brunswick campuses.

Single graduate students may reside in furnished residence halls located on the Douglass, College Avenue, and Livingston campuses, or in furnished apartments available on the Cook and Busch campuses. Graduate residence halls have shared bath and kitchen facilities. The graduate apartments house four students in single bedroom units with full kitchens and bathrooms.

Graduate families are housed in one- and two-bedroom unfurnished apartment units located on the Busch campus. These units are very popular, and a waiting list is maintained. Early application is recommended.

Single graduate students may select housing for a full calendar year or for the academic year. Summer housing also is available.

For additional information, call the Graduate Housing Office at 732/445-2215; email unhousing@cis.rutgers.edu; or visit the housing web site at http://www.housing.rutgers.edu. The Graduate Housing Office is located at 581 Taylor Road on the Busch campus.

OFF-CAMPUS HOUSING SERVICE

As part of Campus Information Services, the Off-Campus Housing Service is the information and referral center for off-campus renting and housing needs at the New Brunswick campus. It can be reached by calling 732/932-7766, or via email at ochs@cis.rutgers.edu. The service is located at 542 George Street, at the corner of George Street and Seminary Place on the College Avenue campus, where trained staff can offer help with problems of off-campus housing and living. All office information and listings are available twenty-four hours a day online. Maps, informational items, and staff assistance also are available. The Off-Campus Housing Service can assist students, faculty, and staff members in finding information about available rentals and for-sale properties in the area. For a modest charge, the office will mail or fax listing printouts to any location in the United States. The service is available year-round with hours of 8:30 A.M. to 4:30 P.M., Monday through Friday; and Thursday, from 8:30 A.M. to 7:30 P.M. During off-hours, callers can record their questions and have them answered when the staff returns.

The Off-Campus Housing Service web site can be visited on the Internet at http://offcampus.rutgers.edu. It contains a large database of available rentals, apartment complex information, landlord-tenant rights information, tips to finding housing and preventing problems, and rental forms. The Off-Campus Housing Service also conducts a free legal clinic throughout the year. Students and staff members may make appointments in person or by phone to speak to a volunteer lawyer. These attorneys specialize in landlord-tenant matters and provide free advice on any housing-related problem or question.

DINING SERVICES

The Division of Dining Services operates six student dining facilities and eleven cash facilities. These include Brower Commons on the College Avenue campus, Busch Dining Hall and Davidson Commons on the Busch campus, Cooper and Neilson Dining Halls on the Cook/Douglass campus, and Tillett Dining Hall on the Livingston campus. Each facility offers hours to suit student dining needs.

Dining Services offers various “block plans,” which provide convenience and flexibility. Students can take advantage of all-you-can-eat dining, in which there is no limit on the number of meals they can enjoy each week. They may even bring in ten guests per term.

For additional information, visit Dining Services in Records Hall on the College Avenue campus, call 732/932-8041, or go to the Dining Services web site at http://www.rci.rutgers.edu/~rudining.

RUTGERS UNIVERSITY HEALTH SERVICES

Rutgers University Health Services provides comprehensive ambulatory medical, outpatient, and health education services for all full-time students. Part-time students may become eligible by paying the student health service and insurance fee to the Office of Student Health Insurance, Hurtado Health Center, Rutgers, The State University of New Jersey, 11 Bishop Place, New Brunswick, NJ 08901-1180.

During the fall and spring terms, three health centers provide services for students in the New Brunswick/Piscataway area. The Busch/Livingston Health Center, located at Hospital Road and Avenue E on the Livingston campus, is open from 8:30 A.M. to 5:00 P.M., Monday through Friday. The Hurtado Health Center, located at 11 Bishop Place on the College Avenue campus, is open seven days a week when classes are in session during the academic year (8:30 A.M. to 8:00 P.M., Monday through Friday; 10:00 A.M. through 4:00 P.M., Saturday and Sunday). The Willets Health Center, located on Suydam Street on the Douglass campus, is open from 8:30 A.M. to 5:00 P.M., Monday through Friday.

Hurtado Health Center is the only one of these clinics that operates year-round. During the summer and breaks, it is open 8:30 A.M. to 4:30 P.M., Monday through Friday.

Health centers are staffed by physicians, nurse practitioners, and registered nurses. Services provided include general primary care, gynecology, mental-health counseling, alcohol- and substance-abuse treatment, health education, immunizations, injections to reduce the effects of allergies, laboratory tests, physical exams, referrals, and X rays. Surgical and critical medical conditions are referred to the student’s personal physician, the proper specialist, or an outside hospital for treatment.

The Department of Health Education promotes discussion of health issues and examines the underlying context of selected forms of health behavior. This exploration might focus, for example, on the use of food and chemical substances to manage feelings and situations, relationships, and sexuality.

Pharmacies are located at each health center. They are open during the following hours: Busch-Livingston Pharmacy, 9:30 A.M. to 5:00 P.M., Monday through Friday; Rutgers Pharmacy (Hurtado), 9:30 A.M. to 5:30 P.M., Monday through Friday, and 10:00 A.M. to 3:00 P.M., Saturday; and Willets Pharmacy, 9:00 A.M. to 5:00 P.M., Monday through Friday. During Summer Session and breaks, the Rutgers Pharmacy (Hurtado) is open 9:00 A.M. to 4:30 P.M., Monday through Friday.

Rutgers University Health Services is accredited by the Joint Commission on Accreditation of Healthcare Organizations for meeting national standards of ambulatory health-care delivery.

STUDENT HEALTH INSURANCE

All full-time students, by paying the student fee, and those part-time students who elect to pay the student health service and insurance fee, are insured for as much as $5,000 in medical expenses caused by illness or injury. This policy provides excess coverage over any other insurance plans. Students have the option to purchase a major medical policy sponsored by the university that provides more extensive coverage. Students also may purchase coverage for their spouses and children at additional cost. Any student not covered by individual or family policies should consider this more extensive coverage. Information and applications are available from the Office of Student Health Insurance, Hurtado Health Center, Rutgers, The State University of New Jersey, 11 Bishop Place, New Brunswick, NJ 08901-1180 (732/932-8285).

Compulsory International Student Insurance Fee

All students in F or J immigration status whose visa documents are issued by Rutgers are required to have both the basic and the major medical insurance coverages. The costs for insurance are charged to such students on their term bills. All accompanying family members (spouses and children) also must be insured. Insurance coverage for spouses and children must be purchased at the Center for International Faculty and Student Services, Rutgers, The State University of New Jersey, 180 College Avenue, New Brunswick, NJ 08901-8537 (732/932-7015).

SEXUAL ASSAULT SERVICES AND CRIME VICTIM ASSISTANCE

Sexual Assault Services and Crime Victim Assistance staff members provide support and assistance to crime victims, survivors, and other members of the university community. Advocacy, crisis intervention, short-term counseling, and referrals are available. Programs and services for students, faculty, and staff members promote ways of reducing the risk of being a crime victim and provide resources to a victim if a crime should occur. Educational programs on such issues as sexual assault, dating violence, stalking, and peer harassment are provided to the university community.

For more information or to schedule an appointment or program, call 732/932-1181, visit the department web page at http://www.rutgers.edu/SexualAssault/, or email the staff at sasva@rd.rutgers.edu. The office is located at 3 Bartlett Street on the College Avenue campus.

COUNSELING SERVICE

University Career Services

The university provides a comprehensive career service for students enrolled in graduate and professional studies throughout New Brunswick. Graduate students can get help in preparing résumés or vitae, developing interviewing skills, and conducting job searches. Seminars, workshops, and special programs designed to meet the needs of students with advanced degrees are offered each term. Individual counseling is available by appointment.

Career libraries at three locations house resource materials to assist in career development and job searches. These include career-planning books; sample résumés and vitae; current job listings; employer directories; federal and state job information; company literature; testing information; and internship, fellowship, and grant information. A credentials service is available for students and alumni who wish to compile letters of recommendation for future use in applying for employment or advanced degree programs.

The Career Services Office also sponsors an on-campus recruitment program. Through this program, three hundred to four hundred employers from business, industry, and government agencies are invited each year to come to the campus to interview qualified students.

For further information concerning career services at Rutgers, students should visit one of the career offices located at 61 Nichol Avenue on the Douglass campus (732/932-9742); 46 College Avenue (732/932-7997) and 56 College Avenue (732/932-7287), both on the College Avenue campus; or the Busch Campus Center (732/445-6127).

Counseling Centers

Psychological counseling for graduate students is available through the counseling centers connected with the undergraduate colleges.

Appointments can be made by contacting the appropriate office: Cook College Counseling Center, Cook Campus Center, 732/932-9150; Douglass College Psychological Services, Federation Hall, 732/932-9070; Livingston College Counseling Center, Tillett Hall, 732/445-4140; Rutgers College Counseling Center, 17 Senior Street, 732/932-7884; and University College Office of Counseling, Miller Hall, 732/932-8074. Only the Rutgers College center is open during Summer Session.
Students can choose the service that is most convenient. Services are free for students, and strict confidentiality is maintained. All centers are staffed primarily by clinical or counseling psychologists.

Each counseling center offers individual and group psychotherapy and sees couples for marital or relationship issues. Therapy groups specifically for graduate students are available at several of the counseling centers. Most counseling is short term. Referral is available to other agencies or private practice when ongoing psychotherapy is needed or desired.

Psychological services also are available through the psychiatrists at the Rutgers Student Health Service (732/932-7827).

Peer Counseling Services

Four telephone hotlines and/or drop-in services on campus offer supportive and anonymous listening and talk, help with crises, and provide referral information. Each is staffed primarily by undergraduate students with special training. They are open mostly on Sunday and weekday evenings, and their current hours are given on answering machines at each service. The services include 56 Peer Counseling Service, located in Bishop House (third floor), College Avenue campus, 732/247-5555; Women's Support and Resource Center (which focuses on women's issues), 732/828-7273; Gatehouse Peer Counseling Hotline, Cook/Douglass campus, 732/846-0957; and the Rutgers University Lesbian/Gay Alliance Hotline (which deals with issues of interest to gays and lesbians), 732/932-7886.

Services for International Faculty and Students

The Center for International Faculty and Student Services is located at 180 College Avenue (732/932-7015; email: ru_dis@email.rutgers.edu; web address: http://www.rci.rutgers.edu/dis). The center coordinates services for the university’s international students, scholars, and faculty. It provides direct support in the following areas: U.S. immigration regulations and procedures, employment, medical care, adjustment to American life, cultural differences, family concerns, and financial planning. In addition, it offers a comprehensive orientation, a program that gives students the chance to get to know American families, cross-cultural seminars, and a variety of support efforts for students and their families. Finally, the center acts as a liaison between international students and campus offices, community groups, and federal and state agencies.

To ensure personal contact, all international students are assigned an international student adviser at the center and are encouraged to establish and maintain a close working relationship with center staff members throughout their stay at Rutgers.

Nonimmigrant students in F-1 or J-1 status must register with the center upon arrival in New Brunswick and inform the center of any change in their academic program, address, or enrollment status. All questions regarding one’s status as a foreign student or exchange visitor in the United States are addressed to this office.

Services for Students with Disabilities

Students with disabilities on the New Brunswick campus are entitled to the same educational benefits and the same quality of student life as other students. In addition, they are subject to the same academic and procedural requirements. Rutgers is committed to providing reasonable accommodations inside and outside the classroom to meet students’ diverse needs. The university’s services include assistance in academic advising, scheduling or rescheduling classes in barrier-free buildings, on-campus transportation for students with mobility disabilities, assistive devices and equipment, learning assistance, and communication with faculty about students’ specific needs. Each school in New Brunswick has a designated coordinator of services to assist students with disabilities. Students with disabilities also may contact the New Brunswick campus coordinator for students with disabilities at 115 College Avenue, Bishop House, Room 105 (732/932-1711) for more information. The New Brunswick campus coordinator is TDD-accessible through the Student Information and Assistance Center, located at 542 George Street (732/932-9090). Complaints or grievances regarding Rutgers’ compliance with the Americans with Disabilities Act of 1990 may be directed to the Director of Compliance and Student Policy Concerns, 3 Bartlett Street, College Avenue campus (732/932-7312).

CAMPUS INFORMATION SERVICES

Rutgers Information and Referral Center

Rutgers Information and Referral Center can be reached by calling 732/932-INFO. Trained student information assistants offer help and answers about admission or any area of campus or community life. The service is available Monday through Friday, from 8:30 A.M. to 8:30 P.M., and Saturday and Sunday, from 10:00 A.M. to 4:00 P.M., during the academic year. The hours during the rest of the year are Monday through Friday, from 8:30 A.M. to 4:30 P.M. Twenty-four-hour access to the information and referral service is available via email through “Ask Colonel Henry” at colhenry@ur.rutgers.edu. Information about activities and events at Rutgers also is provided online at http://www-ac.rutgers.edu/calendar. The New Brunswick official Listserv is the source for timely academic and student information. Every Tuesday during the term, a weekly bulletin of official notices is sent directly to the email account of each student on the New Brunswick campus. Students are responsible for knowing what is in the bulletins and taking appropriate actions.

Rutgers INFO Channel/ Rutgers INFO Radio

The Rutgers INFO channel, Channel 3 on the RU-TV network, available on the New Brunswick campus, is operated by Campus Information Services. The station provides information twenty-four hours a day about events, programs, activities, and services available to students. Members of the Rutgers community may request that information about activities, services, and events be displayed on the Rutgers INFO channel. Visit http://rutv.rutgers.edu/inofchannel.html for more information.

Rutgers INFO radio, on the New Brunswick campus, also is operated by Campus Information Services. The station operates twenty-four hours a day at 530 AM. The station can be heard within a six-mile radius of the campus. Rutgers INFO radio broadcasts news about transportation, parking, special events, and general information, and gives weather emergency updates. The station also is available through live webcasts at http://rutgersinradio.rutgers.edu.

Historical Tours

Campus Information Services provides ninety-minute historical campus tours by seasoned guides. Reservations are recommended. Special tours also may be scheduled. For more information, call 732/932-9342, ext. 619.

STUDENT ASSISTANCE

Since the personal welfare of students must be the concern of an academic community, redress of grievances for graduate students at the university is provided through several informal channels. Depending upon the issue, students matriculated in the Graduate School—New Brunswick may approach their graduate director, the Office of the Dean of the Graduate School, or their departmental representative to the Graduate Student Association. In addition, many graduate programs have departmental student associations. Students may obtain further information from the Graduate Student Association at the student center on College Avenue or from the Office of the Graduate School.

DAY-CARE CENTERS

In New Brunswick, day care is available on the Cook, Douglass, and Livingston campuses. On the Cook campus, the Department of Nutritional Sciences runs a half-day preschool for three- and four-year-olds, which is open during the academic year only. The fee is set for the academic year with limited scholarships available based upon financial need. For information, call 732/932-8895.

On the Douglass campus, the Department of Psychology runs the Douglass Psychology Child Study Center. This center offers full-time day care for children who are one through six years of age. Hours are from 7:30 A.M. to 6:00 P.M., Monday through Friday, year-round. Kindergarten is offered in two-and-one-half-hour sessions, Monday through Friday. A summer camp program for school-aged children also is available. The fee for care is based on the number of days used. Different payment plans are available (weekly, monthly, and yearly). For information, call 732/932-8881.

The Rutgers-Livingston Day-Care Center on the Livingston campus is a private, nonprofit center that offers a full-time developmental program for children two years of age through kindergarten age. Hours are 7:00 A.M. to 5:30 P.M., Monday through Friday, year-round. There are two fee rates: 1) set-rate tuition and 2) reduced-rate tuition based on family size and income. For an application form and information, call 732/445-8881.

All the day-care services are heavily used, and there is frequently a waiting list. Students should contact the centers early.

RUTGERS UNIVERSITY POLICE DEPARTMENT

The Rutgers University Police Department (RUPD) focuses on community policing and the prevention of crime through the development of university-based partnerships. The department, which provides police, security, and safety services, is staffed by commissioned police officers, a professional security force, and technical employees.

The University Police Department is located at 5 Huntington Street on the College Avenue campus. The campuses are patrolled on foot, in vehicles, and on bicycles. To contact RUPD to report emergencies (police, fire, or emergency medical), dial 911; from university centrex telephones, dial 6-911. For nonemergency telephone calls to the police, dial 732/932-7211; from university centrex telephones, dial 2-7211. Students may contact the police by using any of the light blue emergency telephone boxes on the campuses or by using the housing telephones located near dormitory entrances.

Community-policing offices are located in each of the campus student centers. These offices are staffed by front-line, campus-based officers who act as community organizers, team builders, and problem solvers. Staff members provide a communications link between the community and the police department, serve on campus bias committees, and perform proactive patrol. Security officers also patrol the campuses, serving as “eyes and ears” for the police while securing facilities and providing escort services. A student-staffed bicycle patrol has been established on the Douglass/Cook and Livingston campuses. Student safety officers provide an evening equestrian patrol on the Douglass/Cook campus and evening walking escorts on the Livingston campus. Student safety officers also control access to selected residence halls during evening hours. For more information about these programs, call 732/932-5400.

The Rutgers University Police Department’s efforts help create a safer environment, but the department cannot guarantee the safety and security of individuals and their property. Individuals can reduce their vulnerability to crime by practicing such preventive measures as the following:

- avoiding isolated areas;
- staying alert to people and circumstances around them;
- keeping doors and windows in their residence buildings locked;
- ensuring that no personal property is left unattended or unprotected;
- avoiding the use of alcohol or other drugs and staying away from people who are intoxicated.

All members of the university community are urged to report immediately any suspicious persons or activities to the university police. A cooperative effort between the police and the community can make the campuses safer places to work and learn.

PARKING AND TRANSPORTATION

Any vehicle using campus parking facilities must be registered and must display a valid permit at all times. Fees for students vary according to their classification. Resident student vehicles are assigned to their specific residence lot only. Commuter student vehicles are assigned to a parking zone, according to college affiliation, on a particular campus only. Maps indicating resident and commuter student lots are available from the Department of Parking and Transportation Services, 26 Mine Street, College Avenue campus.

An intercampus bus transportation service is available to all Rutgers students, faculty, and staff members. This bus service provides transportation within walking distance of all major campus areas and major public transportation centers in New Brunswick. Schedules for the campus bus service are published each fall. Van transport is available for
Students with permanent disabilities who are unable to use campus buses to get to and from class. Requests for this service should be made through the office of the student's dean.

For more information, call 732/932-7744, email parktran@rd.rutgers.edu, or visit the Parking and Transportation web site at http://parktran.rutgers.edu.

Student parking for the Civic Square building is available at the New Street parking lot, which is located a few blocks away. An access card for the lot should be obtained from the Department of Parking and Transportation Services.

GRADUATE STUDENT ASSOCIATION

The Graduate Student Association (GSA) sponsors social and cultural activities for graduate students and represents their interests to the university before state agencies. The GSA provides free legal advice and sponsors academic programs, films, mixers, trips to New York, and community action programs.

All full-time and part-time graduate students in any of the six New Brunswick graduate and professional schools automatically become members of the GSA. A president, vice president, treasurer, and secretary are elected at large. The GSA’s main legislative body is its council, which meets once a month. Every graduate program and department may elect one representative for every forty students enrolled. Departments with fewer than forty students are allowed one elected representative. Anyone who wants to become a student representative should contact his or her departmental organization or the GSA office. The GSA offices are located in the Graduate Student Lounge (GSL) in the Rutgers Student Center on College Avenue in New Brunswick and may be contacted at 732/932-7995 (GSA) or 7994 (GSL).

Graduate student lounges, located in the Rutgers Student Center, Busch Campus Center, and Douglass College Center, are primarily for the use of graduate students and for graduate-student functions. These facilities provide a comfortable atmosphere for socializing, lounging, and studying.

PAUL ROBESON CULTURAL CENTER

The Paul Robeson Cultural Center, established in 1969, documents and preserves the contributions of African peoples, with a focus on the artistic, scientific, social, and political contributions of people of color in the Americas and New Jersey. Through its cultural activities and educational programs, the center provides leadership and support to more than 40,000 people each year, including more than 5,000 African-American students at Rutgers. Further, the center works closely with communities served by Rutgers in local, state, national, and international spheres.

The center is open Monday through Thursday, from 8:30 A.M. to midnight; Friday, from 8:30 A.M. to 9:00 P.M.; Saturday, from noon to 8:00 P.M.; and Sunday, from 1:00 P.M. to 9:00 P.M. It is located on Bartholomew Road, Busch campus, adjacent to the Busch Campus Center. For more information, call 732/445-3545.

CENTER FOR LATINO ARTS AND CULTURE

Opened in April 1992, the center’s primary mission is to research, promote, document, and interpret Latino culture. The center identifies scholars, artists, and experts who help develop interdisciplinary programs that examine Latino culture, history, literature, and the arts. These programs and special projects are designed to foster academic excellence and advance the well-being of the Latino community.

The center builds a broader understanding of Latinos and their culture through conferences, exhibitions, lectures, theater productions, symposia, workshops, artists’ forums, concerts, academic seminars, publications, and collaborative projects with community organizations outside the university.

Located at 122 College Avenue, the center is open weekdays from 9:00 A.M. to 5:00 P.M. For special events, the center also is open on weeknights and weekends. Call 732/932-1263, 1494 for further information.

OFFICE OF DIVERSE COMMUNITY AFFAIRS AND LESBIAN-GAY CONCERNS

The Office of Diverse Community Affairs and Lesbian-Gay Concerns, which was established in 1992, provides assistance, information, educational activities, and public programs to staff members, faculty, and students. The office concerns itself with raising awareness of bisexual, lesbian, gay, and transgender issues and with the concerns of students with disabilities. In addition, the office focuses on bias awareness, as well as preventing intolerance and intervening once bias becomes an issue.

Undergraduate and graduate students interested in becoming involved in lesbian-gay-bisexual-transgender issues, students with disabilities who wish to identify resources, and students who have witnessed or experienced intolerance should contact Cheryl Clarke, director of the center. The center is located at 115 College Avenue, Bishop House, Room 105 on the College Avenue campus. The phone number is 732/932-1711, or 732/932-8670 for students who need TDD. Bias is defined by several protected categories, including race, ethnicity, language, color, national origin, religion, sexual orientation, gender, and/or physical ability. The center also provides technical assistance and training to faculty, staff members, and student groups.

ACTIVITIES

Athletic Facilities

The athletic facilities at Rutgers include several gymnasiums, swimming pools, tennis courts, and baseball fields, and an eighteen-hole golf course. While a fee is charged for the use of the golf course, graduate students are entitled to use the other facilities without charge. Several of the athletic clubs in the undergraduate colleges—bowling, judo, lacrosse, rugby, skiing, and others—are also open to graduate students.
Athletic Ticket Policies

Tickets to intercollegiate football and basketball games are available at a special rate. All ticket information is provided at the ticket office located in the Louis Brown Athletic Center.

Concerts, Dramatic Productions, and Lectures

Concerts by world-famous musicians, bands, dancers, and musical organizations are presented on campus each year by the Office of University Arts Services, the music and dance departments of the Mason Gross School of the Arts (MGSA), the New Brunswick Programming Committee, the student-center programming boards, and the concert organizations of the different campuses. Many events are free.

The Department of Theater Arts of the Mason Gross School of the Arts presents fifteen to eighteen productions a year at the Rutgers Arts Center on the Douglass campus. The Cabaret Theater Society and the College Avenue Players are student organizations that provide students who are not in the professional MGSA program with the opportunity to broaden their acting experience.

Numerous lectures are presented regularly by academic departments, lecture-series groups, and other organizations. Several concert series, movie series, and lectures are sponsored at the university throughout the year.

ALUMNI

Alumni Relations

The university seeks the support of its alumni and, in return, offers them several services and programs. The responsibility for working with the university’s alumni body, now numbering more than 300,000, rests with the Department of Alumni Relations. The department has two main objectives. First, it maintains contact with Rutgers alumni, informing them of the university’s programs so that they might help Rutgers fulfill its educational goals. Second, the department encourages alumni to continue their college friendships after graduation through social, educational, and reunion activities.

All undergraduate colleges and most graduate and professional schools have their own alumni associations that sponsor programs based on the interests of the alumni of that college. Active membership is maintained through payment of regular alumni dues. Many alumni associations are represented in the Rutgers University Alumni Federation, which sponsors universitywide programs, such as homecoming, distinguished alumni awards, legislative receptions, group travel, and insurance. The Department of Alumni Relations provides guidance and administrative services to each of the college associations, as well as to a network of regional alumni clubs throughout the country.

The university publishes an award-winning magazine for alumni and friends of the university.

The department’s New Brunswick office is located at Winants Hall, 7 College Avenue, New Brunswick, NJ 08901-1262 (732/932-7061).

Rutgers University Foundation

The Rutgers University Foundation was incorporated in 1973 as a semiautonomous division of the university to solicit funds from private sources.

With a full professional staff and a national network of volunteers, who sit on advisory committees and assist in fund-raising, the foundation has dramatically increased the amount of annual private support for Rutgers. This private aid provides funding for more than 1,500 university programs in every division of the university and on every campus.

In developing new ways to finance programs at Rutgers from nonpublic sources, the foundation has garnered national recognition for its fund-raising and communications. The professional staff includes experts in corporate and foundation relations, an area that accounts for more than half of the private monies received by the university. The foundation also has specialists in deferred and planned giving, in fund-raising for athletics, in soliciting annual gifts, in obtaining major and special gifts, and in managing campaigns to fund capital needs. The foundation manages one of the largest volunteer phonothons in the nation, with more than 1,800 callers. Many of these volunteers are students, parents, and faculty members who donate time to raise money for their schools and organizations.

In 1984, the foundation undertook the most ambitious fund-raising endeavor in the university’s history, the $125 million Campaign for Rutgers. Using advanced fund-raising methods to identify new philanthropic sources for Rutgers, the foundation structured the campaign to raise funds for areas that have direct bearing on the quality of education and research at the university. Campaign funds were earmarked to support distinguished professorships, to underwrite new program development and departmental research, to renovate campus facilities, to endow scholarships and fellowships, and to establish resources for all university divisions. In 1990, the campaign concluded 34 percent over goal and increased annual contributions to the university to $27 million from $9 million.

Since the Campaign for Rutgers ended, annual contributions have continued to rise, exceeding $60.7 million during the 1998–99 fiscal year. In addition, the foundation has undertaken several successful multimillion-dollar, special-purpose campaigns: the Campaign for the Center for the Study of Jewish Life, the Campaign for the School of Law–Newark, the Campaign for Undergraduate Biological Sciences, the Campaign for Rutgers Stadium and Women’s Athletic Scholarships, the Alexander Library Campaign, and the universitywide Campaign for Community, Diversity, and Educational Excellence.

More information about the foundation may be obtained from the Rutgers University Foundation, Winants Hall, 7 College Avenue, New Brunswick, NJ 08901-1261 (732/932-7777).
Academic Policies and Procedures

STUDENT RESPONSIBILITY TO KEEP INFORMED

This catalog provides a summary of rules governing graduate work at the university, and students are advised to keep their copy as a reference handbook. Students are expected to familiarize themselves with the principal rules in this chapter and in the chapter on degree requirements. The academic and other regulations established by the faculty and administration of the Graduate School–New Brunswick and the Board of Governors of the university are subject to amendment at any time. Significant changes made after the publication of the catalog will be circulated to registered students by the Graduate School–New Brunswick. Exceptions to the rules can be made only through the dean’s office.

In general, students should address their questions to their graduate program director. Questions related to general graduate student rules under jurisdiction of the Graduate School–New Brunswick also may be directed to the Office of the Dean, Rutgers, The State University of New Jersey, 25 Bishop Place, New Brunswick, NJ 08901-1181 (732/932-7034).

Graduate Student Mailing Address

Official communications among faculty, students, and staff members in the Graduate School–New Brunswick are delivered by campus mail to the mailboxes of each faculty member and student. In certain circumstances, however, official communications are mailed to the student’s home address by U.S. mail. It is the student’s responsibility to keep the registrar informed of a current mailing address. New students should consult with their graduate director about the most appropriate location for their first mailbox assignment. When other addresses are not significantly more convenient, students ordinarily assign themselves mailboxes at the offices of their graduate directors.

The Graduate School–New Brunswick also communicates with students through its electronic Listserv. In order to receive these messages, students should open a university computer account through RUCS as soon as they register.

REGISTRATION AND COURSE INFORMATION

A prepared registration form for each newly admitted student is made available to the student before the start of the fall and spring terms. Advising arrangements vary according to the needs of particular graduate offices, but the official registration and billing forms should be received by the student well before the first day of class. It is the responsibility of the student to remain in communication with the Office of the Graduate Director. The forms must be submitted by the student to the Office of the Graduate Registrar and must be received at that location by the announced deadlines. Overdue forms may require subsequent correspondence, entail additional fees, and necessitate reregistration. Forms may be returned by mail, but students should allow as many as ten days for campus mail delivery, and it is more prudent to deliver them by hand. Additions or changes of courses are routinely permitted during the first week of classes.

Registration in subsequent terms is made through the touchtone telephone registration system. Once enrolled, students register early for subsequent terms. Registration instructions are distributed at that time. Changes of registration may be made at indicated times after early registration. In all other respects, the provisions of the above paragraph hold.

A student admitted into a degree program of the Graduate School–New Brunswick is expected to remain registered in every fall and spring term thereafter until he or she completes the program and earns the degree. Normally a student registers for courses or research, and, if necessary, may register for matriculation continued (leave of absence). Any student who fails to maintain continuous registration may not resume formal graduate study or register again in the Graduate School–New Brunswick without first applying through the Office of the Graduate School for readmission. Master’s degree students and doctoral students not yet admitted to candidacy may apply for readmission after one or two terms during which they were not registered. After two terms, they must file a new application with the Office of Graduate and Professional Admissions.

Students who have been admitted to candidacy for the Ph.D. degree must apply for restoration of active status and pay a restoral fee. There is no time limit for readmission of such students.

Matriculation Continued

Students who must interrupt their studies may, with the approval of their graduate director, register for matriculation continued for a maximum of two consecutive terms. Matriculation continued also is the proper registration when there is no other appropriate registration category for a student. For example, students in many humanities and social sciences who have completed their formal coursework and are preparing for examinations but are not registered for research would register for matriculation continued. There is no tuition fee for this registration, although a student fee is charged. This category of registration is not available to postqualifying doctoral students, who are expected to register for research in their fields until they have completed their degrees. Those students who are away from campus but working on their theses or dissertations and in contact with their committees are required to register for a minimum of 1 credit of research per term. Doctoral degree students who are on campus and engaged in research must register for a minimum of 3 credits per term. Master’s degree students who are on campus and engaged in research must register for a minimum of 1 credit per term.

Summer Registration

The requirement of the Graduate School–New Brunswick that its students remain in continuous registration from the time they are admitted until their degrees are earned applies only to the regular academic year (spring and fall terms), not the Summer Session.
Summer Session registration forms and instructions are sent to each student with the fall-term registration instructions. Summer Session catalogs are available at the Summer Session office, 191 College Avenue, or at the registrar’s office.

Change of Registration and Withdrawal

After the add-drop period ends, the only routinely permissible changes of registration are withdrawals from individual courses or withdrawal from all courses. Both actions are allowed without academic penalty until the end of the seventh week, and either may be accomplished with a form that is available from the Office of the Graduate Registrar and the Office of the Graduate School. The date on which the graduate registrar receives notice of withdrawal from the student governs the academic and financial consequences of the withdrawal. Students withdrawing from a course after the seventh week need the approval of the dean’s office, are required to provide a letter indicating academic status in the course from the course instructor, and could receive failing grades at the discretion of the instructor. A student who stops attending a course without notifying the registrar will receive a grade of F in that course. No refunds of tuition are given for individual course withdrawals after the drop period ends. A student who withdraws from all courses may receive a partial refund, however, according to the rules described in the section on refunds in the Tuition and Fees chapter. Withdrawal of any sort is not permitted during the last two weeks of classes.

Transfer of Credit

Students may not transfer credits for courses taken at other institutions until they have completed at least twelve hours of graduate courses with a grade of B or better as a matriculated student at the Graduate School–New Brunswick. The courses being transferred must relate directly to a student’s program of study at Rutgers, and the student must have received a grade of B or better in them. No credit may be transferred for thesis research work, course work done as independent study, or work in courses that were not graded. P or S grades are eligible for transfer if equivalent to a grade of B or better and accompanied by a letter of equivalency from the instructor of the course.

Permission is required to transfer credit for courses taken more than six years prior to the application for transfer of credit.

No more than the equivalent of one year of course work normally may be transferred toward the Ph.D. degree (i.e., 24 credits). No more than 40 percent of the credits required for a master’s degree may be transferred from another institution.

Quarter credits will be converted to term credits by reducing the total by one-third.

For transfer of graduate courses taken as an undergraduate student, a letter is required from the registrar of the institution involved stating that the course or courses were not used toward an undergraduate degree. Applications for transfer of credit are available at the Office of the Graduate School.

Intercollege Registration

A student in the Graduate School–New Brunswick may apply to take a course offered by another division of the university by enrolling through the Touchtone Registration System or in person at the registrar’s office. Other approvals may be required. Consult the Schedule of Classes. Students registering for courses in the University of Medicine and Dentistry of New Jersey–Robert Wood Johnson Medical School, in the New Brunswick Theological Seminary, or at Princeton University also must complete appropriate forms that are available from the Office of the Graduate Registrar.

Multiple School Registration

A student may not be registered simultaneously in two or more units of the university. Students wishing to take courses in more than one unit in the same term (or wishing to take courses in units in which they are not enrolled) may accomplish this through intercollege registration.

When a student makes multiple applications and is offered admission to more than one unit of the university, that student may register in only one. When a student has been admitted to a graduate and undergraduate unit, the registration will be in the graduate unit.

This policy is in no way intended to abridge a student’s freedom to pursue simultaneously two degrees in two units. Such students must make special arrangements to keep both units informed of their academic progress, since they will be registered in only one unit.

Rutgers-Princeton Cooperative Exchange Program

Rutgers and Princeton universities have been engaged in an exchange program since 1964. This informal program does not require admission to or registration at the host institution. No funds are exchanged between the two institutions, and the student pays tuition only at the home institution. The policies and procedures related to this program stipulate that (1) participants must be matriculating, (2) exchange is limited to one or two graduate courses per term per student, and (3) the course must be part of the student’s degree program and unavailable at the home institution. To participate, a Rutgers student must register for 16:001:816 Princeton Exchange (BA) (normally 3 credits) and have the forms (obtained from the Rutgers graduate registrar) signed by his or her adviser, dean, and Princeton course instructor. The forms are then submitted to the dean of the Graduate School, Princeton University. Princeton grades are assigned and are recorded on the student’s record by using the above forms.

New Brunswick Theological Seminary and UMDNJ-RWJMS Exchanges

Cross-registrations are available in the New Brunswick Theological Seminary and the University of Medicine and Dentistry of New Jersey–Robert Wood Johnson Medical School. Forms are available at the Office of the Graduate Registrar.

Courses Taken “Not-for-Credit”

Students who wish to enroll in a graduate or a 100- through 400-level undergraduate course and perform all the assigned work without receiving credit may do so if they secure the advance approval of their advisers. When they register, they must indicate “not-for-credit” status by entering the symbol N. They must pay the normal graduate tuition fee for the course and fulfill the same requirements as other students during the term, including the execution of any written assignments. At the end of the term, however, they do not take the final examination, and they are assigned
a grade of $ (satisfactory) or $ (unsatisfactory). The course and the letter grade are included on the student’s record, but no credit toward a degree is given. See Grades and Records in this chapter for information regarding credit prefixes.

Auditing Courses without Registration

Upon obtaining the permission of the instructor of the course and subject to the availability of space, full-time students of the school may audit courses without registration. It is understood that no academic credit is earned in this manner. No official record is kept of audited courses.

Graduate Enrollment in Undergraduate Courses

Any course numbered 500 or above is designed for graduate students and normally carries credit toward one of the graduate degrees. Certain advanced undergraduate courses numbered in the 300s and 400s also may be approved for a given graduate student, either as a regular part of his or her graduate program or to remedy a deficiency in preparation. When a graduate student is permitted to enroll in a course numbered below 500, the credit prefix $, $, or $ may appear on the registration and record forms. See Grades and Records later in this chapter for rules related to credit prefixes. No more than 12 credits of courses numbered between 300 and 499 may be offered in fulfilling the requirements for advanced degrees. (There are exceptions to this policy in the M.A.T. or M.S.T. programs.) Students registering in undergraduate courses are subject to the policies of the undergraduate division offering the course.

Undergraduate Enrollment in Graduate Courses

Qualified undergraduate students in the university who wish to study in courses offered by the graduate faculty are welcome to do so if they receive the written approval of the instructor offering the course and of the Graduate School–New Brunswick. Students must have senior standing and a cumulative grade-point average of at least 3.0. Forms are available in deans’ offices for this purpose.

Minimum and Maximum Programs

The unit of credit used in Rutgers registration is based in part upon a measure of time, with 1 credit equal to one class hour a week through a fifteen-week term. For a 3-credit course, a qualified and competent student should require, on average, nine hours a week (in and out of classroom or lab) to carry out the work expected. One credit of laboratory requires three class hours of work per week. A full-time program is defined by the university as 12 credits a term, although many programs regard students with fewer credits as full time, based on local academic expectations. The maximum program is normally 15 credits, although under some circumstances registration for a maximum of 18 credits is permitted with approval of the dean. Fellows and assistants also must register their appointments according to directions provided by the registrar at the time of registration and submit form RT100 to the Office of Student Accounts.

Students with part-time employment outside the university who average sixteen or more hours per week may not register for more than 9 credits per term, and students employed thirty or more hours per week may not register for more than 6 credits per term.

In interpreting conflicts about program limits, the dean’s office generally regards thirty-five to forty hours a week as a full-time commitment, whether in a nonuniversity job or a full-time student’s program of study. The university assumes that the enthusiastic participant is apt to devote well above this amount of time, and that formal commitments of time become more difficult to make as they approach the upward limit of 18 credits.

Full- and Part-Time Students

For most purposes, a full-time student is defined as one who is registered for 12 or more credits. Anyone who registers for 11 or fewer credits is a part-time student. Graduate and teaching assistants who hold half-time (one-third line) academic appointments register their assistantships for 6 credits (for which no tuition fee is to be paid). These 6 credits, together with 6 credits of courses or research, qualify them as full-time students for official purposes. All courses, including both courses of research and regular courses undertaken “not for credit” (E and N prefixes), are counted in measuring the student’s recordable program of work. These regulations govern tuition charges, student fees, statistical records, residence requirements, and other issues affected by definitions of full-time and part-time status. Some exceptions to the 12-credit rule may occur through arrangements with relevant administrative offices.

Change of Program

A change of curriculum within the Graduate School–New Brunswick requires the approval of the new graduate program director and the Graduate School–New Brunswick, and is not complete until notice of the approval change has been received from the Office of the Graduate School.

Change of Status

Students wishing to change their status within a graduate program, such as from nonmatriculated to matriculated or from master’s to doctorate, should file the appropriate form with the Office of the Dean of the Graduate School.

Any student who has earned a terminal degree in the Graduate School–New Brunswick and who desires to continue as a nonmatriculated student should apply for a change of status. In this case, application must be made without any lapse in registration to avoid the need to apply for readmission. Foreign students must notify the Center for International Faculty and Student Services of a change in status.

Readmission or Restoration of Active Status

Students who have interrupted their graduate registration without receiving a degree in the program for which they were enrolled must apply for readmission. Appropriate forms are available from the Office of the Dean of the Graduate School–New Brunswick. Doctoral students who have passed their qualifying examination are subject to a restoral fee of 1 credit of tuition at the current resident rate for each term missed (up to five terms). Students who have completed a Master of Philosophy degree at the university and have let their registration lapse are not subject to restoral fee payments for a period of up to four years.

All students, except candidates for the doctoral degree, who have interrupted their graduate registration must request readmission within two terms following their last
registration. After this, the prospective student must submit a new application for admission to the Office of Graduate and Professional Admissions. (Applicants may request that previously submitted records be used.) The letters of recommendation should originate from faculty members at Rutgers with whom the student previously studied. In all other respects, including payment of the application fee and submission of official transcripts of all previous academic work, the application procedure is the same as the first application for admission.

CLASS SCHEDULES AND HOURS

Starting and closing dates for each term, scheduled holidays, and other important scheduling information can be found in the academic calendar. All class periods are 160 minutes in length, meeting once a week, unless otherwise specified. There will be fifteen weeks of instructional activity for each course.

Attendance

All instructors are required to maintain an accurate record of attendance in each of their classes or sections. Students are expected to be present at each meeting of their classes. At the instructor’s discretion, exceptions to this rule may be made for illness or other circumstances.

University examinations shall not be scheduled on Saturdays except in those courses that regularly meet on Saturday.

Absence Due to Religious Observance

It is the policy of the university to excuse without penalty students who are absent because of religious observances and to allow the makeup of work missed because of such absences. Examinations and special, required, out-of-class activities ordinarily will not be scheduled on those days when such students refrain from participating in secular activities. Absences for reasons of religious obligation will not be counted for reporting purposes. A student absent from an examination because of required religious observance will be given an opportunity to make up the examination without penalty.

Cancellation of Classes

It is the general policy of the university not to cancel classes because of inclement weather. However, because of the occasional hazards of night driving in winter, exceptions may be made for evening classes and, under exceptionally hazardous conditions, exceptions may be made for daytime classes.

During severe weather conditions, announcements of the cancellation of classes are made over the following radio stations: WRNJ (1510 AM), WCTC (1450 AM), WCBS (880 AM), WINS (1010 AM), WXXW (101.5 FM), RUINFO (530 AM), and NEWS12 (cable).

Arrangements for makeup work are announced by individual instructors.

In addition, class cancellation and office closing information is available on the recorded message system at 732/932-7799 for the New Brunswick campuses, 973/353-1766 for the Newark campus, or at http://ur.rutgers.edu/news/weather/weather.html.

GRADES AND RECORDS

In the Graduate School–New Brunswick, outstanding work is graded A, and good work is graded B. Some programs require students to achieve grades of A in at least half their courses to be accepted as serious candidates for the doctorate. The grade of C is for satisfactory work. The B+ and C+ grades are intermediate grades. The graduate faculty accepts for graduate credit only a limited number of courses in which a student earns a grade of C+ or C (see the paragraphs on academic standing in the Degree Requirements chapter). A grade of F is assigned to students who fail to earn credit in a course they complete and to students who do not complete a course from which they have not withdrawn officially. The Graduate School–New Brunswick does not assign the grades of D or D+ in its courses.

In addition, the Graduate School–New Brunswick uses the following grade symbols:

IN—(Incomplete). May be assigned at the discretion of an instructor who believes that an extension of time is warranted for a student whose work is incomplete at the end of the term. Incomplete work may be made up, and a change of grade may be authorized by the instructor, within any period agreed to by the instructor and the student. This makeup period may not extend for more than two terms beyond the original course registration (excluding Summer Session). Incompletes generated in a Summer Session must be completed by the end of the following Summer Session. Programs may establish shorter time limits.

Students with two or more incompletes are not permitted to register for additional courses after one term until incompletes are completed.

Pass/No Credit. For certain specifically designated courses; applies to all students enrolled in those courses.

S/U—Satisfactory/Unsatisfactory. For 700-level courses of research carrying credit or in regular courses taken “not-for-credit” (N prefix).

W—(Withdrawal). Officially withdrew.

Credit Prefixes

The number of credits appearing on course records and registration cards may be preceded by a letter prefix as follows:

E. Course excluded from credit toward a degree; all course requirements must be completed and a regular grade is assigned.

G. A 300- or 400-level undergraduate course for which credit toward the graduate degree sought has been approved.

N. Course taken “not-for-credit.” The final examination is not required. A final grade of S (satisfactory) or U (unsatisfactory) is assigned.

Graduate students registering for undergraduate courses are subject to the credit prefix rules of the undergraduate division offering the course.

Transcripts

Requests for official transcripts should be addressed to Records and Transcripts, Administrative Services Building, Room 200L, Rutgers, The State University of New Jersey, Office of the Registrar, 65 Davidson Road, Piscataway, NJ 08854-8096. The request should indicate that the student was enrolled in the Graduate School–New Brunswick, identify the dates of attendance, and give any other relevant
information. It must be received at least ten working days before the date the transcript is desired. Forms for making the request may be obtained from the recorder.

Student Identification Cards

New graduate students admitted for the fall term should visit the RUconnection Card Office during the summer months to be photographed for student identification cards. Instructions for students not photographed by the beginning of the term will be provided by the office. For the spring term, new graduate students should visit the office before the term starts. The RUconnection Card Office is located at the Busch Campus Center. Information on hours of operation, card benefits, and replacing lost or stolen cards may be obtained at the RUconnection web site located at the Busch Campus Center. Information on hours of operation, card benefits, and replacing lost or stolen cards may be obtained at the RUconnection web site, http://www.rutgers.edu/~ruconxn, or by telephone at 732/445-6949.

ACADEMIC STANDING

Student Review

Each program is expected to have established procedures for monitoring annually the progress of all students registered in the program. Each doctoral program has a formal programwide procedure to review students who have completed the equivalent of approximately one year of full-time study and to decide whether they may continue toward the doctorate. This procedure may be linked to the master’s degree or to the qualifying examination, or may be independent of either. In no case should it be postponed beyond the equivalent of one-and-one-half years of full-time study toward the degree. In connection with this procedure, faculty in a position to comment on the student’s performance and progress are asked to do so by the graduate director or a designate. In conducting its review, the program will not limit its choice of faculty members to any list submitted by the student for recommendations.

Termination of Studies

Students may be required to terminate their graduate studies and withdraw from the Graduate School–New Brunswick if they fail to maintain satisfactory academic or professional standards in any phase of their graduate programs. Conditions imposed at the time of admission must be satisfied by each student. Nonadherence to the schedule of Time Limits for Degrees may constitute a basis for termination. (See the Degree Requirements chapter.)

When such problems occur, the program notifies the student in writing of the program’s concern about the student’s performance. Such a warning specifies the source of the concern, the applicable program or graduate school rules, and the proposed action. Warnings specify when and on what basis a recommendation for academic dismissal will be considered by the faculty. A probationary period of one term is normal.

Following the probationary period, a student who fails to meet the provisions of the warning is considered for dismissal by the faculty. A faculty vote is recorded on any motion to recommend dismissal, and a letter is written to the student stating the faculty action and its rationale.

When termination is recommended, the graduate program director communicates to the dean of the Graduate School–New Brunswick in writing the specific reasons involved, all warnings communicated to the student, the faculty procedures and actions leading to the recommendation, the recorded faculty vote for dismissal, and the mailing address of the student. The dean of the Graduate School–New Brunswick will write the actual letter of termination to the student. Subsequently, the student’s transcript will bear the notation, “Academic Dismissal.”

Due Process

Students are entitled to fairness in the way their academic performances are assessed. Each program has a statement that spells out how a student’s academic progress is monitored and how comprehensive, qualifying, and final examinations are graded. Each program also has a procedure for academic appeals. The Graduate School–New Brunswick provides a further opportunity for appeal for students who wish to proceed beyond the program level (see below).

All students in the Graduate School–New Brunswick are entitled to expect that regularly scheduled examinations will be graded and grades announced within two weeks of completion of those examinations by the students. If a student fails a comprehensive, qualifying, or final (defense) examination, he or she is entitled to an explanation of the reasons for that decision.

Student Academic Appeals

Whenever possible, student academic appeals are handled within the graduate-degree program. The student should take the issue to the director of the graduate program or a designate for review and mediation. The director, or a designate, consults with all parties and proposes a resolution. If this is unsuccessful, the matter is referred to a faculty committee, as designated in the bylaws of the program. The committee may consult anyone it chooses in arriving at a recommendation in the matter. In extraordinary cases, it may ask third parties in the faculty to review the decision that was appealed.

While action within the faculty normally is final, a student may appeal to the Graduate School–New Brunswick if he or she feels the decision was unfair. Each case will be reviewed by a representative of the dean of the Graduate School–New Brunswick, who attempts to resolve informally the dispute. Should the issue remain unresolved, the student is notified in writing that he or she may request that the dispute be brought to the Appeals Committee. Such a request must be made within thirty days of notification. The Appeals Committee is comprised of four members of the elected Committee on Rules of Procedure named by the dean at the beginning of each academic year.

This committee hears appeals that have not been resolved by the Office of the Graduate School. The student must make his or her case in writing. A written response to the student’s statement will be solicited from the director of the degree program whose action is being appealed. The committee normally bases its judgment on written submissions only. Should the committee deem it necessary, it may call upon the student and/or a faculty member or members for written or oral responses to questions raised by the committee.
A student may request an appearance before the committee. If they believe an appearance is warranted by unusual circumstances, the committee members may allow the student to appear before them. They may, however, limit the amount of time granted, which normally will not exceed thirty minutes. The committee reports its recommendations to the dean of the Graduate School–New Brunswick, whose decision is final.

Student Complaints about Grades

Students who wish to file a complaint about a course grade or a grade received for a particular piece of work in a course should first attempt to resolve the matter through discussion with the instructor. If the issue cannot be resolved satisfactorily between student and instructor, the student may specify in writing the basis for the complaint and request a review by the director of the graduate program offering the course. A written complaint about a grade for work completed while the course is in progress must be submitted to the program director no later than two weeks after notification of the grade. A student must submit a written complaint about a final course grade with the program director no later than four weeks after the postmarked date of the official notification of grades.

A student who wishes to appeal the decision of the graduate program must appeal in writing to the office of the dean. Written notification of the action taken by either the graduate director or the dean is sent to the student within four weeks of the filing of the appeal, excluding those weeks in which classes are not in regular session.

Holds

The privileges of registration, advance registration, receipt of a diploma at commencement, and receipt of transcripts of record are barred to students who have outstanding obligations to the university. Obligations may take the form of unpaid monies, unreturned or damaged books and equipment, parking fines, other charges for which a student may become legally indebted to the university, and failure to comply with disciplinary sanctions or administrative actions.

University departments and offices may place “holds” on registration, diplomas, and transcripts for any students having an outstanding obligation.

POLICY ON ACADEMIC INTEGRITY SUMMARY

“Academic freedom is a fundamental right in any institution of higher learning. Honesty and integrity are necessary preconditions to this freedom. Academic integrity requires that all academic work be wholly the product of an identified individual or individuals. Joint efforts are legitimate only when the assistance of others is explicitly acknowledged. Ethical conduct is the obligation of every member of the university community, and breaches of academic integrity constitute serious offenses” (Academic Integrity Policy, p. 1).

The principles of academic integrity entail simple standards of honesty and truth. Each member of the university has a responsibility to uphold the standards of the community and to take action when others violate them.

Faculty members have an obligation to educate students to the standards of academic integrity and to report violations of these standards to the appropriate deans.

Students are responsible for knowing what the standards are and for adhering to them. Students also should bring any violations of which they are aware to the attention of their instructors.

Violations of Academic Integrity

Any involvement with cheating, the fabrication or invention of information used in an academic exercise, plagiarism, facilitating academic dishonesty, or denying others access to information or material may result in disciplinary action being taken at either the college or university level. Breaches of academic integrity can result in serious consequences ranging from reprimand to expulsion.

Violations of academic integrity are classified into four categories based on the level of seriousness of the behaviors. Brief descriptions are provided below. This is a general description and is not to be considered as all-inclusive.

Level One Violations

These violations may occur because of ignorance or inexperience on the part of the person(s) committing the violation and ordinarily involve a very minor portion of the course work. These violations are considered on academic merit and not as disciplinary offenses.

Examples: Improper footnoting or unauthorized assistance on academic work.

Recommended Sanctions: Makeup assignment.

Level Two Violations

Level two violations involve incidents of a more serious nature and affect a more significant aspect or portion of the course.

Examples: Quoting directly or paraphrasing without proper acknowledgment on a moderate portion of the assignment; failure to acknowledge all sources of information and contributors who helped with an assignment.

Recommended Sanctions: Probation, a failing grade on the assignment, or a failing grade in the course.

Level Three Violations

Level three offenses involve dishonesty on a significant portion of course work, such as a major paper, an hourly, or a final examination. Violations that are premeditated or involve repeat offenses of level one or level two are considered level three violations.

Examples: Copying from or giving others assistance on an hourly or final examination, plagiarizing major portions of an assignment, using forbidden material on an hourly or final examination, using a purchased term paper, presenting the work of another as one’s own, altering a graded examination for the purposes of regrading.

Recommended Sanctions: Suspension from the university for one or more terms, with a notation of “academic disciplinary suspension” placed on a student’s transcript for the period of suspension, and a failing grade in the course.

Level Four Violations

Level four violations are the most serious breaches of academic integrity. They include repeat offenses of level three violations.
Examples: Forgery of grade change forms; theft of examinations; having a substitute take an examination; dishonesty relating to senior thesis, master’s thesis, or doctoral dissertation; sabotaging another’s work; the violation of the ethical code of a profession; or all infractions committed after return from suspension for a previous violation.

Recommended Sanctions: Expulsion from the university and a permanent notation on the student’s transcript.

Faculty members who believe that violations have occurred should immediately contact the Office of the Dean. Students who suspect that other students are involved in actions of academic dishonesty should speak to the instructor of the course. Questions on reporting procedures may be directed to the Office of the Dean.

UNIVERSITY CODE OF STUDENT CONDUCT SUMMARY

A university in a free society must be devoted to the pursuit of truth and knowledge through reason and open communication among its members. Its rules should be conceived for the purpose of furthering and protecting the rights of all members of the university community in achieving these ends.

All members of the Rutgers University community are expected to behave in an ethical and moral fashion, respecting the human dignity of all members of the community and resisting behavior that may cause danger or harm to others through violence, theft, or bigotry. All members of the Rutgers University community are expected to adhere to the civil and criminal laws of the local community, state, and nation, and to regulations promulgated by the university. All members of the Rutgers University community are expected to observe established standards of scholarship and academic freedom by respecting the intellectual property of others and by honoring the right of all students to pursue their education in an environment free from harassment and intimidation.

Preamble

University Code of Student Conduct

Overview

Communities establish standards in order to ensure that they are able to fulfill their mission and keep their members from harm. The University Code of Student Conduct (referred to as “the code” in the remainder of this summary) defines those kinds of behavior that violate the standards of the Rutgers University community and also provides the mechanism for addressing alleged violations. In doing so, the code protects the rights of those accused of offenses (referred to as “respondents” in the remainder of this summary) by providing due process while also protecting victims of those offenses and the university community as a whole.

Process

The following summary presents key aspects of the code. Students should consult the code itself for complete information on each point.

Filing a Complaint

Any individual may file a complaint against a student suspected of violating the code by notifying the dean of students (or equivalent) of the respondent’s college or school, or the director of judicial affairs in the Division of Student Affairs.

Preliminary Review

Upon receipt of a complaint, a preliminary review is conducted by the dean of students (or equivalent) or his or her designee to assess the evidence and determine if it is sufficient to proceed to a hearing. The dean conducting this review also assesses the seriousness of the charges. The most serious charges can, upon a finding of responsibility, result in separation from the university (suspension or expulsion). These serious cases are decided at university hearings. Less serious offenses (nonseparable offenses) are heard according to procedures in place at the student’s college or school.

Separable Offenses

The following offenses are deemed serious enough to result potentially in separation from the university should a student be found responsible at a hearing:

1. violations of academic integrity
2. forgery, unauthorized alteration or unauthorized use of any university documents or records or any instrument or form of identification
3. intentionally furnishing false information to the university or intentionally initiating or causing to be initiated any false report, warning, or threat of fire, explosion, or other emergency
4. use of force against any person or property or the threat of such force
5. sexual assault or nonconsensual sexual contact
6. hazing
7. violation of the university’s Student Life Policy against Verbal Assault, Defamation, and Harassment (Copies are available from the judicial affairs office or dean of students’ office.)
8. unauthorized entry into, unauthorized use of, or misuse of university property, including computers and data and voice communication networks
9. intentionally or recklessly endangering the welfare of any individual or intentionally or recklessly interfering with any university activity or university sponsored activity
10. use, possession, or storage of any weapon, dangerous chemical, fireworks, or explosive, whether or not a federal or state license to possess the same has been issued to the possessor
11. the distribution of alcohol, narcotics, or dangerous drugs on university property or among members of the university community, if such distribution is illegal, or the possession of a sufficiently large quantity as to indicate an intention to distribute illegally
12. theft of university services or theft of, or intentional or reckless damage to, university property or property in the possession of, or owned by, a member of the university community, including the knowingly possession of stolen property (Intentional or reckless misuse of fire safety equipment is regarded as damage under this section of the code.)
13. the violation of the ethical code of one’s intended profession either by graduate students enrolled in any of the university’s professional or graduate schools or by undergraduate students in clinical courses or settings related to their intended profession
14. violations of federal, state, or local law where such violations have an adverse effect on the educational mission of the university
15. failure to comply with the lawful directions of university officials, including campus police officers acting in performance of their duties
16. knowingly providing false testimony or evidence; disruption or interference with the orderly conduct of a disciplinary conference or hearing; violating the terms of any disciplinary sanction imposed in accordance with this code, or any other abuse of the university’s disciplinary procedures.

Campus Advisers

Both complainants and respondents may select a campus adviser to assist them during the disciplinary process. Campus advisers may fully represent students, including speaking on their behalf. The Office of the Vice President for Student Affairs maintains a list of trained campus advisers for this purpose. Students are free to select any members of the university community to serve as their advisers, whether they are on the list or not.

Attorneys

Complainants and respondents also may, at their own expense, seek the advice of an attorney in addition to that of a campus adviser. Attorneys are free to advise students, to assist in the preparation of their cases, and to attend hearings, but may not speak on behalf of their clients or question witnesses at a hearing.

University Hearings

University hearings are presided over by a hearing officer and heard by a hearing board usually composed of three students and two faculty members. It is the hearing board’s responsibility to determine whether the accused student is responsible or not responsible for violating the code. If the hearing board determines a student to be responsible by the standard of clear and convincing evidence, it also recommends a sanction for the offense to the vice president for student affairs. The vice president for student affairs considers the hearing board recommendation and determines the sanction.

Appeals

A student found responsible for violating the code may appeal the finding, the sanction, or both. Appeals are filed through the Office of the Vice President for Student Affairs, which forwards them to the Appeals Committee of the appropriate campus (Camden, Newark, New Brunswick).

Authority for Student Discipline

Ultimate authority for student discipline is vested with the Board of Governors of Rutgers, The State University of New Jersey. This authority has been delegated to university administrators, faculty, students, committees, and organizations as set forth in the University Code of Student Conduct. The above summary is intended to present some key facts of the code. Copies of the code are available from all dean of students’ offices and have been placed at the reference desks of all university libraries. In addition, the director of judicial affairs in the Division of Student Affairs will provide copies of the code upon request and is available to answer any questions about the code or related judicial matters.

UNIVERSITY SAFETY AND SECURITY

Providing a safe and secure environment for all members of the university community is the highest priority of the university’s public safety staff. The staff is comprised of commissioned police officers with full investigative and arrest authority, trained emergency medical technicians, fire inspectors, security officers, dispatchers, and students employed as community services and student safety officers. Members of the public safety staff patrol each campus and respond to emergencies and requests for assistance 24 hours a day, 365 days a year.

Rutgers’ public safety employees are part of the university-wide crime prevention team that includes all members of the university community. It is everyone’s duty to maintain actively a safe environment and to be careful while complying with all local, state, and university regulations.

The executive director for public safety is responsible for safety and security services on the New Brunswick/Piscataway campus. On the Camden and Newark campuses, these responsibilities reside in the Office of the Provost.

Information regarding public safety at Rutgers is available from the campus police departments. Safety Matters, a brochure outlining public safety statistics, services, and programs on each of Rutgers’ regional campuses, is published annually and distributed free of charge. To receive a copy of Safety Matters, call the appropriate Rutgers Police Department office at one of the following numbers:

- Camden: 856/225-6009
- Newark: 973/353-5547
- New Brunswick: 732/932-8407

ADMINISTRATIVE PROCEDURES FOR RESPONDING TO DISRUPTIONS

An academic community, where people assemble to inquire, to learn, to teach, and to reason together, must be protected for those purposes. While all members of the community are encouraged to register their dissent from any decision on any issue and to demonstrate that dissent by orderly means, and while the university commits itself to a continual examination of its policies and practices to ensure that causes of disruption are eliminated, the university cannot tolerate demonstrations that unduly interfere with the freedom of other members of the academic community.

With this in mind, the following administrative procedures have been formulated to guide the implementation of university policy:

1. The president of the university and the vice president for academic affairs will have the authority throughout the university to declare a particular activity to be disruptive. In the two geographic areas of Camden and Newark, the respective provost will have the same authority. In New Brunswick, the senior vice president and treasurer will have the same authority.

2. Broadly defined, a disruption is any action that significantly or substantially interferes with the rights of members of the academic community to go about their normal business or that otherwise unreasonably interrupts the activities of the university.
3. A statement will be read by the appropriate officers as specified in (1) or by such officers as they may designate for the purpose of such reading and will constitute the official warning that the activity is in violation of university policy, that it must cease within a specified time limit, and where appropriate, that no commitments made by university officials will be honored if those commitments are made under duress.

4. If the activity continues beyond the specified time limit as determined by the official in authority, the authorized officers as specified in (1) will have the discretion to call upon the university police to contain the disruption. Ordinarily, the president of the university alone, or in his or her absence the vice president for academic affairs, will have the authority to decide that civil authorities beyond the campus are to be called upon to contain those disruptions that the university police are unable to handle. In extraordinary circumstances, where neither the president nor the vice president for academic affairs is available to make such a decision, the senior vice president and treasurer in New Brunswick and the provosts on the Camden and Newark campuses have the same authority.

5. The deans of students are the chief representatives of the deans of the colleges in all matters of student life. Members of the university community who are aware of potentially disruptive situations are to report this to the deans of students on their respective campuses. In a disruption, the deans of students and their staff members have a twofold responsibility: to protect against personal injury and to aid in providing for the order of the university. In the latter case, the deans of students, as well as other university personnel, may be called upon to coordinate or assist members of the academic community in ending the disruption, directing it to legitimate channels for solution, or identifying those who have violated the rights of others.

If you think you have been harassed on the basis of any of the protected categories listed above, have observed harassing behavior, or need more information, you are encouraged to contact the Office of University Harassment Compliance, Rutgers, The State University of New Jersey, 3 Bartlett Street, New Brunswick, NJ 08901-1190, by telephone at 732/932-3122, or by email at uhr@rd.rutgers.edu. You may obtain copies of the Policy Prohibiting Harassment and the Harassment Complaint Process on our web page (http://www.rci.rutgers.edu/~uhc).

POLICY AGAINST VERBAL ASSAULT, DEFAMATION, AND HARASSMENT

Statement of Principles
Intolerance and bigotry are antithetical to the values of the university and unacceptable within the Rutgers community. One of the ways the university seeks to effect this principle is through a policy of nondiscrimination, which prohibits discrimination on the basis of race, religion, color, sex, age, sexual orientation, national origin, ancestry, disability, marital status, or veteran status in university programs. In order to reinforce institutional goals of nondiscrimination, tolerance, and civility, the following policy against verbal assault, defamation, and harassment makes clear that such behavior toward others violates acceptable standards of conduct within the university. (This policy is not intended to supersede the university’s policy against harassment.)

Verbal assault, defamation, or harassment interferes with the mission of the university. Each member of this community is expected to be sufficiently tolerant of others so that all students are free to pursue their goals in an open environment, able to participate in the free exchange of ideas, and able to share equally in the benefits of our educational opportunities. Beyond that, each member of the community is encouraged to do all that she or he can to ensure that the university is fair, humane, and responsible to all students.

A community establishes standards in order to be able to fulfill its mission. The policy against verbal assault, defamation, and harassment seeks to guarantee certain minimum standards. Free speech and the open discussion of ideas are an integral part of the university community and are fully encouraged, but acts that restrict the rights and opportunities of others through violence, intimidation, the destruction of property, or verbal assault, even if communicative in nature, are not protected speech and are to be condemned.

Prohibited Conduct
Any of the following acts, even if communicative in nature, are prohibited “separation offenses” (charges that could lead to suspension or expulsion from the university) under the provisions of the University Code of Student Conduct:

1. Use of force against the person or property of any member of the university community or against the person or property of anyone on university premises, or the threat of such physical abuse. (Verbal assault may be prosecuted as a “threat of . . . physical abuse.”)
2. Theft of, or intentional damage to, university property, or property in the possession of, or owned by, a member of the university. (Acts of graffiti or other vandalism may be prosecuted as “intentional damage to . . . property.”)

POLICY PROHIBITING HARASSMENT

The university prohibits harassment based on race, religion, color, national origin, ancestry, age, sex, sexual orientation, disability, marital status, or veteran status. Harassment is a kind of discrimination that violates state and federal civil rights laws. It is defined for purposes of those laws and the university’s policy as any behavior that:

1. is unwelcome,
2. targets a person because he or she has one or more of the protected characteristics,
3. is engaged in by a person employed by or doing business with the university, and
4. is sufficiently severe or pervasive to alter negatively that person’s or a group member’s living, educational, or working environment.

Sexual harassment can take the form of unwelcome sexual advances; requests for sexual favors; or other unwelcome written, verbal, electronic, telephonic, or physical conduct of a sexual nature. Hostile environment harassment on the basis of sex, race, religion, color, national origin, ancestry, age, sexual orientation, disability, or marital or veteran status is severe or persistent behavior that has the purpose or effect of unreasonably interfering with a person’s work or academic performance or creating a hostile environment.
3. Harassment, which is statutorily defined by New Jersey law to mean, and here means, purposefully making or causing to be made a communication or communications anonymously or at extremely inconvenient hours, or in offensively coarse language, or in any other manner likely to cause annoyance or alarm, or subjecting or threatening to subject another to striking, kicking, shoving, or other offensive touching, or engaging in any other course of conduct or of repeatedly committed acts with purpose to alarm or seriously annoy any other person. Harassment is considered a separation offense under the University Code of Student Conduct.

4. Defamation, which is judicially defined to mean, and here means, the unprivileged oral or written publication of a false statement of fact that exposes the person about whom it is made to hatred, contempt, or ridicule, or subjects that person to loss of the goodwill and confidence of others, or so harms that person’s reputation as to deter others from associating with her or him. Defamation is considered a separation offense under the University Code of Student Conduct.

While any of the four categories of acts listed above is a separation offense that, if proven, could lead to a sanction of expulsion or suspension from the university under the provisions of the University Code of Student Conduct, clearly minor instances of such prohibited behavior should be resolved at the college level and not be treated as separation offenses requiring a university-level hearing. The initial judgment of whether a particular act is of a separable or nonseparable nature is made by the appropriate college official.

Students who believe themselves to be victims of verbal assault, harassment, or defamation should report such incidents to the dean or the dean of students of their college or school. In addition, the following individuals have been identified to handle complaints:

- Brian Rose, director of compliance and student policy concerns, 3 Bartlett Street, College Avenue campus, 732/932-7312;
- Cheryl Clarke, director of diverse community affairs and lesbian/gay concerns, Bishop House, Room 105, College Avenue campus, 732/932-1711;
- Rory P. Maradonna, associate provost for student life, Armitage Hall, Room 248, Camden campus, 856/225-6050; Raymond T. Smith, associate provost for student affairs, Center for Law and Justice, Newark campus, 973/353-5541.

Some complaints can and should be resolved by informal methods, while others will require the implementation of formal procedures. All complaints are treated confidentially; complainants are encouraged to report incidents even if they do not wish to pursue the matter beyond the reporting stage.

Nondiscrimination Policy

It is the policy of Rutgers, The State University of New Jersey, to make the benefits and services of its educational programs available to students without discrimination on the basis of race, religion, color, national origin, ancestry, age, sex (except Douglass College, which is entitled under the law to remain a single-sex institution), sexual orientation, disability, marital status, or veteran status. The university complies with Title VI of the Civil Rights Act of 1964, Title IX of the Education Amendments of 1972, Section 504 of the Rehabilitation Act of 1973, the Age Discrimination Act of 1975, and the Americans with Disabilities Act of 1990. Questions about these laws, or allegations of student rights violations, should be directed to the Director of Compliance and Student Policy Concerns and Designated Employee for Student Rights Compliance, Rutgers, The State University of New Jersey, 3 Bartlett Street, New Brunswick, NJ 08901-1190 (732/932-7312).

Equity in Athletics Disclosure Act Reports

In compliance with the Equity in Athletics Disclosure Act, Rutgers provides information on men’s and women’s athletic programs (http://athletics.rutgers.edu), including the number of participants by gender for each varsity team, operating expenses, recruiting expenditures, athletically related student aid, and revenues. The first report was issued in October 1996 with annual updates thereafter. The reports are available at the reference desks of the main branches of the university library system (Alexander Library, Library of Science and Medicine, Robeson Library, and Dana Library), and at the intercollegiate athletics offices.

Student Records and Privacy Rights

Rutgers, The State University of New Jersey, complies with the Family Educational Rights and Privacy Act of 1974 (FERPA) and makes public announcement of the law. FERPA was designed to protect the confidentiality of student records, guarantee student access to certain records, regulate disclosure of information from student files, provide opportunities for students to correct or amend records and add explanatory statements, and provide opportunities for students to file complaints with the U.S. Department of Education alleging infractions of the law.

The confidentiality of student educational records is protected by FERPA. FERPA permits the university to provide directory information without the student’s consent unless the student requests that such information be kept confidential. Rutgers defines directory information as name, campus mailing address and telephone number, campus email address, RUCS user name, permanent address and telephone number, school of attendance, major field of study, class year, dates of attendance, current credit load, credit hours earned, degree(s) received, date(s) of degree(s), weight and height of intercollegiate athletes, and most recent previous school attended.

The most common ways by which the university releases student directory information are:

- through the verifications division of the Office of the Registrar or similar offices that have access to student records. (The office is called upon to verify that a student is enrolled at the university by potential employers and credit agencies, among others.)
- through the Rutgers online directory, a database of Rutgers students, faculty, and staff that is available through the Rutgers homepage (http://www.rutgers.edu) and accessible worldwide via the Internet.
Students control the information that appears in the Rutgers online directory and may display or hide any of the information listed by visiting the directory homepage and following the posted instructions. Students also may request that all directory information be kept confidential by obtaining a form for this purpose from their dean’s office or from the registrar’s office. Students should be aware that requesting confidentiality of directory information makes this information unavailable to all, including prospective employers, credit agencies, and others to whom they might want this information known or verified. Thus, it is recommended that students carefully consider whether personal privacy concerns outweigh the possible inconvenience and detriments of having directory information withheld. Subsequent to filing the request, directory information remains confidential while a student is enrolled or until a written request that this restriction be lifted is received from the student by the registrar’s office. As with all confidential records, Rutgers will release a student’s confidential directory information only with the student’s written consent or if otherwise required by law.

The university uses a student’s Social Security number as a student identification number. While this number is not released as directory information and its confidentiality is protected in the same manner as are other educational records as defined by FERPA, the university offers students the opportunity to acquire a substitute student number. Students wishing to have a substitute number assigned should fill out the appropriate forms in the registrar’s office.

Further information on the law and Rutgers’ policy and procedures on compliance with FERPA is available from the director of compliance and student policy concerns (732/932-7312). All official notices regarding FERPA are archived at http://www.rci.rutgers.edu/~polcomp.

STUDENT RESIDENCY FOR TUITION PURPOSES

A determination of residency status for the purpose of tuition assessment is made by the university based on information provided by the applicant in accordance with the procedure outlined in the policy. A copy of the policy may be secured from the registrar’s office or the admissions office.

Procedure

The Initial Determination

At the time an individual initially applies for admission into any graduate or undergraduate college or division of the university, the respective admissions office determines an admitted applicant’s resident status for tuition assessment. The determination made at this time shall prevail for each term unless a change is authorized as provided hereinafter.

After the Initial Determination

The status of residency for tuition purposes of students continuing in a college or division of the university is determined by the registrar of the respective college or division. The determination made by the registrar either conforms to the initial determination of the admissions office or reflects a change as provided hereinafter.

Request for a Change of Status

Requests for a change in residency status are accepted no later than the last week of the term for which changed status is sought. All supporting affidavits, deemed appropriate by the adjudicating official pursuant to New Jersey Administrative Code, Volume 9, Section 5 et seq., must be filed by the petitioner in accordance with the time limit specified in the preceding sentence. In no case may supporting affidavits be filed later than four weeks from the conclusion of the term for which the residency assessment is requested. Failure to comply with this provision, unless judged otherwise by the adjudicating official, voids the petition for the term in question. If, based on the information submitted in the request, the student qualifies for resident tuition assessment, such change relates only to the current and subsequent terms. No adjustments in tuition assessments are made and no refund vouchers are processed for any prior term.

Appeals

Appeals from the initial determination and any determination made after a request by a student for a change in residency status are accepted no later than three months after the date of notification of any such determination. Unresolved appeals are forwarded to either the university director of graduate admissions or the university registrar. These officers respond to the student within thirty working days of the receipt of the appeal in the appropriate office. Appeals from this determination should be submitted to the vice president for university budgeting by the student within two weeks after the director of admissions or the university registrar has issued a determination. The decision of the vice president for university budgeting is final.

Students’ Responsibilities

Students are responsible for providing relevant information upon which a residency determination can be made. The burden of proving his or her residency status lies solely upon the student. Moreover, it is considered the obligation of the student to seek advice when in doubt regarding eligibility for in-state tuition assessment. If the student neglects to question his or her eligibility status beyond the period specified above, that student forfeits his or her right to a residency assessment to which he or she might have been deemed to be eligible had he or she filed an appeal at the appropriate time.

Penalties

If a student has obtained or seeks to obtain resident classification by deliberate concealment of facts or misrepresentation of facts or if he or she fails to come forward with notification upon becoming a nonresident, he or she is subject to disciplinary action.

RESEARCH POLICY AND RESEARCH CENTERS

Research at the university, apart from that conducted by students in connection with their academic course work, is in general intended to lead to publication in some form so that its results are available to interested persons everywhere. All university-conducted research must be available
for public scrutiny and use. The university does not accept
grants from or enter into contracts with governmental agen-
cies or any other sponsors for research projects of which the
results may not be made publicly accessible.

Most research projects at the university are carried on by
faculty members and students within the facilities offered
by their own departments. For on-campus research that
cannot be conducted in department facilities, laboratories,
or the library, the university has provided a number of
cooperative research centers and bureaus. A list of the
university’s research centers may be found in the Divisions
of the University chapter.

Many members of these organizations are active in
graduate instruction. Information about their programs
and activities may be found in Research at Rutgers, a hand-
book and bibliography published by the Research Council,
the university agency that sponsors and coordinates
faculty research.

PATENT POLICY

All students are governed by the university’s patent policy,
which is described in a statement available in the Office of
Research and Sponsored Programs and the offices of all
deans and department chairpersons.

Degree Requirements

This chapter outlines the minimum requirements of the
Graduate School–New Brunswick for each of the advanced
degrees under its jurisdiction. The faculty in charge of each
program may impose additional requirements. The most
significant of these additional requirements are announced
in the program descriptions, arranged alphabetically by
subject, in the Programs, Faculty, and Courses chapter.

DOCTOR OF PHILOSOPHY

The degree of Doctor of Philosophy (Ph.D.), introduced to
this country by Yale in 1861, is the highest degree offered
in American education. It is conferred in recognition of two
accomplishments: (1) marked ability and scholarship in a
broad field of learning (such as chemistry or classics), and
(2) distinguished critical or creative achievement within a
special area of the general field. The special field forms the
subject of the doctoral dissertation. A student must devote
a minimum of three years of full-time study beyond the
bachelor’s degree for the Ph.D., of which at least one year
must be devoted to dissertation-related research. Full-time
study for one year is represented by 24 credits of course
work or research. The minimum requirement for the Ph.D.
degree is, therefore, 72 credits, of which at least 24 credits
must be devoted to research. If any of the work is con-
ducted on a part-time basis, the minimum time required
will, of course, be longer.

Doctoral programs normally are arranged in two phases.
The preliminary phase, which generally involves formal
courses of study, is completed when the student passes the
qualifying examination. In the second phase, the student
usually pursues research courses and writes his or her
dissertation. This phase concludes when the dissertation
is accepted and the defense of it is approved. Between
admission to the Graduate School–New Brunswick and the
conferral of the Ph.D. degree, the student must: (1) satisfy
the course and other preliminary requirements of the
particular graduate program in which the student is en-
rolled, (2) pass the comprehensive qualifying examination,
(3) present the results of the special research in an acceptable
dissertation, and (4) pass a final examination related to the
subject of the dissertation. The student becomes a formal
candidate for the doctorate only after completing the
qualifying examination.

Residence Requirements

Residence requirements for advanced degrees are deter-
mimed by the faculty of each program. Students should
consult their graduate directors for information concerning
minimum expectations of concentration for their programs
of study.
Transfer of Credit

Graduate courses completed at other institutions may be accepted for credit toward a doctorate at the university if they meet three conditions. First, they normally must form part of the student’s field of concentration. Second, the student must have been registered in these courses within the preceding six years. In some instances, however, the dean can waive this requirement if the student can show he or she has kept abreast of the subject matter in question. Finally, the student must have earned a grade of B or better in these courses. Graduate credit may not be transferred until 12 credits of graduate courses with grades of B or better have been completed in the Graduate School–New Brunswick as a matriculated student. The maximum number of credits a student may transfer is 50 percent of the total number of course credits in his or her program, exclusive of research. In no case, however, may this total exceed 24 credits. The faculty of a graduate program may recommend the transfer of credits earned at a professional or graduate school elsewhere toward a Ph.D. in the Graduate School–New Brunswick. No credit may be transferred for thesis-related research work, course work done as independent study, or course work that was not graded with an A or B. Other letter or numerical grades are eligible for transfer if the student earned the equivalent grade of B or better and if he or she submits a letter from the instructor of the course testifying to that equivalence. See the Academic Policies and Procedures chapter for additional information.

Language Requirements

Language requirements for advanced degrees in the Graduate School–New Brunswick are determined separately by each program. Information about requirements may be found in the Programs, Faculty, and Courses chapter under each program.

When programs require that proficiency in one or more foreign languages be demonstrated by a written examination, the programs may supervise their own examinations or ask their students to pass the examinations offered on several dates throughout the year by the Graduate School–New Brunswick. These examinations are given in Greek, Latin, French, German, Russian, Chinese, Spanish, Italian, and Portuguese. In each, the student is asked to translate passages with the aid of a dictionary. Students must apply in advance to take an examination, which is graded on a pass or fail basis.

Registration information and instructions are available at the FAS–NB Language Laboratory, Seminary Place, College Avenue campus. A fee of $15 is charged. The results of the examinations are reported to graduate offices as soon as they become available, usually in about two weeks. The student’s program director certifies the results of the examination (or examinations) on the student’s Ph.D. candidacy form.

Courses to give students a reading knowledge of a foreign language are provided by the university at the undergraduate level. Students interested in those courses should consult the current New Brunswick Undergraduate Catalog.

Program of Study

A student who wishes to qualify for the doctorate should formulate a program of study in consultation with his or her graduate adviser or committee. The course and research requirements for the doctoral degree in each subject are determined by the faculties concerned, although all programs are subject to review by the dean of the Graduate School–New Brunswick. The minimum total requirement of nonresearch courses varies by program, although it rarely exceeds 48 credits. The student must offer a minimum of 24 credits in research toward the degree. The minimum combined total credit requirement is 72 credits. No more than 12 credits of advanced undergraduate courses (300 or 400 series with added G prefixes) may be offered toward the degree. No more than 50 percent of a student’s formal course work may be taken in professional school courses. In most programs, a student is able to complete course work in two years of full-time study. Courses taken to satisfy the requirements for a master’s degree may, with program approval, be counted toward the doctorate. The time of transition from course work to guided or independent research is determined by the faculty of the student’s program. The entire doctoral program should be completed no later than seven years after the student first registers in the Graduate School–New Brunswick.

Academic Standing

Prospective candidates for the doctorate should understand that they ordinarily will not be permitted to proceed to the qualifying examination unless their record in course work shows evidence of distinction. The standard of work required is left largely in the hands of the students’ program committee. It is expected, however, that no more than 9 credits offered in partial fulfillment of the requirement for the doctorate, and for which letter grades have been given, shall bear grades of C or C+. Most programs expect graduate students to achieve grades of B or better in all of their courses. The regulations in some programs assume that a student probably should not continue to the doctorate unless he or she demonstrates a capacity to perform with distinction (i.e., grades of A) in at least half of his or her formal studies.

Admission to Candidacy:

The Qualifying Examination

The qualifying examination is given to determine whether a student has acquired sufficient mastery of the field of concentration to warrant admission to candidacy for the Ph.D. degree. The exam should be taken as soon as a student has completed the major portion of the course requirements. It should be taken no later than four years after the student first registered in the Graduate School–New Brunswick and not later than two terms before taking the final dissertation examination.

The comprehensive examination, conducted by a committee of at least four members (the chairperson must be a member) or associate members of the program’s graduate faculty, may be written or oral or both. Once a student has fulfilled the language requirements, if applicable, and other relevant program requirements, and has passed the qualifying examination, he or she is admitted to candidacy for the doctoral degree. The student’s program will certify the results of his or her language examination on the application for admission to candidacy for the doctoral degree. The student
must obtain this application from the office of the graduate school and submit it to the chairperson of the committee at the time of the examination. It should be properly signed by the four members of the candidate's committee and the graduate director and then returned to the Office of the Graduate School. Once a student has passed the examination, he or she must remain registered—for courses or research—or lose his or her status as a candidate. An exception to this rule may be granted to recipients of the Master of Philosophy degree (see the section concerning that degree later in this chapter).

Dissertation and Dissertation Committee

Each candidate for the doctorate pursues, under faculty direction, an original investigation of a problem or problems in a field of concentration and presents the results of the investigation in a dissertation. The dissertation must be approved by a minimum of three members of a faculty committee of four members. The member of the program faculty who supervises the student's investigation becomes chairperson of the committee. The panel also includes two members or associate members of the program faculty and an "outside" member, who is appointed by the program director in consultation with the student's adviser. Whenever possible, "outside" shall be "outside the university," but in all cases this person must come from outside the program. The outside member is expected to be a recognized authority on the subject of the dissertation. For appointments of committee members who are not members of the graduate faculty, the program director will forward to the Office of the Graduate School a letter appointing the individual to the committee. This letter should explain the basis for the appointment and must include the address of the appointee.

For committees having more than four members, only one nonapproval is permitted. Substitutions in committee membership, once it has been determined, are the responsibility of the program director. Replacements will occur only if a member is unable to serve or if a student's dissertation topic changes, requiring a new dissertation director and/or modification in the committee. In cases other than these, approval for changes in committee membership rests with the dean of the Graduate School—New Brunswick.

The committee will meet to discuss the candidate's dissertation proposal once the candidate has developed some preliminary guidelines with the advice of the dissertation supervisor. Whenever possible, the outside member of the committee will be at this initial meeting. Subsequently, the committee must be kept informed of the student's progress and must agree to follow the candidate's work and assist in its development. The committee also shall agree to give ample and early warning of any reservations concerning the student's progress and must specify in writing the changes required for dissertation acceptance.

The final copy of the dissertation should be prepared in strict accordance with the instructions given in the pamphlet Style Guide for Thesis and Dissertation Preparation, available at the Office of the Graduate School. After the dissertation has been accepted by the committee, the required copies are to be filed with the Office of the Graduate School no later than the announced deadlines for completion of degree requirements. One copy will be bound and made available in a university library.

With the dissertation, the candidate is required to submit an abstract, not exceeding 350 words, that embodies the principal findings of his or her research. As with the dissertation, the abstract must be approved by the professor in charge of the work for the dissertation and accepted by the other members of the student's committee.

Final Examination

A final public examination is held under the auspices of the committee in charge of the candidate's course of study. A candidate must defend the dissertation and otherwise satisfy the committee and other faculty members in attendance that he or she is qualified to receive the degree of Doctor of Philosophy.

At the time of the final examination, it is the responsibility of the candidate to obtain from the Office of the Graduate School the candidacy application (on which the result of the qualifying examination was recorded) for completion by the committee at the final examination. The same committee members also must sign the title page of the dissertation, signifying their acceptance of it. Once the program director certifies that all program requirements have been completed for the degree of Doctor of Philosophy, the candidate must return the candidacy application to the Office of the Graduate School. The two required copies of the thesis or dissertation submitted must be of excellent quality, correct in margin and format, and on 100 percent rag or cotton content bond paper. All of the above materials must be submitted to the Office of the Graduate School no later than the announced deadlines for completion of degree requirements. The names of those failing to meet these deadlines will be removed automatically from the commencement list for that degree date.

Application for the Conferral of the Degree

The candidate must file a diploma application according to announced deadlines in order to receive a diploma at commencement. For further information regarding the application procedure, see Graduation at the end of this chapter. A certificate of completion is issued, upon request, in advance of the awarding of the diploma in May.

Publication of Dissertation and Academic Data

After the granting of the doctorate, the Graduate School—New Brunswick will have the dissertation microfilmed. The dissertation, therefore, must be prepared with the same care as if it were to appear in printed form. As the abstract that must accompany the dissertation will be published in Dissertation Abstracts, it also must be ready for publication when it is submitted to the dean.

Bell and Howell of Ann Arbor, MI, will microfilm the dissertation and publish the abstract. Information concerning the preparation of the dissertation and abstract and the agreement with Bell and Howell that the candidate must sign are available in the Office of the Graduate School. The fee for microfilming the dissertation and publishing the abstract is $55. Registration of copyright also is available for a fee of $45.

Calendar for the Doctoral Degree Program

The following deadlines should be observed by a candidate for the doctorate. The candidate must satisfy admission conditions early in the academic program and complete any language requirements before taking the qualifying
examination. The candidate also must take the qualifying examination at least two terms before the final examination. In addition, he or she must file the required copies of the dissertation, complete the final examination, and return the candidacy form (which indicates the results of that examination) by the established deadlines for completing degree requirements. Finally, candidates must file their diploma applications by the appropriate deadline. At no point during this sequence may students allow their registration in the Graduate School–New Brunswick to lapse (with the exception of a recipient of the Master of Philosophy degree). The entire program must be completed within the period specified under Time Limits for Degrees later in this chapter.

MASTER OF PHILOSOPHY

The Master of Philosophy (M.Phil.) degree is offered by the faculties of certain Ph.D. programs to students who achieve records of distinction during the predissertation phase of those programs. Doctoral programs in which the Master of Philosophy degree may be conferred are indicated in the Programs, Faculty, and Courses chapter. Because the Master of Philosophy is not designed as a terminal degree, its requirements are integrated with the requirements for the Doctor of Philosophy degree. The Graduate School–New Brunswick does not admit potential candidates for the Master of Philosophy degree to graduate study unless they are clearly qualified to pursue the doctorate, and prospective students interested in the degree are advised to apply for admission to doctoral programs.

This degree, introduced by the University of Toronto in 1962 and established by Yale University in 1966, requires a minimum of two years of advanced study beyond the baccalaureate degree. Placed between the Master of Arts or the Master of Science degree and the Doctor of Philosophy, the Master of Philosophy marks a student’s successful completion of all requirements for the doctorate except the final phase of research and the dissertation. The regulations governing the Master of Philosophy degree at the university are designed to encourage students in their progress toward the doctorate. The degree is intended to provide recognition that a prospective doctoral candidate has successfully and expeditiously completed a major phase of graduate study and has achieved a comprehensive mastery of the general field of concentration. Recipients of the degree automatically proceed toward the Ph.D. degree.

Programs leading to the Master of Philosophy degree are substantially similar to the predissertation phase of doctoral programs. They differ primarily in their stipulations on minimum grade requirements, completion of all work within the specified time limit, and the requirement that either a thesis or essay must be completed. Eligible students who intend to proceed toward the doctorate and who wish to acquire a master’s degree in the course of their doctoral studies are advised to seek the Master of Philosophy degree instead of (or in addition to) the degree of Master of Arts or Master of Science.

Transfer of Credit

Credit for graduate-level courses taken elsewhere may be accepted toward the Master of Philosophy degree under the conditions outlined under transfer of credit in the description of Ph.D. requirements. It is a special requirement for the Master of Philosophy degree, however, that in at least one-quarter of the courses for which transfer of credit is desired the student must have earned a grade of A or its equivalent. Further restrictions concerning the transfer of credit may be found in the Academic Policies and Procedures chapter.

Program of Study

The requirements for the Master of Philosophy degree include a minimum of 48 credits of work, of which at least 42 credits must consist of course work. The remainder, with the approval of the student’s program, may consist of research associated with an M.A. or M.S. thesis. At least 33 credits of the course requirements must be fulfilled in graduate-level courses numbered in the 500s and 600s, and of these at least 24 credits must be earned in courses taken at the university.

Academic Standing

To qualify for the Master of Philosophy degree, the student must earn a grade of A in at least 12 credits of the graduate-level courses that are taken at the university. No more than 3 credits bearing the grade of C or C+ may be counted toward the degree, and students earning 9 credits or more bearing grades of C or C+ or lower are ineligible for the degree.

Writing Requirement

Students who earn an M.A. or M.S. degree at the university are required to submit a master’s thesis or a critical or expository essay in partial fulfillment of the requirements for the degree. Students seeking a Master of Philosophy degree are viewed as meeting the writing requirement for that degree if they already have submitted a formal thesis for the lower-level master’s degree. Students who have not submitted a formal master’s thesis can meet the Master of Philosophy writing requirement with a critical or expository essay that was accepted by their program faculty for the lower master’s degree or with a similar essay written during their graduate work at the university. The thesis or essay must have been written under the direction of a member of the graduate faculty and approved by two other members of the graduate faculty.

Time Limits

All requirements for the Master of Philosophy degree must be completed within four consecutive academic years of first registration at the university. Students for whom transfer of credit is granted for graduate work done elsewhere must complete their program within commensurately shorter limits. Extensions of time normally will not be granted in connection with this degree.

Other Requirements

All other requirements for the Ph.D. degree established by the Graduate School–New Brunswick and by the faculty in charge of the student’s program, other than the doctoral dissertation and the dissertation examination, must be fulfilled by applicants for the Master of Philosophy degree. These include completing all doctoral program requirements and passing the qualifying examination.
Continuing for the Ph.D. Degree

Students who have been awarded a Master of Philosophy degree may proceed directly toward the Ph.D. if they are admitted into the program and continue their registration. On the other hand, these students may elect to allow their registration to lapse for as long as four years without paying a restoral fee. To activate a lapsed registration, the student must submit an application for readmission to the Graduate School–New Brunswick at any time within the four-year window. With the program director’s endorsement, readmission is automatic within the four years. (See Readmission in the Academic Policies and Procedures chapter.) After more than four years, holders of the Master of Philosophy degree may apply for readmission, but their graduate director may require them to take a refresher course or meet other requirements for readmission.

MASTER OF ARTS/MASTER OF SCIENCE

Candidates for the Master of Arts (M.A.) or Master of Science (M.S.) degree must satisfy the requirements of the Graduate School–New Brunswick and those of their particular program. The requirements of the Graduate School–New Brunswick are given below, and additional requirements established by various program faculties may be found in the Programs, Faculty, and Courses chapter. Certain programs have a foreign language requirement.

The minimum requirement to earn the master’s degree is 30 credits of successful graduate study in course work. The candidate also must pass a comprehensive examination in his or her field of concentration. In some programs, but not all, a research program culminating in a thesis may be required. This thesis project usually replaces 6 credits of regular graduate courses normally taken in a nonthesis program. The 30 credits, representing at least one academic year of advanced study, must be completed no later than three years after first registration unless an extension of time is granted by the Graduate School–New Brunswick. For further information, see Time Limits for Degrees later in this chapter.

The student’s registration in the Graduate School–New Brunswick must be continuous from the time of admission to graduate study until the time the degree is conferred. In fulfilling course requirements, courses may be selected from a single program or from several related programs. All programs of study are subject to review by the dean of the Graduate School–New Brunswick.

Transfer of Credit

On the recommendation of the program and with the approval of the Graduate School–New Brunswick, a student may transfer as many as 12 graduate credits as partial fulfillment of the 30-credit degree requirements. For further information, see Transfer of Credits in the Academic Policies and Procedures chapter.

Program of Study

When programs include pursuit of a research problem developed in a master’s thesis, 6 credits of the total of 30 credits in the program are devoted to research for the thesis and writing the actual document. In exceptional cases, when it is desirable to give greater emphasis to the research project, the dean of the Graduate School–New Brunswick may, upon recommendation of the candidate’s program, approve a maximum of 12 credits for research on an unusual problem and its treatment in the thesis.

In some master’s programs, students pursue their degrees entirely through course work without writing a research thesis. In these cases, candidates must demonstrate to the faculty that they have the ability to write a creditable expository or critical essay as part of a seminar or special course designed for that purpose.

In programs consisting entirely of course work, at least 18 of the 30 credits of study must be undertaken in graduate-level courses (those numbered in the 500s and 600s). In programs in which a master’s thesis accounts for a normal portion of the credit recorded, at least 12 credits of study must be undertaken in graduate-level courses. With the approval of the candidate’s program faculty, the balance of his or her study in courses may be undertaken either in advanced undergraduate courses (numbered in the 300s and 400s) or in additional courses designed primarily for graduate students. In no case may the candidate for the Master of Arts or Master of Science degrees offer more than 12 units of credit of advanced undergraduate course work.

Academic Standing

Candidates for the master’s degree normally are expected to earn grades of B or better in their course work. No more than 9 credits (fewer in some programs) bearing grades of C or C+ may be used in meeting the requirements for a master’s degree.

Committees and Advisers

When a student’s program includes a thesis, the supervision of the course of study, the research for the thesis, and the conduct of the final examination are entrusted to a committee whose members are selected in consultation with the director of the graduate program. Each committee consists of at least three members or associate members of the graduate faculty in the student’s graduate program. One nonprogram member is permitted, but this selection must be approved by the director of the graduate program. If the student’s program does not include a thesis, the committee is appointed shortly before the final examination. A nonthesis committee consists of at least three members or associate members of the graduate faculty in the student’s graduate program. No substitutes are permitted. In either case, the student is encouraged to seek advice during the course of study from the graduate director, committee chairperson, and professor supervising his or her courses. No graduate student should regard a program of study as the mere accumulation of numerical credits and meeting of formal requirements. Progress toward mastery of a discipline depends largely upon the guidance of the professors in charge of the effort and upon the student’s initiative.

Submission of the Thesis

For a student whose program includes a thesis, that thesis must be approved by the professor in charge and accepted by the other members of the student’s committee. The final draft of the thesis should be prepared in strict accordance with the instructions given in the pamphlet Style Guide for Thesis and Dissertation Preparation, available at the Office of the Graduate School. After the thesis has been accepted by the committee, the required copies are to be filed with the Graduate School–New Brunswick by the announced deadlines for completion of degree requirements.
Master’s Examination

An application for candidacy for the master’s degree must be submitted to the dean of the Graduate School–New Brunswick at least two months before the final examination. If a student expects to take the final examination at the end of the Summer Session or at the beginning of the fall term, the application must be filed before the Summer Session starts. Forms for this purpose are available at the Office of the Graduate School, and responsibility for making the application lies with the student.

The final comprehensive examination may be written or oral, or it may be a combination. Just before a student is to take the comprehensive examination, he or she must obtain, from the Office of the Graduate School, a copy of the previously filed application and submit that copy to the chairperson of the committee. The chairperson and committee members record the results of the examination on this form. It is the responsibility of the candidate to obtain the approval of the graduate-program director and to return the form to the Office of the Graduate School. The form should be returned soon after the examination and no later than the announced deadlines for completion of degree requirements. The names of those failing to meet the deadline will be removed automatically from the commencement lists.

Qualifying Examination for the Doctorate Used for the Master’s Degree

A student who has satisfied all other requirements for a master’s degree except the final examination may, with the permission of the program faculty, elect to take the qualifying examination for the doctorate in place of the final master’s examination. After passing the qualifying examination, these students may be recommended for the appropriate master’s degree. This use of the qualifying examination does not invalidate the status of a student as a candidate for the doctor’s degree. A student who desires to use the qualifying examination as the final examination for the master’s degree must file an application for the master’s degree in accordance with the preceding directions.

Application for the Conferral of the Degree

The candidate must file a diploma application before posted deadlines in order to receive the degree at commencement. For further information regarding the application procedure, see Graduation at the end of this chapter.

Calendar for the Master’s Degree Program

The candidate must file an application for a master’s degree early in the same term that included the scheduled final examination. It is assumed at this point that grades from previous courses are available. If the program includes a thesis, two copies of the thesis and the completed candidacy form must be filed according to the announced deadlines for completion of degree requirements. Finally, the diploma application must be filed by the appropriate deadline. At no point during this sequence should the student allow academic year registration in the Graduate School–New Brunswick to lapse. The entire program must be completed within the period specified under Time Limits for Degrees later in this chapter.

MASTER OF ARTS FOR TEACHERS/ MASTER OF SCIENCE FOR TEACHERS

Programs leading to the degree of Master of Arts for Teachers (M.A.T.) or Master of Science for Teachers (M.S.T.) are offered in the Graduate School–New Brunswick to teachers at secondary schools who wish to further their academic education. Prospective students should be advised that these programs do not lead to certification in teaching nor are they degrees in education, which are offered by the Graduate School of Education. The programs of study for the M.A.T. and M.S.T. degrees are designed on an individual basis. All M.A.T. and M.S.T. programs at the university are comprised primarily of work in regular courses of study, and none provides for the submission of a thesis. The other requirements governing the degree may be found in the preceding account of requirements for the degrees of Master of Arts and Master of Science.

TIME LIMITS FOR DEGREES

Degree programs should be completed within the following periods of time after first registration in the Graduate School–New Brunswick:

<table>
<thead>
<tr>
<th>Degree</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master of Arts</td>
<td>1 year</td>
<td>3 years</td>
</tr>
<tr>
<td>Master of Science</td>
<td>1 year</td>
<td>3 years</td>
</tr>
<tr>
<td>Master of Arts for Teachers</td>
<td>1 year</td>
<td>3 years</td>
</tr>
<tr>
<td>Master of Science for Teachers</td>
<td>1 year</td>
<td>3 years</td>
</tr>
<tr>
<td>Master of Philosophy</td>
<td>2 years</td>
<td>4 years</td>
</tr>
<tr>
<td>Doctor of Philosophy</td>
<td>3 years</td>
<td>7 years</td>
</tr>
</tbody>
</table>

All students are urged to consider the educational and economic benefits of completing their programs quickly. Soon after being admitted to graduate study each student should consult with a faculty adviser and work out a reasonable timetable for meeting the requirements. Extensions beyond the normal limits shown above (for all degrees except the Master of Philosophy) may be granted to students in good standing. A student requiring an extension should petition the dean of the Graduate School–New Brunswick on a form available from the Office of the Graduate School. If the petition is supported by reasons of weight, and if the faculty members in charge of the student’s program certify that satisfactory progress is being made, the extension normally is granted. Part-time students should consult their program concerning their expected times of completion.

THESIS AND DISSERTATION PREPARATION

A pamphlet entitled Style Guide for Thesis and Dissertation Preparation is available at the Office of the Graduate School. All theses, dissertations, or essays submitted to the Graduate School–New Brunswick in partial fulfillment of the requirements for master’s and doctor’s degrees must conform to
the instructions in this pamphlet. A thesis may be rejected by the graduate school office if it does not adhere to the stylistic and technical requirements specified in Style Guide for Theses and Dissertation Preparation.

The Office of Academic Services provides a series of dissertation and thesis workshops to help students prepare their manuscripts for submission in accordance with the requirements of the Graduate School–New Brunswick. In addition to examining the various guidelines for dissertation and thesis preparation, the workshops give students the opportunity to ask questions about the format of their project. For schedule information, call 732/932-7034.

GRADUATION

When entering their final term, candidates who anticipate faculty recommendation for conferral of the degree are required to follow the procedures listed below:

1. Ensure that all academic requirements are being completed. If a student is unable to do so by the deadline date, both forms listed below must be refilled for a later-dated diploma.
2. Ensure that related fees and any outstanding debts to the university are paid.
3. Submit the completed candidacy application form by the announced deadline, normally in early January, May, or October.
4. Submit a diploma application form by the announced deadline, normally January 2, April 1, or October 1.

If this form is filed after the deadline, the degree cannot be conferred as scheduled, and graduation will be delayed. Students must refill this form if the deadline has passed. All forms are available from the Office of the Dean of the Graduate School. Students are urged to submit the appropriate forms in advance of the deadlines, if possible. It is the responsibility of the student to complete all requirements for graduation by the scheduled dates. All students should consult with the graduate director of their programs and with the Office of the Dean of the Graduate School about completing the requirements for graduation.

Conferral of degrees and diplomas occurs once a year at the annual spring commencement. However, students who file the applications and complete all other requirements for the degree by the announced October or January dates will get a diploma dated for the respective month, although they will not receive it until the following spring. Students may request a temporary certificate of completion by submitting a written request to the university registrar (Administrative Services Building, Busch Campus). This request form may be obtained at the dean’s office. At the time of commencement, degrees may be conferred in absentia only if the prospective candidate has notified the university registrar that he or she cannot attend the commencement exercises.

The diploma will be withheld from any student who has a financial obligation to the university.

Programs, Faculty, and Courses

In this chapter, detailed descriptions of the programs offered by the Graduate School–New Brunswick appear in alphabetical order by subject name. Under each program, information is provided about the degree or degrees offered, the name and campus address of the program director, a list of the members of the graduate faculty in charge of the program and their research interests, a description of the program’s special purposes and requirements, and a list of courses. Note For a comprehensive list of the degree programs offered by the Graduate School–New Brunswick, see the Degree Programs Available chapter.

COURSE INFORMATION

Courses numbered in the 500s and 600s are offerings of the graduate faculty for graduate students in advanced-degree programs. Undergraduate or nonmatriculated graduate students and students from the university’s graduate professional schools are admitted to these courses according to rules printed elsewhere. Information about special prerequisites for some courses may be obtained from graduate program offices and from instructors at initial class meetings. Courses numbered in the 700s are intended for students preparing individual research theses or dissertations for advanced degrees.

Advanced undergraduate courses numbered in the 300s and 400s do not appear in this catalog, but among them are many that may serve as useful prerequisites to particular graduate courses. Under certain conditions, these courses may be accepted for credit toward graduate degrees. Within the limits described in the Degree Requirements and the Academic Policies and Procedures chapters, a student in the Graduate School–New Brunswick may register for an undergraduate course with the approval of his or her graduate adviser. Information about undergraduate course offerings must be sought in the appropriate undergraduate catalogs and separate schedules of classes. Graduate-level courses at the Rutgers professional schools and at Princeton University also must be sought out in the catalogs of those schools.

Explanation of Three-Part Course Numbers

The number preceding each course title is divided into three parts. The first two digits are the administrative code (standing for a faculty or a school), the next three digits are the subject code, and the final three digits are the course code.

Administrative Codes

The administrative code for the Graduate School–New Brunswick is 16. The following administrative codes may be relevant for graduate students in New Brunswick:

- 01 Faculty of Arts and Sciences–New Brunswick
- 08 Mason Gross School of the Arts (graduate courses)
- 15 Graduate School of Education (graduate courses)
- 16 Graduate School–New Brunswick
- 17 School of Communication, Information and Library Studies (graduate courses)
- 18 Graduate School of Applied and Professional Psychology
- 19 School of Social Work (graduate courses)
- 26 Graduate School–Newark
- 34 Edward J. Bloustein School of Planning and Public Policy
- 37 School of Management and Labor Relations
- 53 School of Business–Camden
- 56 Graduate School–Camden
Subject Codes
A subject code comprises the third through fifth digits in all course numbers and indicates the subject matter of the course. The following subject codes are used in this catalog:

030 Agricultural Economics
047 Alcohol Studies
067 Animal Sciences
082 Art History
098 Asian Studies
115 Biochemistry
125 Biomedical Engineering
126 Biotechnology
127 Bioresource Engineering
148 Cell and Developmental Biology
150 Ceramic and Materials Science and Engineering
155 Chemical and Biochemical Engineering
160 Chemistry
180 Civil and Environmental Engineering
185 Cognitive Science
186 College Teaching
190 Classics
194 Communication, Information, and Library Studies
195 Comparative Literature
198 Computer Science
215 Ecology and Evolution
220 Economics
300 Education
332 Electrical and Computer Engineering
350 English
352 English (Composition Studies)
356 English as a Second Language
370 Entomology
375 Environmental Sciences
378 Environmental Change, Human Dimensions of
400 Food Science
420 French
450 Geography
460 Geological Sciences
470 German
510 History
540 Industrial and Systems Engineering
545 Industrial Relations and Human Resources
554 Interdisciplinary Studies
560 Italian
615 Linguistics
617 Literature and Language
640 Mathematics
642 Mathematics, Applied
650 Mechanical and Aerospace Engineering
654 Mechanics
667 Medieval Studies
681 Microbiology and Molecular Genetics
695 Molecular and Cell Biology
696 Molecular Biophysics
700 Music
709 Nutritional Sciences
711 Operations Research
712 Oceanography
718 Pharmacology, Cellular and Molecular
720 Pharmacy (Pharmaceutical Science)
730 Philosophy
750 Physics and Astronomy
761 Physiology and Neurobiology
765 Plant Biology
790 Political Science
830 Psychology
832 Public Health
841 Quaternary Studies
859 Russian, Central and East European Studies
910 Social Work
920 Sociology
940 Spanish
960 Statistics
963 Toxicology
970 Urban Planning and Policy Development
988 Women’s and Gender Studies

Course Codes
The course code comprises the sixth, seventh, and eighth digits in all course numbers.

When two course codes are separated by a comma, each term course may be taken independently of the other. If two course codes are separated by a hyphen, students must complete satisfactorily the first course before taking the second one. Students may take the first course for credit without taking the second course unless a statement is added to indicate that both term credits must be taken in order to receive credit.

Other Course Notations
Courses noted (F) and (S) indicate fall and spring anticipated schedule. Not all courses are offered every term or year.

Credits awarded for the successful completion of each course are indicated in parentheses following the course title. The notation BA indicates that the number of credits is determined by arrangement with the program offering the course.

Unless otherwise indicated, a course normally meets for a number of lecture hours equal to the number of credits to be earned. Special hours or modes of class, other than lecture, are usually indicated in italics below the course title.

Abbreviations
The following abbreviations are used in the faculty listings:

BCAE Biotechnology Center for Agriculture and the Environment
CABM Center for Advanced Biotechnology and Medicine
CAFT Center for Advanced Food Technology
CAS Center of Alcohol Studies
CC Cook College
CCACC Camden College of Arts and Sciences
CCES Center for Coastal and Environmental Studies
CCS Center for Government Services
CINJ Cancer Institute of New Jersey
CMBN Center for Molecular and Behavioral Neuroscience
CN College of Nursing
CNCR Center for Negotiation and Conflict Resolution
CP College of Pharmacy
CTAG Center for Theoretical and Applied Genetics
CUPR Center for Urban Policy Research
EIP Eagleton Institute of Politics
EJBSPPP Edward J. Bloustein School of Planning and Public Policy
FAS–C Faculty of Arts and Sciences–Camden
FAS–N Faculty of Arts and Sciences–Newark
FAS–NB Faculty of Arts and Sciences–New Brunswick
FM Faculty of Management
GS–C Graduate School–Camden
GS–N Graduate School–Newark
GS–NB Graduate School–New Brunswick
GSAPP Graduate School of Applied and Professional Psychology
GSE Graduate School of Education
GSM Graduate School of Management
IHHCPAR Institute for Health, Health Care Policy, and Aging Research
IMCS Institute of Marine and Coastal Sciences
IRC Interdisciplinary Research Center
MGCMCR Malcolm G. McLaren Center for Ceramic Research
MGSA Mason Gross School of the Arts
NTI National Transit Institute
RuCSC Rutgers Center for Cognitive Science
SB–NB School of Business–New Brunswick
SCILS School of Communication, Information and Library Studies
SCJ School of Criminal Justice
SE School of Engineering
SL-C School of Law–Camden
SL-N School of Law–Newark
SMLR School of Management and Labor Relations
SSW School of Social Work
UC-C University College–Camden
UC-N University College–Newark
UC-NB University College–New Brunswick
UMDNJ– University of Medicine and Dentistry of New Jersey–RWJMS Robert Wood Johnson Medical School
UMDNJ– University of Medicine and Dentistry of New Jersey–SCOM School of Osteopathic Medicine
WIM Waksman Institute of Microbiology

AGRICULTURAL ECONOMICS 030

Degree Program Offered: Master of Science
Director of Graduate Program: Professor Carl E. Pray, 110 Cook Office Building, Cook Campus (732/932-9155, ext. 219)

Members of the Graduate Faculty
Adesoji O. Adelaja, Professor of Agricultural Economics and Dean of Research, CC; Ph.D., Wet Virginia
Agricultural production economics; economics of the food industry; agricultural policy in urbanizing areas

Robin G. Brumfield, Associate Professor of Agricultural Economics and Marketing, CC; Ph.D., North Carolina State
Production economics of the horticultural industry

Dann A. Derr, Associate Professor of Agricultural Economics, CC; Ph.D., Ohio State
Natural and community resource economics

Ramu Govindasamy, Associate Professor of Agricultural Economics, CC; Ph.D., Iowa State
Agricultural marketing; operations research; consumer economics

Peter J. Parks, Associate Professor of Agricultural Economics CC; Ph.D., California (Berkeley)
Environmental and resource economics

Carl E. Pray, Professor of Agricultural Economics, CC; Ph.D., Pennsylvania
Agricultural development; international development science and technology policy

Leslie E. Small, Professor of Agricultural Economics and Associate Dean of Academic Administration, CC; Ph.D., Cornell
Agricultural development and irrigation management in Asia

Edmond M. Tavernier, Associate Professor of Agricultural Economics, CC; Ph.D., Minnesota
Agricultural policy; trade

Associate Members of the Graduate Faculty
Sanjib Bhuyan, Assistant Professor of Agricultural Economics, CC; Ph.D., Connecticut
Economics of food industry, food marketing; cooperatives

Ferdas Hussain, Assistant Professor of Agricultural Economics, CC; Ph.D., Iowa State
Agricultural finance; international trade; applied demand analysis

Eliza M. Mojducka, Assistant Professor of Agricultural Economics, CC; Ph.D., Massachusetts (Amherst)
Economics of food product quality and imperfect information; demand analysis; food marketing

Programs

The graduate program in agricultural economics attempts to help students apply economic theory and methods to significant problems facing society. It emphasizes natural resources and the environment, food distribution and processing, and international agricultural development.

The program offers two options for obtaining a Master of Science degree. The first involves 24 credits of course work and 6 additional credits for successful completion of a research thesis. Under the second route, students take 30 credits of course work and submit an acceptable 3-credit research paper. A full-time student normally takes two years to complete the program. Teaching and research assistantships that include tuition remission are available for a limited number of full-time students. To the extent that space is available, full-time students are assigned office space in the Cook Office Building, which houses the Department of Agricultural Economics.

All students are required to take introductory econometrics in their first term (unless they have taken this course before entering the program). The remaining core-course requirements consist of three graduate courses: microeconomic theory, research methods, and applied econometrics. Students must pass a comprehensive examination after they complete the required core courses. In addition, at least two other courses in agricultural economics must be taken. Selected courses may be taken from other programs, including anthropology, computer science, economics, environmental sciences, geography, political science, psychology, sociology, statistics, and urban planning and policy development. There are no language or residency requirements for the degree.

A dual master’s degree program is available with the graduate programs in urban planning and policy development. This track leads to a Master of Science degree in agricultural economics and either a Master of Science in urban planning and policy development or a Master of City and Regional Planning. Students are accepted independently into both graduate programs after making separate applications to each. Students must meet the requirements of both programs. However, with proper course selection, 9 credits of course work from each program may be applied to the other degree.

Applicants to the graduate program in agricultural economics normally are accepted for matriculation only in the fall term of each year. Applicants must submit scores of the general test of the Graduate Record Examination, three letters of recommendation, and a statement of personal objectives. Foreign applicants whose native language is not English also must take the Test of English as a Foreign Language (TOEFL) and should score at a level of approximately 600 or better. For applicants wishing to receive full consideration for financial aid, the application and all supporting credentials should be received by the Office of Graduate Admissions by March 1.

Individuals who have a limited undergraduate background in economics or agricultural economics should complete the following courses before applying to the program: an undergraduate course in intermediate microeconomic theory and one in intermediate macroeconomic theory, calculus (minimum of one, but preferably two terms), and introductory statistics. In a few cases, outstanding students who lack these courses may be admitted on a conditional basis, subject to successful completion of the specified courses. Credits from these courses may not be used to fulfill the requirements of the master’s degree. Financial aid is not available to entering students admitted on a conditional basis, although such students subsequently may apply for aid upon completion of conditions imposed at the time of admission.

Details about the program can be found in a brochure entitled Graduate Program in Agricultural Economics, which is available upon request from the office of the graduate director.

Graduate Courses

16:030:502. (F) INTERNATIONAL AGRICULTURAL DEVELOPMENT (3)
Pray
The role of agriculture in economic development of low-income nations. Analysis of induced technical and institutional innovations, human capital investments, and public policies to promote development.

16:030:503. (F) RESEARCH METHODS (3)
Pray
The scientific method and applied research in economics. Planning of research, including problem definition and preparation of research proposals. Overview of commonly used analytical techniques.

16:030:504. (S) MARKETING AND FOOD SYSTEMS (3)
Bhuyan
Trends and issues in a consumer-driven food system; changing organization and structure of food markets; analysis of food consumption, prices, and expenditures.

41
upon completion of their degree. Many requirements for the certificate may be used to satisfy the student’s graduate degree requirements. To earn a certificate in alcohol studies, students must:

1. Complete 15 credits of coursework in alcohol studies with a minimum grade average of B. Of the 15 credits, 9 credits must come from the course offerings described below. The remaining 6 credits also may be distributed among approved courses within the student’s or from another discipline.

2. Submit an acceptable research or scholarly project in the field of alcohol studies, including, but not limited to, the master’s thesis or doctoral dissertation.

3. Obtain approval from the director of the certificate program and the director of the student’s graduate degree program. Only students matriculated in a degree program may participate in the certificate program, but others may take courses with permission of course instructors. Further information is available from the director.

4. Students in a graduate program with a clinical component, such as clinical psychology, are expected to acquire some applied clinical experience with alcoholic and alcohol-abusing clients. To fulfill this requirement, students must have the equivalent of two terms of a one-day-per-week practicum in an alcoholism-treatment setting. This is equivalent to 6 N credits. Three of these 6 credits may be applied to the overall 9-credit course requirement cited above. Nonclinical practica, such as criminal justice, are available to students in other disciplines through special arrangement, but this is not a requirement.

Graduate Courses
16:047:501. FOUNDATIONS IN ALCOHOL STUDIES: BIOLOGY, PSYCHOLOGY, AND SOCIETY (3)
Bates, White
Provides a review of the essential information about alcohol’s acute and chronic effects on biology and behavior and the sociology of its use and misuse.

16:047:502,503. INDEPENDENT STUDY OF ALCOHOL-RELATED ISSUES (3,3)
Opportunity to pursue an area of interest concerning alcohol use and abuse under the supervision and guidance of a faculty member.

16:047:601,602. PRACTICUM: CLINICAL TREATMENT OF ALCOHOLIC PATIENTS (N-BA,N-BA)
Prerequisite: Previous experience in direct patient care. Required for students in degree programs that provide specific training in counseling or psychotherapy, such as clinical psychology (Ph.D. or Psy.D.), counseling psychology, social work, or psychiatric nursing.

ANIMAL SCIENCES 067
Degree Program Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Professor Henry John-Alder, Bartlett Hall, Cook Campus (732/932-3229)

Members of the Graduate Faculty
Juan P. Advis, Professor of Animal Sciences, CC; Ph.D., Southwestern Medical School (Dallas); D.V.M., Austral (Chile)
Carol A. Bagel, Associate Professor of Animal Sciences, CC; Ph.D., Medical College of Georgia
Rocco Carrió, Associate Professor of Cell Biology, UMDNJ-SOM; Ph.D., Rutgers Adenocarcinoma cell Biology
Wendie S. Cohick, Assistant Professor of Animal Sciences, CC; Ph.D., Cornell Mammary gland biology; endocrine regulation of cell growth
Julie M. Fagan, Associate Professor of Animal Sciences, CC; Ph.D., Arizona Mammary gland biology; endocrine regulation of cell growth
Harold Hals, Visiting Professor of Animal Sciences, CC; Ph.D., Cornell Physiology and endocrinology of reproduction; estrous synchronization, postpartum anestum, and puberty in cattle
Barry W. Jesse, Associate Professor of Animal Sciences, CC; Ph.D., Michigan State University. Ruminant nutritional biochemistry, molecular biology.

Henry B. John-Alder, Associate Professor of Animal Sciences, CC; Ph.D., University of California (Irvine). Comparative and environmental physiology and endocrinology.

Larry S. Kats, Associate Professor of Animal Sciences, CC; Ph.D., University of California (Davis). Endocrine regulation of reproductive behavior and wildlife contraception; inhibitors of reproductive behavior in health and disease.

Gordon J. MacDonald, Professor of Anatomy, UMDNJ-RWJMS; Ph.D., Rutgers University. Anterior pituitary, placenta, uterus, ovarian relationships.

Sasha Malamed, Associate Professor of Anatomy, UMDNJ-RWJMS; Ph.D., Columbia University. Adrenergic cell structure and function; somatostatin receptors.

Karyn Malinowski, Extension Specialist and Professor of Animal Sciences, CC; Ph.D., Rutgers University. Equine endocrinology and physiology.

Kenneth H. McKeever, Associate Professor of Animal Sciences, CC; Ph.D., University of Arizona. Equine exercise physiology; comparative cardiovascular and renal physiology.

Sarah L. Ralston, Associate Professor of Animal Sciences, CC; Ph.D., University of Pennsylvania. Equine behavior; effects of age on glucose, insulin, and mineral metabolism.

Dipak K. Sarkar, Chair and Professor of Animal Sciences, D.Phil., Oxford University. Growth and differentiation of neuroendocrine cells affect of alcohol and environmental factors.

Patricia A. Schoen tratamiento, Assistant Professor of Animal Sciences, CC; Ph.D., Cornell University. Nutritional physiology in swine; neonatal growth.

Michael V.K. Sukhdal, Associate Professor of Parasitology, CC; Ph.D., McGill University. Vertebrate parasitology.

Malcolm Watford, Associate Professor of Nutrition, D.Phil., Oxford University. Regulation of glucose metabolism.

Michael Westendorf, Associate Extension Specialist and Associate Professor of Animal Sciences, CC; Ph.D., University of Kentucky. Ruminant nutrition; by-product utilization; waste management.

Jeffrey White, Adjunct Associate Professor of Animal Sciences, Ph.D., SUNY (Stony Brook). Neuroendocrine control of growth and metabolism; drug discovery.

James E. Wohlt, Professor of Animal Sciences, CC; Ph.D., University of Illinois. Nutritional requirements and management practices for livestock.

Edward J. Zambraski, Professor of Physiology, CC; University of California (Irvine). Renal and exercise physiology.

Associate Member of the Graduate Faculty

Nadka Iv. Boyadzhieva, Assistant Research Professor of Animal Sciences, CC; M.D., Ph.D., D.Sci., Medical Academy (Bulgaria). Neuroendocrine control of immune system; effect of alcohol.

Adjunct Members of the Graduate Faculty

William Baumback, Director of Biology, Marquochem, Inc., CC; Ph.D., Princeton University. Drug discovery; growth regulation.

Kenneth Cummings, Director, Animal Research and Technical Service, Church & Dwight Company; Ph.D., Purdue University. Physiological nutrition of animals in production systems.

Do Won Hahn, Research Fellow, J&J Research Institution; Ph.D., University of Maryland. Reproductive and endocrine research.

David W. Horohov, Professor, School of Veterinary Medicine, Louisiana State University. Ph.D., Pennsylvania State University. Effect of exercise stress on cytokines regulating immune responses.

Lumin Kung, Jr., Associate Professor, Department of Animal and Food Sciences, Delaware State University. Ph.D., Michigan State University. Ruminant nutrition and microbiology.

Jeffrey White, President, Incubate; Ph.D., SUNY (Stony Brook). Neuroendocrine control of growth and metabolism; drug discovery.

Kathleen Young, Principal Research Scientist, Wyeth Neuroscience, Inc.; Ph.D., Florida State University. Neuropharmacology and behavior research.

Programs

The graduate program in animal sciences offers M.S. and Ph.D. degrees as part of the large and interactive community of biological scientists at Rutgers and the Robert Wood Johnson Medical School of the University of Medicine and Dentistry of New Jersey. In addition to faculty from these universities, other members of the program come from research divisions of local pharmaceutical and agricultural industries. Major areas of research include animal nutrition; by-product utilization; endocrinology of growth, lactation, and reproduction; equine science; exercise physiology; neuroendocrinology; and behavior.

Applicants are expected to have a strong background in biological sciences, including courses in general and organic chemistry and mathematics through calculus. The Graduate Record Examination (GRE) must be taken, and the subject test in biology is recommended but not required.

All students in the program must demonstrate competence in physiology, molecular biology and biochemistry, animal science, and statistics. There are no language or residency requirements. The M.S. degree requires 30 credits, including at least 6 credits of research. A research thesis must be completed for this degree. The Ph.D. degree requires 72 credits, including at least 24 credits of course work and 24 credits of research. Students must pass a comprehensive qualifying examination and complete a research dissertation.

Graduate Courses

16:067:501. Animal Biotechnology (3)

Kohler. Required of all graduate students in animal sciences. The theory underlying current techniques used in animal biotechnology and their applications to animal agriculture and the biomedical field. Ethical and social issues associated with animal biotechnology.

16:067:502. Physiology of Reproduction (3)

Mikes. Prerequisite: Organic physiology. Reproductive physiology of the higher vertebrates. The estrous, menstrual, ovulation cycles; pregnancy; and parturition and lactation. Emphasis on growth areas in the field of reproductive physiology research.

16:067:507. Ruminant Nutrition (4)

Wohlt. Lec. 3 hrs., lab. 3 hrs. Prerequisite: An introductory course in biochemistry or nutrition. Nutritional adequacy of feedstuffs as related to nutrient requirements and utilization, and metabolism in the ruminant animal for product development. Experimental designs in ruminal fermentation, water lipid; carbohydrates and protein metabolism; appetite; palatability; and control of feed intake.

16:067:508. Equine Exercise Physiology (3)

Mikes. Prerequisite: An introductory course in physiology. Physiological and environmental factors associated with exercise in the horse.

16:067:510. Neuroendocrinology (3)

Sarkar. The role at organismic, cellular, and molecular levels of the hypothalamus and the pituitary gland in reproduction, stress, growth, biological rhythms, drug addiction, and immunity.

16:067:603,604. Special Problems in Animal Science (BA,BA)

16:067:611. Topics in Domestic Animal Nutrition (2)

Schoknecht. Nutrient intake and metabolism and the partitioning of nutrients in pregnancy, lactation, and growth. Basic mechanisms and applications to production species.

16:067:612. Recent Advances in Endocrinology (2)

Advis. Survey and analysis of current literature pertaining to endocrinology.

16:067:613. Topics in Animal Growth (2)

Growth in farm animals considered from a mathematical, biochemical, nutritional, and endocrinological basis.

16:067:614. Current Topics in Metabolic Regulation (2)

Jee. Prerequisite: Biochemistry and a course in animal or poultry science. Consideration of metabolic regulation discussed in reference to domestic livestock from a biochemical and molecular biological viewpoint. Discussions based on presentations by students and instructor using examples from current literature.
ANTHROPOLOGY 070

Degree Programs Offered: Master of Arts, Doctor of Philosophy Director of Graduate Program: Professor Michael Moffatt, Adams Building, Douglass Campus (732/932-9887)

Members of the Graduate Faculty

Susan Anton, Assistant Professor of Anthropology, FAS–NB; Ph.D., Michigan
Evolution of genus Homo (origin of modern humans, Neanderthals, Homo erectus), hominin growth and development, dispersal patterns and processes, functional morphology and osteology

Myron J. Aronoff, Professor of Political Science, FAS–NB; Ph.D., Manchester
Political anthropology, complex societies, Israel, Middle East

Robert J. Blumenschine, Professor of Anthropology, FAS–NB; Ph.D., California (Berkeley)
Old-world prehistory, zooarchaeology, hominin ecology, and social organization; Africa

Sukhdeo Sukhdeo, Associate Professor of Anthropology, FAS–NB; Ph.D., Chicago
Physical anthropology, primates evolution, morphology

Sheila C. Cosminsky, Associate Professor of Sociology and Anthropology, FAS–C; Ph.D., Brandeis
Cultural and medical anthropology, ethnic relations, Mexico, Africa

Lee Cronk, Associate Professor of Anthropology, FAS–NB; Ph.D., Northwestern
Human behavioral ecology and human evolutionary ecology; Africa and Caribbean

Craig S. Feibel, Assistant Professor of Anthropology, FAS–NB; Ph.D., Utah
Environment and ecology in human evolution; rift valley sedimentation

Robin Fox, University Professor, FAS–NB; Ph.D., London
Kinship and marriage, evolution of behavior; North America, Northwestern Europe

Peter J. Guaraccia, Associate Professor of Human Ecology, CC; Ph.D., Cornell
Medical anthropology, nutritional anthropology, Hispanics in the U.S., cross-cultural psychiatry, anthropology and epidemiology; Mexico

John W.K. Harris, Chairperson and Professor of Anthropology, FAS–NB; Ph.D., California (Berkeley)
Paleoanthropology, dd-world prehistory, lithic analysis, method and theory; Africa

Angelique Haugerud, Associate Professor of Anthropology, FAS–NB; Ph.D., Northwestern
Economic and political anthropology; agrarian ecology; land tenure, social change and development; Africa

Dorothea L. Hodgson, Associate Professor of Anthropology, FAS–NB; Ph.D., Michigan (Ann Arbor)
Gender, ethnicity, development, history, culture, and power; East Africa

David McDermott Hughes, Assistant Professor of Human Ecology, CC; Ph.D., California (Berkeley)
Frontiers, colonialism, development and environment, Southern Africa

Walton R. Johnson, Associate Professor of Africana Studies, FAS–NB; Ph.D., London
Cultural anthropology, race relations, religion; Southern Africa

Ulf H. Linke, Associate Professor of Anthropology, FAS–NB; Ph.D., California (Berkeley)
Cultural anthropology; body politics and gender difference, memory, identity, and violence; European societies (Germany)

Bonnie J. McCay, Professor of Anthropology and Ecology, CC; Ph.D., Columbia
Ecological and economic anthropology; fisheries, common property; North Atlantic

Sukhdeo Sukhdeo, Professor of Anthropology, FAS–NB; Ph.D., Chicago
Religion; diasporic Hinduism; ethnographic practice; South Asia; caste

George E.B. Morren, Jr., Professor of Human Ecology, CC; Ph.D., Columbia
Human ecology, evolutionary theory, environment; Uusimaa, United States

Ryne Palomaki, Assistant Professor of Anthropology, FAS–NB; Ph.D., California (Berkeley)
Evolution and ecology of primate social behavior, male-female relationships, gibbons, baboons and tarsier and titi monkeys

Ana Y. Ramirez-Zayas, Assistant Professor of Puerto Rican and Hispanic Caribbean Studies, FAS–NB; Ph.D., Columbia
Cultural/social anthropology; nationalism, ethnic, and class identities; racialization processes; Latinos in the U.S.

Louise Schein, Associate Professor of Anthropology, FAS–NB; Ph.D., California (Berkeley)
Cultural politics, ethnicity, gender, transnational issues; China

Carmel Schrire, Professor of Anthropology, FAS–NB; Ph.D., Australian National Prehistory, historical archaeology, human ecology, hunter-gatherers; Australia, Southern Africa

Warren Shapiro, Professor of Anthropology, FAS–NB; Ph.D., Australian National Social classification, symbols, history of anthropology; Australia, Lowland South America

Nichole Shimahara, Professor of Education, GSE; Ed.D., Boston
Japanese educational development, industrialization, and culture

Janet Siskind, Associate Professor of Anthropology, FAS–N; Ph.D., Columbia
Economic anthropology, women, personality, Lowland South America, Africa

H. Dieter Stelkis, Assistant Professor of Anthropology, FAS–NB; Ph.D., California (Berkeley)
Primateology, mountain gorilla conservation, biology of behavior; central-East Africa

Heather Strange, Professor Emerita of Anthropology, FAS–NB; Ph.D., New York
Cultural anthropology, culture and aging, women's studies, and gender issues; Southeast Asia

Lionel Tiger, Charles Darwin Professor of Anthropology, FAS–NB; Ph.D., London
Political structure, sex roles, ethnology, kibbutzim; Israel

Robert Trivers, Professor of Anthropology and Biological Sciences, FAS–NB; Ph.D., Harvard
Principles underlying social evolution, evolutionary genetics

Andrew P. Vayda, Professor of Anthropology and Ecology, CC; Ph.D., Columbia
Human ecology, methodology and explanation, ecological and evolutionary theory; Southeast Asia, New Guinea, Polynesia

Associate Members of the Graduate Faculty

Myra Bluebond-Langner, Associate Professor of Anthropology, FAS–C; Ph.D., Illinois
Death, dying, bereavement, chronic illness, children and families

Anne-Marie Cantwell, Associate Professor of Anthropology, FAS–N; Ph.D., New York
North American archaeology, prehistoric trade and ideology, complex societies

Caron Chess, Director, Center for Environmental Communication; Associate Professor of Human Ecology, CC; Ph.D., SUNY (Syracuse)
Risk communication, public participation, environmental policy

Robert Ferguson, Professor of Anthropology, FAS–N, Ph.D., Columbia
War, policing, contemporary “ethnic conflict,” state-triab interaction, historical ecology; Lowland South America, Puerto Rico

William Hallman, Associate Professor of Human Ecology and Psychology, CC; Ph.D., South Carolina
Risk perception, risk communication, unexplained symptom health syndromes

Alex Hinton, Assistant Professor of Anthropology, FAS–N; Ph.D., Emory
Violence, genocide, globalization, emotion, and identity; Cambodia; Southeast Asia

Karen O’Neill, Assistant Professor of Human Ecology and Sociology, CC; Ph.D., California (Los Angeles)
Environmental sociology, political sociology, water-resource management

Thomas Rudel, Professor of Sociology, CC; Ph.D., Yale
Latin America, environment, development

Neil Weinstein, Professor of Human Ecology and Psychology, CC; Ph.D., Harvard
Health, behavior, environmental stress, risk perception

Chuan-Fang Yu, Professor of Religion, FAS–NB; Ph.D., Columbia
Culture and religion, Buddhism; China

Programs

Requirements for the Ph.D. program include 48 approved course credits and 24 research credits. Within the 48 credits, all students must take the introductory 16:070:501 Proseminar in Anthropology. Students in the human evolutionary studies track also must take 01:960:401 Basic Statistics for Research or an equivalent, and either 16:070:508 Evolutionary Theory and Processes or 16:070:560 Natural Selection and Social Theory. Students in the cultural track also must take 16:070:505 History of Anthropological Theory and 16:070:506 Research Methods in Social/Cultural Anthropology. Students in the environmental anthropology track also must take 16:070:543 Ecological Anthropology and 16:070:506 Research Methods in Social/Cultural Anthropology or another research-methods course that is approved by the student’s advisor. In addition, these students are encouraged to take 16:070:544 Environmental Anthropology in a Changing World and 16:070:526 Explanation in Anthropology. They also must meet the requirements of the interdisciplinary Certificate Program in Human Dimensions of Environmental Change.
Finally, all students who entered the program in September 2000 or later must take at least one course outside the subdiscipline in which they are concentrating. For example, evolutionary anthropology students must take at least one course in either environmental or cultural anthropology. Environmental anthropology students must take at least one course in either human evolution or cultural anthropology, and cultural specialists must take at least one course in either human evolution or environmental anthropology.

All second-year students are expected to present a scholarly paper at a day-long retreat. Ph.D. students also are expected to prepare three “field statements,” textual summaries, and extensive bibliographies of three areas of research broader than, but related to, their dissertation topic. After completing their 48 credits of course work and their field statements, students prepare a dissertation research proposal on which they must pass an oral-proposal defense. When the dissertation is completed, it is evaluated in an oral-dissertation defense.

Students who enter the Ph.D. program may earn an M.A. along the way by applying for one after completion of at least 30 credits and completion of the three field statements. Students who enter the master’s program are expected to take the same required courses listed above for the Ph.D. program. They may either complete a written comprehensive exam after 30 credits, or write a 6-credit master’s thesis (with an oral exam) after 24 credits of course work. Students who enter the master’s program may then apply to enter the Ph.D. program. A Master of Philosophy degree also is available to students on their way to a Ph.D., but not as a terminal degree.

Students are urged to complete their Ph.D. within five years. While there is no formal fieldwork requirement, most students in both evolutionary and cultural anthropology find fieldwork necessary for a doctoral degree. These is no specific language requirement, but students are expected to acquire any languages necessary for successful completion of their research. Examples would include languages a student might need for field projects or library research. There is no residency requirement.

Selected courses may be taken in other programs, such as geological sciences, history, political science, psychology, sociology, urban planning, ecology, nutrition, and computer science.

Graduate Courses

16:070:501. Proseminar in Anthropology I (3)
Presentations in areas of current faculty research.

16:070:502. Proseminar in Anthropology II (3)
Basic overview of the central concepts, theories, resources, and methods fundamental to cultural anthropology, human ecology, physical anthropology, and archaeology.

16:070:503. Social/Cultural Anthropology (3)
Social anthropology past and present; kinds of explanation, ethnoscience, methods and fieldwork, new directions, process, transaction and symbolic interaction, modern role theory, and networks.

16:070:504. Social Organization (3)
Examination of problems in social structure and organization with special reference to descent and alliance theory, kinship semantics and formal analysis, and evolution of social systems.

16:070:505. History of Anthropological Theory (3)
Origin and development of anthropology; surveying the central ideas of major figures from the seventeenth century to the present.

Survey and critical evaluation of methods in current anthropological fieldwork, using original research as data.

16:070:507. Evolutionary Theory and Processes (3)
Natural selection, adaptation, evolutionary genetics, speciation, extinction, adaptive radiation, and macroevolution with special emphasis on human and nonhuman primate evolution.

16:070:508. Kinship in Nature and Culture (3)
Examination of the anthropological orthodoxy that kinship systems are a property of culture and hence of human society; systematic examination of the role of kinship in the lives of other species, particularly the higher primates. The adaptational significance of human innovations.

16:070:509. Social Implications of Gender Differences (3)
Consideration of the results of the interaction between the biological fact of gender differences and the varieties of cultural response to and interpretation of these differences.

16:070:510. Anthropology of Gender (3)
Uses recent ethnographic and ethnological studies of women to appraise such anthropological assumptions as the homogeneity of simple societies, the harmony and stability of large or small societies, the primacy of the family, and the validity of ethnographic data.

16:070:511. Cognitive Anthropology (3)
Theoretical and methodological issues in the study of culture and cognition.

16:070:512. Language Development (3)
Animal communication; theories of the origin of language; biological basis of language. Cross-cultural comparison of language development in children and language universals.

16:070:513. Language in Culture and Society (3)
Cultural implications of language and its use. Relations between language and culture, language and cognition, language and social groups.

16:070:514. Sexuality in a Cross-Cultural Perspective (3)
Ethnographic issues in study of sexuality; major approaches; construction of sexuality, eroticism, and gender in wide range of cultures; relation of erotic culture to wider social order, history.

16:070:515. Psychological Anthropology (3)
Study of interrelations among personality and culture and social structure. Emphasis on the comparative perspective.

16:070:516. Corporate and Personal Violence (3)
Analysis of aggression and violence as features of individual and group behavior. Biological, evolutionary, sociological, and philosophical approaches.

16:070:517. Political Organization (3)
Explorations of political organization of human societies at all stages of sociocultural development, beginning with hunter-gatherers and concluding with modern industrial state systems.

The anthropological approach to the analysis of nation-states with special reference to boundary mechanisms, value systems, and the political control of everyday activities.

16:070:519. Anthropology of Industrial Society (3)
effects of the industrial system on kinship behavior, socialization of the young, the use of time, ethnicity and kinship interests, and “alienation.” Limited, focused research project by the student.

16:070:520. Anthropology of Religion (3)
Religion in the known cultures of the world, with special attention to ritual and myth. Detailed examination of particular ethnographic sources. The link between religious universals and theories of human nature.

16:070:521. Culture and Aging (3)
Human aging in life course perspective. Focus on cross-cultural and intracultural diversity.
16:070:524, 525. World Ethnographic Areas I, II (3, 3)
Study of selected ethnographic areas such as Africa, Southeast Asia, India, or North America; cross-cultural analysis within an area. General theoretical and methodological issues as well as those unique to the particular area.

16:070:527. (F) The Ethnology of Inequality: Race, Class, and Ethnicity (3)
Sikird
Survey of anthropological literature on the relationships among race, class, and ethnicity. Ethnographic methods and the comparative approach to the study of hegemony, resistance, and conflict among groups defined as “racial” or “ethnic.”

16:070:528. Explanation in Anthropology (3)
Vayda
Analysis of modes of explanation used in anthropological studies, with consideration of such issues as holism versus individualism; essentialism versus nominalism; action explanations and other explanations; generalization and particularism; and the problem of other cultures and other periods.

16:070:530. Problems in Social Anthropology (3)
For graduate students wishing to pursue advanced work supplementary to that provided in formal courses. Program of reading and conferences arranged by professor in charge.

16:070:531. Problems in Comparative Analysis (3)
For graduate students wishing to pursue advanced work in areas not provided for in formal courses. Conferences, reading, and empirical work arranged in consultation with the professor in charge.

16:070:532. Problems in Ethnography (3)
For graduate students wishing to pursue advanced work in areas not provided for in formal courses. Conferences, reading, and empirical work arranged in consultation with the professor in charge.

16:070:543. Ecological Anthropology (3)
The ecological approach in anthropology. Consideration of theory, method, and data analysis in ecological studies.

Methods for the analysis of current socioeconomic, health, and environmental problems involving interactions between people and their environment.

16:070:545. Anthropology of Development (3)
Economic development and social change in third-world and advanced industrial societies. Theories of social change applied to areas such as education, urban planning, and social welfare.

16:070:546. Medical Anthropology (3)
Examination of sociocultural factors influencing health and illness and the impact of social and cultural change on disease patterns and health-care systems. Includes ethnographic studies of systems of illness causation, prevention, diagnosis, and treatment.

16:070:547. Participatory Planning in Applied Anthropology (3)
Role of applied anthropology in facilitating broad public participation in development projects and other kinds of change initiatives; ethics and professional practice.

16:070:549. Culture and Capitalism (3)
Explores historical and contemporary efforts to analyze the relationship between culture and capitalism. Relevant theories and critical readings of current ethnographies. Topics include commodification, modernity, colonialism, postcoloniality, production and reproduction, and social differences.

16:070:550. Economic Anthropology (3)
Survey of theories and methods in economic anthropology.

16:070:551. Maritime Anthropology (3)
Prerequisite: Course in anthropological theory.
An advanced course in sociocultural, economic, and ecological anthropology focused on the study of fishing and other maritime communities and problems concerning human relationships to natural resources.

16:070:552. Seminar in Ecological Anthropology (3)
Interrelations of ecological and socioeconomic changes as an interdisciplinary problem area.

16:070:553. Problems in Human Ecology I (3)
For graduate students wishing to pursue advanced work in areas not provided for in formal courses. Conferences, reading, and laboratory work arranged in consultation with the professor in charge.

16:070:554. Problems in Human Ecology II (3)
For graduate students wishing to pursue advanced work in areas not provided for in formal courses. Conferences, reading, and laboratory work arranged in consultation with the professor in charge.

The fossil Old-World higher primates; the Miocene fossil apes; problems of when, where, and why hominids first appeared; the australopithecines of Plio/Pleistocene Africa; early genus Homo; Homo erectus; Neanderthals; the appearance of anatomically modern man; Paleolithic cultures.

16:070:559. Evolution of Behavior (3)
Consideration of human and primate behavior from an evolutionary perspective. Topics include aggression, territorial behavior, sexuality and mating systems, socialization, and sex roles in primate society.

16:070:560. Natural Selection and Social Theory (3)
Recent papers on key topics in social evolution, such as female choice, symmetry, parasites, virulence, kinship, homosexuality, reciprocal altruism, and self-deception. Special emphasis on human data.

16:070:563. The Biology of Social Bonds (3)
The dynamics of basic social bonds, such as the mother-child bond, the mating bond, the bond between older and younger males, and the sibling bond, analyzed in terms of their evolution and of their significance for micro and macro social structures.

16:070:564. Problems in the Biology of Social Relations (3)
The place of biology in the social sciences, relevance of the comparative sociology of animal societies; the phylogeny of behavior; special problems of aggression, territory, sexual and parental relationships, and language.

16:070:566. Human Osteology (3)
Lec. 2 hrs, lab 1 hr.
Examination of primate morphology, with emphasis on the evolution of human morphological adaptations.

16:070:567. Human Variation (3)
Variation in body size, shape. Structural morphology, pigmentation, and biochemistry among living humans; climatic adaptation, disease, and human evolution; population origins through migration or local continuity through evolutionary time.

16:070:568. Primate Ecology and Social Behavior (3)
Behavior of the nonhuman primates, emphasizing the relationship between ecology and social organization; the structue of social groups; and the development of behavior.
16:070:570. Hominid Taxonomy and Systematics (3)
Implications of the existence of sympatric species; limits to similarity imposed by the coexistence of competing species; controversies surrounding the establishment of taxa; phylogenetic reconstructions.

16:070:571. Primate Evolution and Radiations (3)
Exploration of primate history in terms of evolutionary radiations. Emphasis on entrance to and radiation within new adaptive zones, and the change of these zones through time, using morphological and paleoecological information.

16:070:572. Biology of Human Behavior (3)

16:070:573. Problems in Biological Anthropology (3)
For graduate students wishing to pursue advanced work in areas not provided for in formal courses. Conferences, reading, and laboratory work arranged in consultation with the professor in charge.

16:070:578. Old World Prehistory (3)
Key data and current interpretive models concerning the archaeology of hominid adaptations from earliest times through the Neolithic in the Old World.

16:070:579. New World Prehistory (3)
Key data and current interpretive models concerning the form, stability, and change of cultures throughout the pre-Columbian New World.

16:070:580. Research Methods and Theory in Archaeology (3)
Conceptual bases and assumptions used in the formulation of research designs and the interpretation of research results; examination of fieldwork problems and techniques, with emphasis on the problems of observation, use of documentary sources, surveying and excavation, and use of quantitative data.

16:070:581. Historical Development of Archaeology (3)
Origins of classical and Near Eastern archaeology in Greek and Roman philosophy, and developments from the revival of classical learning in the Renaissance. Development of prehistoric archaeology and New World archaeology as a subfield of general anthropology.

16:070:582. Paleoenecology and Archaeology (3)
Methods of environmental reconstruction. Emphasis on the evolution of subsistence economies, with special attention to the origins of animal and plant domestication.

16:070:583. Origins of Agriculture (3)
Archaeological, zoological, botanical, geographical, and ethnographic data relating to ancient and modern hunter-gatherers and farmers used to compare and contrast their demography, material culture, and economy, so that the origins of settled life can be seen.

16:070:584. The Built Environment (3)
Prerequisite: One year of graduate work in anthropology. Anthropological principles applied to the planning process in contemporary society. Emphasis on political, environmental, technological, and biological planned change.

16:070:585, 586. Problems in Archaeology (3)
For graduate students wishing to pursue advanced work in areas not provided for in formal courses. Conferences, reading, and laboratory work arranged in consultation with the professor in charge.

16:070:587. Field Study in Archaeology (3)
Minimum of six to ten weeks at field location. Course may be repeated with permission of program director. Supervised participation in fieldwork with instruction in excavation methods and practices. Personnel and field project location vary from year to year.
Fees: tuition, transportation to site, and room and board.

16:070:602. Seminar in Social Theory (3)
Prerequisites: 18 credits in graduate social science courses or permission of instructor.
The intellectual history and philosophy of social science; exploration of the origins of the social and behavioral sciences in the western humanistic tradition.

16:070:626. Visual Anthropology (3)
Study, use, and production of anthropological and ethnographic photographs, films, and videos for research and communication; study of human behavior through visual media.

16:070:701, 702. Research in Anthropology (BA, BA)

ART HISTORY 082

Degree Programs Offered: Master of Arts, Doctor of Philosophy
Certificate Program Offered: Certificate in Curatorial Studies
Director of Graduate Program: Professor Catherine Puglisi,
212 Voorhees Hall, College Avenue Campus
(732)/932-7819, ext. 16

Members of the Graduate Faculty
Matthew Baigell, Professor Emeritus of Art History, FAS-NB; Ph.D., Pennsylvania
American art
Olga Berendsen, Associate Professor Emerita of Art History, FAS-NB; Ph.D., New York
Baroque
Sarah Brett-Smith, Associate Professor of Art History, FAS-NB; Ph.D., Yale
African
Martin Eidelberg, Associate Professor Emeritus of Art History, FAS-NB; Ph.D., New York
Baroque and rococo; modern decorative arts
Roma Coiffen, Professor of Art History, FAS-NB; Ph.D., Columbia
Italian Renaissance
Archin St. Clair Harvey, Associate Professor of Art History, FAS-NB; Ph.D., Princeton
Early Christian and Byzantine
Angela Howard, Associate Professor of Art History, FAS-NB; Ph.D., New York
East Asian
John F. Kenfield III, Associate Professor of Art History, FAS-NB; Ph.D., Princeton
Greek and Roman
Tod A. Mardear, Professor of Art History, FAS-NB; Ph.D., Columbia
Renaissance; baroque
Joan M. Marter, Professor of Art History, FAS-NB; Ph.D., Delaware
Modern art; twentieth-century art; gender studies; curatorial studies
Sarah E. Blake McHam, Professor of Art History, FAS-NB; Ph.D., New York
Italian Renaissance
Elizabeth Parker McLachlan, Associate Professor Emerita of Art History, FAS-NB; Ph.D., Courtauld Institute (London)
Medieval
Catherine R. Puglisi, Professor of Art History, FAS-NB; Ph.D., New York
Baroque
Jocelyn P. Small, Professor of Art History and Director, Sibyl, the database of classical iconography; Ph.D., Princeton
Classical art and archaeology; iconography; Etrusculology
Jack J. Specter, Professor of Art History, FAS-NB; Ph.D., Columbia
Modern art and theory of criticism
Marlisa Wextermann, Associate Professor of Art History, FAS-NB; Ph.D., New York
Northern Renaissance and baroque

Associate Members of the Graduate Faculty
Phillip D. Cate, Director of the Zimmerli Museum; M.A., Arizona State
History of the print; French nineteenth-century graphics
Jane Sharp, Assistant Professor of Art History, FAS-NB; Ph.D., Yale
Nineteenth- and twentieth-century European art; Russian
Carla Yanni, Associate Professor of Art History, FAS-NB; Ph.D., Pennsylvania
Nineteenth- and twentieth-century architecture
Programs

The faculty in art history offers degree programs leading to the M.A. and Ph.D. degrees in the major fields of Western art, sub-Saharan African art, and East Asian art. The faculty also offers a program leading to a certificate in curatorial studies. Both degree programs are designed to provide a well-rounded and comprehensive knowledge of the major historical periods. The Ph.D. program, in addition, allows for specialization in one of the major fields.

Applicants should have a minimum of eight art history courses as prerequisite for admission. Promising students who have taken fewer courses may be admitted, but they must make up deficiencies before beginning the graduate curriculum.

Requirements for the Ph.D. include fourteen courses, worth 42 credits; a qualifying examination in one of the major art historical periods; and acceptance of the dissertation. In addition, students must have a reading knowledge of German and one other language. One proficiency examination must be taken by the second term of study. After the student completes eight courses, the faculty will review his or her work to determine if the student will be allowed to continue for the Ph.D.

The M.A. program is designed for those who do not plan to pursue the Ph.D., and for those pursuing the certificate in curatorial studies. Requirements include ten courses (30 credits), one foreign language, a master’s essay, and a comprehensive examination.

The curatorial studies certificate, which is awarded separately, requires one course in curatorial training and three curatorial internships (12 E credits total). Students must take at least one exhibition seminar, for which they earn 3 credits toward their degree. Students in the M.A. and Ph.D. programs are eligible to pursue a curatorial studies certificate.

There are no residence requirements for either degree program. Students who have earned an M.A. degree elsewhere are welcome to apply for admission to the Ph.D. program. The curriculum is flexible and allows students to explore interests in such areas as African studies, American studies, Asian studies, classics, archaeology, gender studies, medieval studies, renaissance studies, baroque studies, Russian and Slavic studies, and theory and criticism.

Further information on program requirements (for example, the ratio of 500- to 600-level courses, timing sequences between M.A. examination and submission of master’s paper) may be found in the booklet the Graduate Program in Art History. This booklet may be obtained from the art history graduate office in Voorhees Hall or online at http://arthistory.princeton.edu.

Graduate Courses

16:082:503, 504. INDIVIDUAL STUDIES IN ART HISTORY (BA,BA)

16:082:506. APPROACHES TO ART HISTORY (3)
Spatz

History of art history and explanation of the basic methodologies (iconography, connoisseurship). Recent challenges from outside the field—political, psychological, semiotic.

16:082:509. AFRICAN ART AND ARCHITECTURE (3)
Brett Smith

Survey of the art history of West Africa. Examines the different theoretical and practical models that have been used to look at African art history, their origins in the “discovery” of African art, and their relationship to multiculturalism and current attempts to study the “other.”

16:082:511. ARCHAIC GREEK ART (3)
Kenfield

Examination of the origins and early development of Greek architecture, sculpture, and painting.

16:082:514. HELLENISTIC PAINTING AND SCULPTURE (3)
Kenfield

Examination of the development of Hellenistic sculpture and painting from its origins in the late fifth century B.C.

16:082:515. ETRUSCAN ART (3)
Small

Focuses on the development of an independent culture within a world increasingly dominated by Greece and Rome.

16:082:517. ANCIENT MOSAICS (3)
Kenfield

Examination of mosaic painting from its origins through the early Byzantine period.

16:082:521. ART OF LATE ANTIQUITY (3)
Harvey

Art and architecture of the Mediterranean world, third to seventh centuries. Emphasis on religious and political contexts and theories of stylistic and iconographic development.

16:082:522. MEDEIVAL MANUSCRIPTS (3)
McLachlan

Introduction to codicology and manuscript production, development of ornament, followed by specialization in a specific stylistic period or genre such as Psalters or Bibles.

16:082:524. CHRISTIAN ICONOGRAPHY (3)
Harvey

The origin and development of Christian imagery. Emphasis on methods of iconographical research.

16:082:525. THE MEDIEVAL TREASURY (3)
McLachlan

Investigation of the materials, techniques, forms, and functions of medieval liturgical and secular treasures: precious metals, enamels, ivory, and textiles included.

16:082:528. MODERN ARCHITECTURE (3)

Major architects and theorists in Europe and the Americas from the eighteenth century to the present. Emphasis on reading of theoretical texts and analysis of the most important architects and buildings from Laugier to the present.

16:082:529. DESIGN OF CITIES (3)

History of urban design in Europe and the Americas from the seventeenth century to the present, with emphasis on major cities, their principal planning episodes, and urban planning theory and practice in cultural and social perspective.

16:082:531. ITALIAN GOTHIC SCULPTURE (3)

Sculpture in Italy focusing on major artists, such as Nicola and Giovanni Pisano, Andrea Pisano, Jacopo della Quercia, and Ghiberti.

16:082:532. ITALIAN PAINTING IN THE AGE OF DANTE (3)
Gafer

Style, patronage, and iconography in painting from 1250–1400, emphasizing the work of such masters as Giotto, Duccio, Simone Martini, and the Lorenzetti.

16:082:533. ITALIAN FIFTEENTH-CENTURY SCULPTURE (3)

Sculptors of the Italian fifteenth century, such as Donatello, Desiderio, and Verrocchio, discussed in comparison with sculptors active in other centers like Milan, Venice, and Rome.

16:082:534. VENETIAN PAINTING (3)
Gafer

Painting in Venice and the Venetian empire between the fourteenth and sixteenth centuries, focusing on Giovanni Bellini, Titian, Tintoretto, and Veronese.

16:082:535. CENTRAL ITALIAN SIXTEENTH-CENTURY PAINTING (3)
Gafer

Painting in Florence and Rome from 1480 to the end of the sixteenth century; the High Renaissance (Leonardo, Michelangelo, and Raphael); Mannerism; and Counter-Reformation painting.
16:082:536. Renaissance Architecture (3)
M arder
Modern architecture in Italy from 1400 to 1600, including issues of form, symbol, meaning, and intention. The influence of engineering, urban planning, military architecture, garden design, and theory as well as practice addressed.

16:082:537. Early Baroque Painting in Italy (3)
Puglisi
Painting in Rome ca. 1600, focusing on the stylistic innovations and legacy of the Carracci and Caravaggio in the context of contemporary artistic trends, patronage, and theory.

16:082:538. Bernini (3)
Puglisi
Consideration of Bernini’s career as the universal artistic genius of the Roman baroque. Sculpture, architecture, and painting and their contexts considered.

16:082:539. Velazquez and Baroque Painting in Spain (3)
Puglisi
Major achievements of the seventeenth-century painter and his impact on Spanish baroque painting.

16:082:540. English Architecture (3)
M arder
Arrival and development of classical architecture in England from 1500 to 1780. Emphasis on individual styles, urban schemes, and cultural contexts.

16:082:541. Seventeenth-Century Northern European Painting (3)
Eidelberg
Study of major stylistic and thematic currents of the baroque as interpreted in the Netherlands, Flanders, and France.

16:082:542. Italian Sixteenth-Century Sculpture (3)
M oham
Major emphasis is on Michelangelo; his influence on other sixteenth-century sculptors like Bandonielli, Cellini, and Giambologna, and the reaction against his dominating style.

16:082:543. Dutch Genre Painting in the Seventeenth Century (3)
Westermann
Recent interpretations of the themes and pictorial “realism” of Dutch seventeenth-century genre painting and its antecedents. Artists include Frans Hals, Gerard Dou, Gerard Terborch, Johannes Vermeer, and Jan Steen.

16:082:544. Rubens (3)
Westermann
In-depth study of the Flemish master’s works and their impact on the style and iconography of European baroque art.

16:082:546. Rembrandt (3)
Westermann
In-depth study of the Dutch master’s works, the evolution of his students’ art, and their relation to Northern tradition.

16:082:547. Baroque Architecture (3)
M arder
Emphasizing seventeenth-century Rome, the great architects Bernini, Borromini, and Pietra da Cortona discussed in depth. Issues of urbanism, the contributions of the Piedmontesi architects, and eighteenth-century architecture examined.

16:082:548. Prints and Printmakers (3)
Westermann
History of printmaking, emphasizing the processes and major artists involved.

16:082:551. Romantic Art (3)
Spector
Nature, sources, and influences of nineteenth-century French romanticism (Gros, Gericault, Delacroix, Ingres), with some consideration of literature (Hugo, Gautier, Baudelaire).

16:082:552. Dawn of Abstraction (3)
Spector
Analysis of the theories of critics and the practices of painters and sculptors in Europe from 1900 to 1920 in order to understand why and how abstraction emerged and evolved.

16:082:553. Surrealism (3)
Spector
History of surrealist painting and writing as antimodernist avant-garde concerned with psychological and political questions.

16:082:554. Nineteenth-Century American Landscape Painting (3)
Baigel
Consideration of various movements, including the Hudson River School, luminism, American Barbizon, and impressionist painting as well as landscapes of the west.

16:082:555. Nineteenth-Century Realism (3)
Spector, Small
Emphasis on social and political themes in French art (Courbet, Manet) and literature (Balzac, Flaubert, Zola).

16:082:556. American Art, 1900-1960 (3)
Baigel
Consideration of various movements, including the ashcan school, early modernism, precisionism, regionalism, social realism, and abstract expressionism.

16:082:557. French Eighteenth-Century Painting (3)
Eidelberg
Study of rococo, neoclassicism, and early romanticism from the reign of Louis XIV to Napoleon. Focus on the emergence of modern subject matter.

16:082:559. Picasso (3)
Spector
 Covers the full range of Picasso’s artistic creations and also his writings, political involvement, and personality.

16:082:561. Postimpressionism (3)
Westermann
Developments between impressionism and fauvism mainly in France (Cezanne, Gauguin, Van Gogh, Seurat). Discussions include nabis symbolism and art nouveau.

16:082:563. Curatorial Training I (E3)
Eidelberg
History, philosophy, organizational structures, and operations of the museum as a sociocultural institution.

16:082:566. History of Modern Decorative Arts (3)
Eidelberg
Survey of both design and crafts of all media from 1850 to the present, from historicism, art nouveau, art deco to postmodernism; focus on the relation of design to the fine arts.

16:082:571. German Expressionism (3)
M arder, Spector
German expressionist art in the context of nineteenth- and twentieth-century European modernism. Literary, philosophical, and psychological aspects considered.

16:082:574. Futurism (3)
M arder
Impact of futurist art and theory in Italy, France, Russia, Germany, and Great Britain. Futurist manifestos and their importance to modernism.

16:082:577. Modern Sculpture (3)
M arder
Major developments in European and American sculpture from 1880 to 1960. Beginning with Auguste Rodin and his impact on early modernists, and including sculpture produced in France, Germany, Italy, and the United States.
16:082:580. Cubism and Geometric Abstraction (3)
Matter
Origins of cubism, and links to cultural trends and scientific developments of the period. In addition to analytical and synthetic cubism, Russian constructivism, de Stijl, bauhaus art, and international constructivism examined.

16:082:581. Italian Baroque Sculpture (3)
Puglisi
Major sculptors and trends in seventeenth-century Italian sculpture.

16:082:582. Seminar, East Asian Bibliography and Methods (3)
Howard
Required of students majoring in Asian studies. Important sources for researching Chinese art.

16:082:583. Topics in East Asian Art History (3)
Howard
Criteria of style and iconography for genuine Buddhist sculpture. Sculpture executed in different media (gilt bronze, stone, wood, and lacquer) at different times.

16:082:584. Cortona and His Contemporaries (3)
Puglisi
Painting in Rome and other key Italian centers from ca. 1620 to 1700, focusing on Pietro da Cortona and the other major artists of his generation who defined Italian High Baroque art.

16:082:595,596. Curatorial Internship I,II (E3,E3)
Must complete both courses to receive credit. Prerequisites: 16:082:563 and permission of program director. Internships tailored to the individual's special interest areas.

16:082:597,598. Teaching Apprenticeship (N1.5,N1.5)

16:082:599. Curatorial Internship III (E3)
Prerequisites: Completion of 16:082:563 and permission of instructor. Internship tailored to the individual's special interest areas.

16:082:601,602. Special Topics in Art History (3,3)

16:082:607. Master Drawings (3)
Eidelberg
Seminar on the history of drawings, from the Renaissance to modern times, with emphasis on studio traditions and modern connoisseurship.

16:082:612. Problems in Ancient Art (Early Greek Architectural Sculpture) (3)
Kenfield
Seminar on the problems of the origins of the early Greek architectural orders and the kind of sculpture used to decorate those orders.

16:082:615. Lyssippos and the Beginnings of Hellenistic Sculpture (3)
Kenfield
Seminar on the careers of Lyssippos and the members of his school and their paramount importance to the development of Hellenistic sculpture.

16:082:620. Problems in Early Christian and Byzantine Art (3)
Harvey
Seminar focusing on a specific medium such as ivory carving, a specific problem such as cultural context, or a specific period such as the Macedonian Renaissance.

16:082:622. Problems in Medieval Art (3)
Meadow
Seminar with specialized focus on varied topics such as cycles on carved doors, on reliquaries, or in monumental painting.

16:082:624. Donatello (3)
Matter
Seminar on Donatello’s career: his formation, his influence on his contemporaries such as Masaccio, Desiderio, and altar artists like Verrocchio and Michelangelo.

16:082:630. Problems in Italian Renaissance Painting (3)
Goffen
Seminar on various topics in Italian painting from 1400 to 1500 such as patronage, gender studies, iconography, work of an individual artist, and cultural context.

16:082:632. Problems in Early Italian Painting (3)
Goffen
Seminar on various topics such as the relation of art and literature, mendicant spirituality, public and private patronage, specialized study of such masters as Giotto, the Lorenzetti, and Paolo da Venezia.

16:082:634. The High Renaissance (3)
Goffen
Seminar on various topics in Italian art from 1480 to 1600, such as cultural context, patronage, specialized study of one artist’s career, the Mannerist crisis, and art theory in painting and sculpture.

16:082:635. Problems in Later Renaissance Art (3)
Matter
Topics in Italian painting, 1500 to 1600, involving patronage, gender studies, iconography, works of an individual artist, and/or cultural context.

16:082:636. Titian (3)
Goffen
Titian’s career considered in the context of sixteenth-century society, focusing on his stylistic and thematic innovations in sacred and secular art, notably his depiction of women.

16:082:640. Problems in Northern Baroque Art (3)
Seminar emphasizing either specific centers of art production or iconographic issues.

16:082:641. Problems in Baroque Art of Italy and Spain (3)
Puglisi
Seminar on topics related to the leading artists of the period. Matters of style, iconography, religious and political contexts, patronage, and cultural milieu considered.

16:082:643. Problems in Eighteenth-Century Art (3)
Eidelberg
Topics related to leading artists of the period, with a primary focus on French art: genre painting and exoticism, the use of drawings, patronage.

16:082:646. Seventeenth-Century Patrons and Patronage (3)
Seminar examining the evolving roles of collectors and art dealers, the social context of art collecting, and its impact on artists.

16:082:650. Northern Romanticism (3)
Seminar on specialized topics.

16:082:653. Problems in Nineteenth-Century Painting (3)
Spector
Seminar on special topics in nineteenth-century painting: one or more major figures, landscape, art and literature, art criticism.

Cate
Seminar based on the Zimmerli Art Museum’s nineteenth-century graphics-arts collection.

16:082:655. Problems in Twentieth-Century Art (3)
Matter
Seminar on special topics in painting and/or sculpture.
Certificate Program

Students with an interest in any aspect of East, Southeast, or South Asian civilization may under certain conditions pursue a concentration in Asian studies as part of their regular graduate studies. Those who fulfill the requirements may be awarded a Certificate in Asian Studies upon completion of their degree. Some requirements for the certificate may be used to satisfy the student's own graduate degree requirements. These requirements are as follows:

1. Successful completion with a minimum grade-point average of 3.0 in a minimum of two term courses on Asia within the chosen discipline and in a minimum of two term courses on Asia in one or more cognate fields (12 credits in total). At least two of these courses must be at the graduate level.
2. Reading proficiency in an Asian language.
3. Satisfactory completion of a research project in the field of Asian studies.
4. Either a master's thesis or an expanded seminar paper on a topic related to Asia.

Only students already admitted to a degree program in the Graduate School–New Brunswick may participate in the certificate program. Courses in Asian studies are offered by the participating faculty and additional faculty through their departments and graduate degree programs. Further information is available from the director of the certificate program in Asian studies.

ARTS, VISUAL AND THEATER

(See the catalog of the Mason Gross School of the Arts for information on M.F.A. programs in visual and theater arts.)

ASIAN STUDIES 098

Program Offered: Certificate in Asian Studies
Director of Certificate Program: Professor Ching-I Tu, 330 Scott Hall, College Avenue Campus (732/932-7605)

Participating Faculty

The certificate program in Asian studies is offered as part of a wider, advanced-degree program. The following graduate-faculty members, identified more fully under the subject headings, are among those in charge of curricular arrangements for a certificate program in Asian studies:

M. Adams, History
S. Boocock, Education
Y.M. Choi, Linguistics
N.L. Chou, Communication, Information, and Library Studies
V. Dayal, Linguistics
M. Du, Ttina, Economics
L.N. Gang, Economics
M. Gaster, History
P. Golden, History
A. Howard, Art History
D. Ko, History
P. Li, Comparative Literature
M. Matsuda, History
M.M. Moffatt, Anthropology
D. Roden, History
K. Sato, Economics
P. Schalow, Comparative Literature
L. Schein, Anthropology
N. Shimahara, Anthropology
C.I. Tu, Comparative Literature
A.P. Vayda, Anthropology
J.A. Walker, Comparative Literature
S.F. Walker, Comparative Literature
R.W. Wilson, Political Science
O. Wou, History
C.F. Yu, Anthropology

BIOCHEMISTRY 115

Degree Programs Offered: Master of Science, Doctor of Philosophy
Acting Director of Graduate Program: Professor Abram Gabriel, Center for Advanced Biotechnology and Medicine, Busch Campus (732/235-5097)
Associate Director of Graduate Program: Professor N. Ronald Morris, UMDNJ-RWJMS, Busch Campus (732/235-4081)

Members of the Graduate Faculty

Cory Abate-Shen, Associate Professor of Neuroscience and Cell Biology, UMDNJ-RWJMS, Ph.D., Cornell Medical College
Stephen Anderson, Associate Professor of Molecular Biology and Biochemistry, FAS-NB; Ph.D., Harvard
Edward Arnold, Professor of Chemistry, CABM; Ph.D., Cornell
Jean S. Baum, Associate Professor of Chemistry, FAS-NB; Ph.D., California (Berkeley)
Helen M. Berman, Professor of Chemistry, FAS-NB; Ph.D., Pittsburgh
FAS-NB; Ph.D., Harvard
Robert M. Birnbaum, Associate Professor of Biochemistry, FAS-NB; Ph.D., New York
Kenneth J. Breslauer, Linus C. Pauling Professor of Chemistry, FAS-NB; Ph.D., Yale
Craig Brewer, Associate Professor of Molecular Genetics and Microbiology, UMDNJ-RWJMS; Ph.D., Auburn
Barbara Brodsky, Professor of Biochemistry, UMDNJ-RWJMS; Ph.D., Stony Brook
George C. Carman, Professor of Food Science, CC; Ph.D., Massachusetts
Kiran K. Chada, Professor of Biochemistry, UMDNJ-RWJMS; D.Phil., Oxford
Linus C. Pauling Professor of Chemistry, FAS-NB; Ph.D., California (Berkeley)
Stephen Anderson, Associate Professor of Molecular Biology and Biochemistry, FAS-NB; Ph.D., Harvard
Michael J. Breslauer, Linus C. Pauling Professor of Chemistry, FAS-NB; Ph.D., Yale
Drug-DNA interactions; DNA lesions and mutagens/repair; DNA conformational heterogeneity; ligand macromolecular recognition; rational drug design; DNA-based diagnostics and therapeutics
Eukaryotic DNA replication and genome stability
Structure and binding of triple-helix peptides as models for collagen and the macrophage scavenger receptor
Enzymology of phospholipid metabolism
Enzymology of phospholipid metabolism
Enzymology of phospholipid metabolism
Structure and binding of triple-helix peptides as models for collagen and the macrophage scavenger receptor
Enzymology of phospholipid metabolism
Kuang-Yu Chen, Professor of Chemistry, FAS–NB; Ph.D., Yale
Biochemistry and function of polyamines and hypoxia-inducible gene regulation in cell aging and tumor reversion; nutraceuticals, cancer, and aging
Suzie Chen, Associate Professor of Chemical Biology and Pharmacogeny, CP; Ph.D., Albert Einstein
Spontaneous melanoma development in transgenic mice; mechanisms of adipocyte differentiation
Xuemei Chen, Assistant Professor of Genetics, WIM/FAS–NB; Ph.D., Cornell
Molecular genetic analysis of flower development in Arabidopsis
Khour-Vovan Chin, Assistant Professor of Medicine and Pharmacology, C/N, UMDNJ–RWJMS; Ph.D., Rutgers
Drug resistance in cancers; regulation of gene expression
David T. Denhardt, Professor of Cell and Molecular Biology, FAS–NB; Ph.D., California Institute of Technology
Molecular biology of cancer; cell signaling and regulation of gene expression; structure and function of oestrogen and tissue inhibitor or metalloproteinases
Monica A. Driscoll, Associate Professor of Molecular Biology and Biochemistry, C/ABM; Ph.D., Harvard
Molecular genetics of degenerative cell death; mechanical signaling
Richard H. Ebright, Professor of Chemistry, WIM/FAS–NB; Ph.D., Harvard
Transcription; protein-DNA interaction; protein-protein interaction; single molecule imaging
Isaac Edery, Associate Professor of Molecular Biology and Biochemistry, FAS–NB/C/ABM; Ph.D., McGill
Molecular and cellular mechanisms underlying biological clocks
Julie M. Fagan, Associate Professor of Animal Science, CC; Ph.D., Arizona
Proteases and their inhibitors in health and disease
Bonnie Firestein, Assistant Professor of Cell Biology and Neuroscience, FAS–NB; Ph.D., California (San Diego)
Targeting of neuronal proteins
Abram Gabriel, Associate Professor of Molecular Biology and Biochemistry, FAS–NB; M.D., Johns Hopkins
Mechanisms of neurotransmitter replication; chromosomal rearrangements
Marc Gaertner, Associate Professor of Pharmacology, UMDNJ–RWJMS; Ph.D., Yale
Chromosomal DNA structure and organization; transcriptional silencing
Millie Georgiadis, Assistant Professor of Chemistry, WIM/FAS–NB; Ph.D., California (Los Angeles)
X-ray crystallographic studies of enzyme-nuclease acid complexes
Donald Gerecke, Assistant Professor of Pharmacology and Toxicology, CP; Ph.D., Harvard
Molecular biology of lung fibrosis
Marion Gordon, Assistant Professor of Pharmacology and Toxicology, CP; Ph.D., UMDNJ–RWJMS
Collagen gene regulation during corneal development; regulation and function of EMMPRIN, a matrix metalloproteinase stimulator, in normal and transformed cells
Samuel Gundersen, Assistant Professor of Molecular Biology and Biochemistry, FAS–NB; Ph.D., Wisconsin
Gene expression; pre-mRNA processing; autoregulation; splicing
Richard A. Harvey, Professor of Biochemistry, UMDNJ–RWJMS; Ph.D., Utah
Antibiotic binding to surgical prostheses
Sarah E. Hitchcock-DeGregori, Professor of Neuroscience and Cell Biology, UMDNJ–RWJMS; Ph.D., Case Western Reserve
Biochemistry and molecular biology of contractile proteins
Shu-Chan Hsu, Assistant Professor of Cell Biology and Neurosciences, FAS–NB; Ph.D., British Columbia
Molecular mechanisms of synaptic development and function
Masayori Inouye, Professor of Biochemistry, UMDNJ–RWJMS; Ph.D., Osaka
Membrane biogenesis; regulation of synthesis of outer membrane proteins
Sumiko Inouye, Associate Professor of Biochemistry, UMDNJ–RWJMS; Ph.D., Nagoya
Mycobacteria and bacterial reverse transcripases
Kenneth D. Irvine, Associate Professor of Molecular Biology and Biochemistry, WIM/FAS–NB; Ph.D., Stanford
Cell signaling and growth control during Drosophila development
Stephan S. Isied, Professor of Chemistry, FAS–NB; Ph.D., Stanford
Modulation of electron transfer proteins
Frank Jordam, Professor of Chemistry, FAS–N; Ph.D., Pennsylvania
Mechanism of thiamin-dependent enzymes and of serine proteases
Peter C. Kahn, Associate Professor of Biochemistry, CC; Ph.D., Columbia
Multikinase proteins; circular dichroism; antigen orange
Frederick C. Kaufmann, Professor of Pharmacology, CP; Ph.D., Illinois
Biochemical aspects of toxoplasmosis
Avedis Khachadurian, Professor of Medicine, UMDNJ–RWJMS; M.D., American University of Beirut
Cholesterol and lipoprotein metabolism; hyperlipidemias
Megerditch Kiledjian, Associate Professor of Cell Biology and Neuroscience, FAS–NB; Ph.D., Pennsylvania
RNA-protein interactions in the regulation of eukaryotic gene expression
Terri Goss Kinzy, Assistant Professor of Molecular Genetics and Microbiology, UMDNJ–RWJMS; Ph.D., Case Western Reserve
Eukaryotic translation elongation and regulation of gene expression
Marilynn Kozak, Professor of Biochemistry, UMDNJ–RWJMS; Ph.D., Johns Hopkins
Mechanisms of protein synthesis in eukaryotic cells
Eric Lam, Associate Professor of Plant Science, BCAE/CC; Ph.D., California (Berkeley)
Plant gene targeting; programmed cell death; chromatin imaging
Jerome Langer, Associate Professor of Molecular Genetics and Microbiology, UMDNJ–RWJMS; Ph.D., Yale
Interferon and receptor structure and function; dengue virus interaction with cells
Debra Laskin, Professor of Pharmacology and Toxicology, CP; Ph.D., Medical College of Virginia
Immunology; inflammation; cytokines, nitric oxide, macrophages
Jeffrey D. Laskin, Professor of Environmental and Community Medicine, UMDNJ–RWJMS; Ph.D., SUNY (Buffalo)
Carcinogenesis and differentiation in cell culture; nitric oxide
John Lenard, Professor of Physiology, UMDNJ–RWJMS; Ph.D., Cornell
Transcription, replication, and fusion of RNA viruses; cellular fusion mechanisms
Ronald M. Levy, Professor of Chemistry, FAS–NB; Ph.D., Harvard
Computational molecular biology; computational chemistry; computer modeling of protein structure; folding and dynamics; structural genomics
Alice Y.-C. Liu, Professor of Biological Sciences, FAS–NB; Ph.D., M.ont Sinai
Shen, aging and the role of retinol in cell signaling and regulation
Pang Liu, Assistant Professor of Chemical Biology, C/ABM; Ph.D., Harvard
Growth and differentiation control
Leroy Liu, Professor of Pharmacology, UMDNJ–RWJMS; Ph.D., California (Berkeley)
Cancer biology, cancer pharmacology, DNA conformation dynamics
Kirin Madura, Assistant Professor of Biochemistry, UMDNJ–RWJMS; Ph.D., Rochester
Mechanism and significance of ubiquitin-dependent degradation of galpha
Sol Mailiga, Professor of Genetics, WIM/FAS–NB; Ph.D., Hungarian Academy of Sciences
Genetics and molecular biology of plasid RNA editing
Paul Maronvitz, Professor of Pharmacology, UMDNJ–RWJMS; Ph.D., Brandeis
Molecular biology and biochemistry of mental illness
Fumio Matsuzumura, Professor of Molecular Biology and Biochemistry, FAS–NB; Ph.D., Nagoya
Molecular cell biology of cell division
Richard Mendelsohn, Professor of Chemistry, FAS–N; Ph.D., Massachusetts Institute of Technology
Biophysical studies of membrane structure
Joachim W. Messing, University Professor of Molecular Biology, WIM/FAS–NB; Ph.D., Munich
Plant molecular biology
Gaetano T. Montelione, Professor of Molecular Biology and Biochemistry, FAS–NB; Ph.D., Cornell
Protein NMR spectroscopy, molecular recognition, rational drug design, structural bioinformatics
N. Ronald Morris, Professor of Pharmacology, UMDNJ–RWJMS; M.D., Yale
Molecular biology of microtubules and motor proteins
Lenore Neigeborn, Lederer in Life Sciences, FAS–NB; Ph.D., Columbia
Control of gene expression in yeast
Robert A. Niederman, Professor of Molecular Biology and Biochemistry, FAS–NB; D.V.M., Ph.D., Illinois
Structure, function, and assembly of photosynthetic membranes
David N. Norris, Assistant Professor of Molecular Biology and Biochemistry, WIM/FAS–NB; Ph.D., Harvard
Genetic recombination, models, and check point regulation
Wilma Olson, Mary I. Bunting Professor of Chemistry, FAS–NB; Ph.D., Stanford
Relation of structure, conformation, and function in nuclear acids
Richard Podgrett, Associate Professor of Molecular Biology and Biochemistry, WIM/FAS–NB; Ph.D., North Carolina (Chapel Hill)
TGFA beta signal transduction in C elegans and Drosophila
Garth Patterson, Assistant Professor of Molecular Biology and Biochemistry, FAS–NB; Ph.D., Oregon
Mechanistic and computer modeling; genetics, gene expression, aging
Stuart Peltz, Associate Professor of Molecular Genetics and Microbiology, UMDNJ–RWJMS; Ph.D., Wisconsin (Madison)
Eukaryote gene expression
Sidney Pestka, Professor of Molecular Genetics and Microbiology, M.D., Pennsylvania
Natural interferon genes, receptors
George Peczkewicz, Associate Professor of Biochemistry, CC; Ph.D., New York
Evolutionary paradigms for molecular information
Claudio Picikelny, Assistant Professor of Neuroscience and Cell Biology, UMDNJ–RWJMS; Ph.D., Brandeis
Molecular genetics of olfaction and pheromone response in Drosophila
John Pintar, Professor of Neuroscience; UMDNJ–RWJMS; Ph.D., Oregon
Molecular analysis of gene expression during mammalian development

Ronald D. Poretz, Professor of Biochemistry; CC; Ph.D., SUNY (Buffalo)
Inherited susceptibility to neurotoxins and intracellular targeting of pharmaceuticals

Carl A. Price, Professor Emeritus of Plant Biochemistry; WIM/FAS-NB; Ph.D., Harvard
Molecular biology of plastids

Arnold Rabson, Associate Professor of Microbiology and Molecular Genetics; UMDNJ–RWJMS; M.D., Brown
Molecular biology of human retroviruses gene regulation in human cancer

Joe Ramos, Assistant Professor of Cell Biology and Neuroscience; FAS-NB; Ph.D., Virginia
Cell signaling, cell adhesion, and cancer

Tariq Rana, Associate Professor of Pharmacology; UMDNJ–RWJMS; Ph.D., California (Davis)
RNA-protein interactions; regulation of HIV-1 gene expression; drug design; artifical protoplasts

Danny F. Reimberg, Professor of Biochemistry; UMDNJ–RWJMS; Ph.D., Albert Einstein
Mechanisms that control the regulation of gene expression in higher eukaryotes

Charles Roth, Associate Professor of Chemical and Biochemical Engineering; SE; Ph.D., Delaware
Molecular bioengineering, inflammatory diseases, applied bioinformatics

Monica Roth, Associate Professor of Pediatrics; UMDNJ–RWJMS; Ph.D., Albert Einstein
Genetics and biochemistry of murine leukemia virus

Cari P. Schaffner, Professor Emeritus of Biology; WIM/FAS-NB; Ph.D., Illinois
Antibiotic chemistry and biology, prostatic cholestrogenesis

Konstantin Severinov, Assistant Professor of Genetics; FAS-NB; Ph.D., Russian Academy of Sciences
Structure and function of RNA polymerases from eubacteria and yeasts

Aaron Shatkai, Professor of Molecular Genetics and Microbiology; UMDNJ–RWJMS; University Professor of Molecular Biology; Rutgers Director of the Center for Advanced Biotechnology and Medicine, Ph.D., Rockefeller
Eukaryotic gene expression; viral cytopathogenesis

Michael M. Shem, Associate Professor of Pediatrics; UMDNJ–RWJMS; ScAMB; Ph.D., Cambridge
Growth factor signaling and pattern formation in mouse embryogenesis; prostate development and cancer

Navin K. Sinha, Associate Professor of Biology; WIM/FAS-NB; Ph.D., Minnesota
Accuracy of DNA replication; chemical carcinogenesis

William Sofer, Professor of Genetics; FAS-NB; Ph.D., Miami
Prediction of secondary structure of proteins using genetic algorithms

Ruth Steward, Professor of Molecular Biology and Biochemistry; WIM/FAS-NB; Ph.D., Basel
Nuclear migration, RNA localization, and patterning in Drosophila

Ann Stock, Associate Professor of Biochemistry; UMDNJ–RWJMS; ScAMB; Ph.D., California (Berkeley)
Structure and function of signal transduction proteins

Kevin S. Sweeder, Assistant Professor of Chemical Biology; CP; Ph.D., California Institute of Technology
Mechanisms of DNA repair; transcription-coupled repair; transcription synthesis

Mark Takahashi, Associate Professor of Physiology; UMDNJ–RWJMS; Ph.D., Wisconsin
Cytokine signal transduction pathways, apoptosis in epithelial cells

T. J. Thomas, Associate Professor of Medicine; UMDNJ–RWJMS; Ph.D., Indian Institute of Science
Development of gene-targeted strategies for breast cancer treatment

Lynn D. Vales, Associate Professor of Biochemistry; UMDNJ–RWJMS; Ph.D., Albert Einstein College of Medicine
Transcriptional regulation of gene expression

Theodorus van Es, Professor of Biochemistry; CC; Ph.D., Witwatersrand
Carbohydrate chemistry; nonimmunogenic enzymes; quinoline chemistry

Andrew K. Vershon, Associate Professor of Molecular Biology and Biochemistry; WIM/FAS-NB; Ph.D., Massachusetts Institute of Technology
Structure/function of yeast transcriptional regulatory proteins

Nancy Walworth, Assistant Professor of Pharmacology; UMDNJ–RWJMS; Ph.D., Yale
Regulation of cell cycle progression in eukaryotic cells

William W. Ward, Associate Professor of Biochemistry; CC; Ph.D., Johns Hopkins
Biochemical mechanisms of protein and peptide biochemistry

Eileen White, Professor of Molecular Biology and Biochemistry; FAS-NB/CABM; Ph.D., SUNY (Stony Brook)
Programmed cell death

Donald Winkelmans, Associate Professor of Pathology; UMDNJ–RWJMS; Ph.D., Wisconsin (Madison)
Molecular structure and assembly mechanisms of muscular contraction

Chung S. Yang, Professor of Chemical Biology; CP; Ph.D., Cornell
Molecular mechanisms of organophosphorus and its prevention; genetic polymorphism and cancer risk

Peter D. Yurchenco, Associate Professor of Pathology and Laboratory Medicine; UMDNJ–RWJMS; M.D., Ph.D., Albert Einstein College of Medicine
Molecular basis of basement membrane structure and function; receptor-mediated cell-matrix interactions

Barbara A. Zilinskas, Professor of Plant Biochemistry; CC; Ph.D., Illinois
Oxidative stress in plants and microorganisms and its penetration and biochemistry

Gerben Zylstra, Associate Professor of Biochemistry and Microbiology; BCAE/CC; Ph.D., Michigan
Microbial genomics high throughput screening molecular analysis of biodegradation pathways

Programs

The joint graduate program in biochemistry at Rutgers, The State University of New Jersey, and the University of Medicine and Dentistry of New Jersey—Robert Wood Johnson Medical School provides high-quality graduate training in biochemistry. There are two appropriate undergraduate routes that prepare a student well for graduate study in biochemistry. The most obvious is an undergraduate concentration in biochemistry itself. Alternatively, a student could major in either biology—particularly molecular biology, cell biology, or microbiology—or chemistry—particularly organic chemistry or physical chemistry. Whichever major the student declares in this second route should be accompanied by a minor in the other discipline. Applicants also are expected to have studied mathematics through calculus, and to have completed one year of physics, and analytical and physical chemistry. Those who lack one or two of these prerequisites may complete them without graduate credit after admission to graduate school. Applicants also are required to take the general and subject tests of the Graduate Record Examination.*

*Admission is handled by the consolidated graduate programs in molecular biosciences. For further information, refer to the Molecular Biosciences heading within this chapter.
Graduate Courses
16:115:501. (F) BIOCHEMISTRY (3)

16:115:502. (F) BIOCHEMISTRY (MOLECULAR BIOLOGY) (3)

16:115:508. (S) PROTEINS AND ENZYMES (3)
 Chase. Prerequisite 16:115:501 or equivalent. Assay and purification of enzymes and other proteins. Kinetics, chemical modification, and site-directed mutagenesis as tools in understanding structure-function relationships and enzyme mechanisms. Selected examples of posttranslational modification. General theories and specific examples of the chemical basis of enzymic catalysis.

16:115:511,512. (F) MOLECULAR BIOLOGY AND BIOCHEMISTRY (3,3)
 Prerequisite One year organic chemistry. These courses recommended for students outside the program in biochemistry. First term: Photosynthesis, properties of membranes, signal transduction, structure and function of proteins, catalysis of biochemical reactions, intermediary metabolism, oxidative phosphorylation. Second term: RNA splicing, translation, mobile genetic elements, introduction to animal cells and their viruses, recombinant DNA approaches, nucleic acid structure, gene regulation, DNA replication.

16:115:533. (F) PHYSICAL BIOCHEMISTRY (3)
 Kahn. Prerequisite: Biochemistry, physical chemistry. Protein folding used as theme to discuss principles of physical chemistry of macromolecules of biochemical importance. Specific aspects of thermodynamics and kinetics are related to biopolymers. Spectroscopic techniques, including circular dichroism, as well as other biophysical methods.

16:115:552. BIOCHEMICAL SEPARATIONS (3)
 Prerequisite 01:115:313 or 11:115:313; or 11:115:413. Basic theory and practice of separating biological molecules. Methods include chromatography, centrifugation, electrophoresis, ultrafiltration, and general methods of extraction and purification of proteins, nucleic acids, carbohydrates, and other biological molecules.

16:115:554. (F) GENE REGULATION IN NEURAL DEVELOPMENT (2)
 Abate-Shen. Offered in alternate years. Survey of recent literature regarding the regulation of gene expression in the nervous system. Emphasis on the molecular mechanisms involved in gene regulation during neuronal development.

16:115:556. (F) ETHICAL SCIENTIFIC CONDUCT (1)
 Introduction to ethical issues of scientific investigation, including intellectual property, plagiarism, conflict of interest, human and animal subjects, and record keeping. Intended for Ph.D. candidates in the biomedical sciences.

16:115:605,606. ADVANCED STUDIES IN BIOCHEMISTRY (BA,BA)
 Independent library and laboratory research into special aspects of biochemistry arranged under the supervision of faculty members in any of the participating groups.

16:115:613,614. SEMINAR IN BIOCHEMISTRY (1,1)

16:115:616. SPECIAL TOPICS IN BIOCHEMISTRY (BA)
 Faculty members occasionally offer a special course on a new or developing topic in biochemistry.

16:115:701,702. RESEARCH IN BIOCHEMISTRY (BA,BA)
Evangelia Micheli-Tzanakou, Professor and Chairperson of Biomedical Engineering, SE; S., Syracuse
Visual pattern recognition; neural networks; digital signal processing

Prabhas V. Moghe, Assistant Professor of Chemical and Biochemical Engineering, SE; Ph.D., Minnesota
Matrix microarchitecture, tissue engineering, cell-biomaterials interactions

Judith A. Neubauer, Associate Professor of Medicine, UMDNJ-RWJMS; Ph.D., Rutgers
Neuromodulation of central neurons

Thomas V. Papathomas, Professor of Biomedical Engineering, SE; Ph.D., Columbia
Motion, depth, and texture perception; visual pattern recognition

John R. Parsons, Professor of Orthopaedics, UMDNJ-NJMS; Ph.D., Pennsylvania Biomaterials: biomaterials orthopedic implant design; articular cartilage injury and biomechanics

Mark R. Plummer, Associate Professor of Biology and Neuroscience, FAS-NB; Ph.D., Rutgers
Signal transmission; nervous transmission

E. Diane Rekow, Professor and Chairperson, Department of Orthodontics, UMDNJ-NJDS; Ph.D., D.D.S., Minnesota
Machinable ceramics: CAD/CAM for dental applications

John Ricci, Associate Professor of Orthopaedics, UMDNJ-NJMS; Ph.D., UMDNJ Cell and tissue response to biomaterials and implantable biomedical devices

Alvin J. Salkind, Professor of Surgery/Biomechanics, UMDNJ-RWJMS, and Professor of Biomedical Engineering, SE; D.Ch.E., Polytechnic Institute of New York Physiological stimulators and pacemakers, catheters

John Sennwe, Associate Professor of Biomedical Engineering, SE, and Professor of Surgery, UMDNJ-RWJMS; Ph.D., Illinois
Neural control of eye movements: noninvasive detection of coronary artery disease

George K. Shuman, Professor of Biomedical Engineering, SE; Ph.D., California (Berkeley)
Visual control models: early visual processing, machine vision applications

Samuel Slodeman, Distinguished Visiting Professor of Biomedical Engineering, SE; D.Sc., Technion-Israel Institute of Technology
Transport phenomena; modeling cardiovascular systems

Frederick H. Silver, Professor of Pathology, UMDNJ-RWJMS; Ph.D., Massachusetts Institute of Technology Biomaterials: connective tissue structure and mechanics

Robert Trelad, Professor of Pathology, UMDNJ-RWJMS; M.D., Harvard Tissue injury and repair

Kathryn Uhlich, Assistant Professor of Chemistry, FAS-NB; Ph.D., Cornell Biopolymer synthesis

Trilala K. Vaidyanathan, Professor of Prosthodontics and Biomaterials, UMDNJ-NJDS; Ph.D., Polytechnic Institute of New York Dental biomaterials: ceramics, polymers, metals; corrosion microscopy

William C. Van Buskirk, Professor of Mechanical Engineering, Provost and Senior Vice President of Academic Affairs, NJIT; Ph.D., Stanford Bone mechanics; vascular mechanics

Yehuda Vardi, Professor of Statistics, FAS-NB; Ph.D., Cornell Positron emission tomography; operations research; applied probability and industrial statistics

Harvey K. Weiss, Professor of Physiology, UMDNJ-RWJMS; Ph.D., Duke University Cardiac physiology

Walter Weikowitz, Professor Emeritus of Biomedical Engineering, SE; Ph.D., Illinois Cardiovascular research: heart assist systems

Joseph Wilder, Research Professor of Electrical and Computer Engineering, SE; Ph.D., Pennsylvania Human visual perception

Martin Yarmush, Professor of Biomedical Engineering and Professor of Chemical and Biochemical Engineering, SE; Ph.D., Rockefeller; M.D., Yale Tissue engineering, metabolic engineering, genomics and proteomics, stem cell bioengineering

Mark C. Zimmerman, Group Leader, Physical and Analytical Characterization, Johnson & Johnson, Ph.D., Rutgers Orthopedic biomaterials and biomechanics, acoustic microscopy

Associate Members of the Graduate Faculty

Robert E. Brolin, Associate Professor of Surgery, UMDNJ-RWJMS; M.D., Michigan Intestinal ischemic disease and morbid obesity

Kenneth J. Ciuffreda, Professor of Vision Sciences SUNY (College of Optometry); Ph.D., California (Berkeley)
Clinical and research aspects of visual function and ocular motility

Robert D. Hertlein, Associate Professor of Orthopaedics, UMDNJ-RWJMS; Ph.D., Rutgers Orthopaedic biomechanics; bone repair; distraction osteogenesis, acoustic microscopy, tissue engineering

Mel L. Kantor, Associate Professor of Oral Pathology, Biology, and Diagnostic Sciences, UMDNJ-NJDS, and Clinical Associate Professor of Radiology, UMDNJ-NJMS; D.D.S., North Carolina
Observer performance, diagnostic efficacy, and visual psychophysics in radiology

Sanford L. Klein, Chairperson and Professor of Anesthesia, UMDNJ-RWJMS; M.D., Albany Medical Center, D.D.S., New York Laser-assisted anastomosis for blood vessel and nerve repair

Irwin Krasna, Professor of Pediatric Surgery, UMDNJ-RWJMS; M.D., Chicago Medical School Intrathoracic and extrathoracic blood flow; glenoid transplants: cancer growth

Suzanne H. Maxian, Department of Surgery, Pennsylvania College of Medicine Ph.D., Rutgers-UMDNJ Biomechanics and biomaterials research of novel hard tissues

Robert M. Olson, Associate Professor of Surgery, UMDNJ-RWJMS; M.D., Pennsylvania Wound healing; burns; collagen; synthetic skin; epithelialization

Steve Petrocelli, Assistant Professor of Biomedical Engineering, SE; Ph.D., Rutgers Design of microcomputer base: analytical instrumentation

Daniel M. Shindler, Associate Professor of Medicine, UMDNJ-RWJMS; M.D., Sewell Cardiac ultrasound image processing using ANSIC and PRL

Charles Steiner, Professor Emeritus of Osteopathic Sciences, UMDNJ-SOM; D.D.O., Philadelphia College of Osteopathic Medicine Biomedical basis of clinical findings

Heiski Lanskis, Staff Physiatrist, F.K. Johnson Rehabilitation Institute M.D., Vermont Prosthetics and orthotics: amputees

Adjunct Members of the Graduate Faculty

Carey Glass, President, CG Medical, CP, B.S., New York Prosthetic materials and devices

Dorene A. O’Hara, Associate Professor of Anesthesia, New York Medical College M.D., Harvard Computer-controlled delivery of drugs: computer modeling of drug kinetics

George S. Tzanakos, Visiting Associate Professor of Biomedical Engineering, SE; Ph.D., Syracuse Positron emission tomography (PET): R&D of new PET scanners and detector image reconstruction

Programs

The academic, research, and training activities of the graduate program in biomedical engineering are carried out by the faculties of the University of Medicine and Dentistry of New Jersey–Robert Wood Johnson Medical School in collaboration with the School of Engineering of Rutgers, located on the Busch campus in Piscataway, New Jersey.

The biomedical engineering faculty has established research programs in cardiovascular systems analysis; automated diagnostic devices; bioinstrumentation, including biotelemetry and implants; cardiac-assist devices; medical applications of pattern recognition; medical imaging; neural-network applications to biomedical engineering; neurocontrol; neuromodulation; imaging; biomechanics; and biomaterials. Research areas in the medical school also include electromyography, neural information processing and modeling, hypertension, respiratory controls, computer-assisted diagnosis, nuclear magnetic resonance, positron-emission tomography, the study of binocular oculomotor balance, and the study of artificial-implant materials.

Minimum requirements for the M.S. degree include 38 credits of course work, 6 credits of research, and an M.S. thesis. Minimum requirements for a Ph.D. degree are 48 credits with satisfactory grades in approved courses and 24 credits for an acceptable research thesis. There is no foreign language requirement. The residence requirement depends on the area of specialization.

Students who have been accepted to both the Graduate School–New Brunswick and the University of Medicine and Dentistry of New Jersey–Robert Wood Johnson Medical School and who satisfy the requirements of both institutions are eligible to pursue an M.D./Ph.D. curriculum.

The qualifying examination normally consists of four written examinations. All students take examinations in both physiology and in the research area of their thesis. Depending on their concentration within the program, students take examinations in either (1) systems analysis and computer applications, and instrumentation or (2) biomaterials and biomechanics. An oral examination, in the appropriate area of specialization, is administered by the student’s thesis committee. Candidates are required to present seminars, which are attended by all members of the thesis committee, in order to allow the committee to evaluate their research progress.
The program in biomedical engineering has been selected to participate in the Graduate Professional Opportunities Program, which provides fellowships for women and minority students.

Graduate Courses

16:125:503,504. **THEORY AND DESIGN OF BIOMEDICAL INSTRUMENTS (3,3)**
Semlow
The principles of instrument-type transducer design, with illustrations of resistance, inductance, capacitance, piezoelectric, magnetoelectric, and force-balance-type transducers. Examples of stress instruments for medical applications.

16:125:505. (F) **BIOPOLYMERS (3)**
Silver. Prerequisite: Elementary biochemistry. Recommended: Physical chemistry. Relationship among macromolecular structure, maintenance of tissue shape, and mechanical integrity, particularly in mammalian connective tissues. Emphasis on structural mechanisms related to viscoelastic behavior of collagen and matrix components, as well as rubberlike behavior of elastin. Laboratory demonstrations emphasize relationship of structure and physical properties of structural biomaterials.

16:125:506. (S) **ARTIFICIAL IMPLANTABLE MATERIALS (3)**
Silver. Prerequisite: Bachelor’s degree in engineering or permission of instructor. Evaluation of biocompatibility. Specific biomaterials-tissue interactions. Toxicology of implanted materials. Surface phenomenon and membranes. Implantable electrodes and power sources. Implantable metals, alloys, polymers, and ceramics. Lubrication and wear of implants. Total hip and knee prostheses. Connective tissue replacement.

16:125:507. (F) **WAVE PHENOMENA IN BIOMEDICAL SYSTEMS (3)**
Wave propagation in electrical, mechanical, thermal, and chemical systems; the common parameters of distributed systems; blood flow in arteries; chemical diffusion in organs; and nerve action potential transmission.

16:125:508. (S) **PATHOBIOLOGY (3)**
Silver. Prerequisite: 01 or 11:115:301 or equivalent, and permission of instructor. Cellular and tissue reaction to injuries resulting from ischemia, physical forces, and exposure to chemicals, including synthetic and natural polymers. Inflammation, immune reactions, regeneration, and repair. Transplantation of natural and synthetic materials as well as reactions to implanted materials.

16:125:509. **MEDICAL DEVICE DEVELOPMENT (3)**
Development of medical devices that employ primarily polymeric materials in their construction. Materials selection, feasibility studies, prototype fabrication, functionality testing, prototype final selection, biocompatibility considerations, efficacy testing, sterilization validation, FDA regulatory approaches, writing of IDE, SID(K) and PMAs, device production, and record keeping.

16:125:510. (S) **ENGINEERING HEMODYNAMICS (3)**
Drzewiecki
Application of engineering techniques to the study of blood flow. Topics include the analysis of physiologically relevant models of the left ventricle, aorta, and peripheral vascular system in normal and diseased states. Analysis applied to the design of circulatory assist devices and cardiovascular instrumentation.

16:125:512. (S) **FUNDAMENTALS OF COMPUTED TOMOGRAPHY (3)**
Dunn. Prerequisite: 16:332:543.
Image restoration and enhancement techniques, convex projections, pseudo inverse, back projection, simplex methods, least mean square error, constrained solutions, nonlinearities. Applications include X-ray, ultrasound, NMR, and optical medical imaging systems.

16:125:513. (S) **VISUAL RESEARCH AND INSTRUMENTATION (3)**
Shoane. Prerequisite: 14:332:545 or equivalent.
Control system analysis of human visual systems and survey of instrumentation used. Topics include anatomy of the visual system; triad: accommodation, vergence, and pupil; saccadic and pursuit eye movements.

16:125:515. (F) **BIOELECTROCHEMICAL ASPECTS OF IMPLANTS AND DEVICES (3)**
Guzeltu, Salkind. Prerequisites: 16:125:503, 504, and 507.
Applications of bioelectrochemical engineering to areas of biomedical engineering, including membrane properties, propagation of biological wave potentials, corrosion of implanted materials, and nerve and organ stimulation.

16:125:516. (S) **VISUAL PATTERN RECOGNITION (3)**
Micheli-Tzanakou. Prerequisites: 01:119:356 and 01:640:244, or equivalent. Patterns are the means by which living organisms and “thinking” machines sense, interpret, classify, and act on information extracted from their surroundings. Recognition in the visual system within the context of information processing in living organisms and computers. Computer vision compared to biological vision.

16:125:517. (F) **CIRCULATORY DYNAMICS (3)**
Li
The circulatory system with emphasis on invasive and noninvasive measuring techniques. Topics include measurement of blood pressure and flow in arteries and veins, muscle mechanics, models of the heart, microcirculation, the closed cardiovascular system, and cardiac assist devices.

16:125:518. (S) **COMPUTER APPLICATIONS IN BIOMEDICAL ENGINEERING (3)**
Papathomas
Digital and other computer techniques applied to the problems of biomedicine. The acquisition of data and its processing with small computers. Modeling of biological and other systems.

16:125:519. (F) **BIOLOGICAL MATERIALS (3)**

16:125:520. (S) **NEUROELECTRIC SYSTEMS (3)**
Micheli-Tzanakou. Prerequisites: 16:332:505 and general physiology. Introduction to function and models of the nervous system; generator and action potentials; conduction in nerve fibers and across synaptic junctions; analysis of sensory and neuromuscular systems; EEG and EKG waveforms.

16:125:523. (F) **BIOMEDICAL INSTRUMENTATION LABORATORY (3)**
Li. Prerequisites: 16:125:503, 504.
Practical design of biomedical transducers, electrodes, amplifiers. Operation and performance evaluation of biomedical instruments. Recording, filtering, processing, and analysis of physiological signals.

16:125:525. (F) **BIOLOGICAL CONTROL SYSTEMS (3)**
Shoane. Prerequisite: 01:119:356 or equivalent.
Application of control theory to the analysis of physiological systems. Topics include pharmacokinetics, cardiovascular system, pulmonary system, stability analysis using Nyquist and root locus, LMS adaptive algorithm, renal concentrating mechanism, membrane potential, and ionic channels. Computer simulation exercises parallel each lecture topic.
16:125:526. BRAIN DYNAMICS (3)

Michel-Torzak. Prerequisite: 16:125:520 or equivalent. Combined analysis procedures of EEG and evoked potentials may provide information on signal neural events provided that experiments are adequately designed. Presents conceptual development of resonance phenomena in biophysical sciences and considers the system at moment of stimulation for estimating and predicting its response. Stereodynamics, simultaneously recorded multichannel EEG data, and evoked potentials from substructures of the brain.

16:125:528. (S) MOLECULAR SYSTEMS ENGINEERING (3)

16:125:530. NONLINEAR DYNAMICS, CHAOS, AND FRACTALS (3)

Drzewiecki

Introduction to nonlinear dynamics and chaos, phase plots, strange attractors, deterministic/random fractals, fractal dimension. Applications in cardiopulmonary science and neurosciences.

16:125:531. (S) ELECTROMAGNETIC COMPATIBILITY (3)

Craelius

Applications of electromagnetic (EM) energy; principles of reducing EM emission and noise susceptibility of devices in the 25–1,000 MHz band; test and measurements of EM fields for regulatory compliance.

16:125:532. CYTOELECTRICALS (3)

Craelius. Prerequisite: Undergraduate degree in engineering. Mechanical properties and measurements of cells; stress-strain relationships in cells, organelles, and biomaterials, including methods of mechanical measurements.

16:125:533. DESIGN OF MICROPROCESSOR-BASED MEDICAL INSTRUMENTATION (3)

Petrasil. Prerequisites: 16:125:504 and 14:323:374, or equivalent. Signal processing, display, and control components of medical instrumentation systems. Topics include bus and communication protocols, microprocessor interface design, signal conditioning and acquisition circuitry, and data display interfaces.

16:125:540. (S) INTRODUCTION TO LIMB PROSTHETICS I (3)

Basics of prosthetic practice, ethics, health economics, and professionalism; neuropathology and orthopaedics.

16:125:541. (F) BIOMECHANICAL MEASUREMENTS (3)

Craelius, Dunn

Techniques for measuring biomechanical properties of limbs, organs, and tissues, as well as prosthetic devices, both at rest and during ambulation. Topics include experimental and statistical methods, clinical-research study design, mechanical properties and behavior of tissues, use of transducers, and major imaging modalities.

16:125:542. (S) PROSTHETICS FOR THE UPPER LIMB I (4)

Craelius, Usals Material selection and mechanical-electrical design criteria for the upper-limb amputee. Design and fabrication of functional prostheses, starting from measurements of amputee subjects and finishing with functional testing.

16:125:543. (F) PROSTHETICS FOR THE LOWER LIMB I (4)

Craelius, Usals Material selection and mechanical design criteria for the transfemoral amputee. Design and fabrication of functional prostheses, starting from measurements of amputee subjects and finishing with operational testing. Bodily responses to amputation; casting; components; initial fitting; gait evaluation and training; pre- and postoperative care.

16:125:544. (S) PROSTHETICS FOR THE LOWER LIMB II (4)

Craelius

Material selection and mechanical design criteria for the transfemoral amputee. Design and fabrication of operational prostheses, starting from measurements of amputee subjects and finishing with operational testing. Bodily responses to amputation; casting; components; initial fitting; gait evaluation and training; pre- and postoperative care.

16:125:551. (F) BIOPOLYMER SYNTHESIS (3)

Kohn, Uhrich

Provides chemists, as well as chemical and biomedical engineers, with a solid understanding of the key principles that differentiate polymers as unique materials. Upon completion, students will be able to select polymers for industrial/medical applications, comprehend the scientific literature in polymer chemistry, and conduct applications-related research involving polymeric materials. Prior knowledge of polymer chemistry or materials science not required.

16:125:553. (F) BIOMATERIALS CHARACTERIZATION (3)

Primeau, Ricci

Provides fundamental instruction on the methods and rationales used in characterization of metal, ceramic, polymeric, and biologic materials used in biomedical implant fabrication. Instruction in microscopy and imaging techniques, spectroscopy and electron probe methods, mechanical characterization, and models used to characterize cell and tissue response to biomaterials. Includes such topics as response of specific tissues to biomaterials, tissue engineering, and artificial organs.

16:125:562. DIGITAL RADIOLOGY (3)

Dunn

16:125:601, 602. SEMINAR IN BIOMEDICAL ENGINEERING III,IV (1,1)

Current topics in biomedical engineering. For advanced graduate students. For first-year graduate students. Current topics in biomedical engineering discussed by invited speakers and in prepared presentations by students.

16:125:610. ADVANCED TOPICS IN COMPUTERS IN BIOMEDICAL ENGINEERING (3)

Dunn. Prerequisites: 16:125:518 and permission of instructor. Advanced study of computer applications in biomedical engineering. Possible topics include computerized axial tomography (CAT), positron emission tomography (PET), magnetic resonance imaging (MRI), use of artificial intelligence (AI) in medical diagnosis, learning systems, digital and sampled data implementations, large scale systems, filtering, and image reconstruction. Topics vary.

16:125:612. ADVANCED TOPICS IN ENGINEERING HEMODYNAMICS (3)

Papathomas. Prerequisites: 16:125:520 and permission of instructor. Emphasis on assisted circulation and artificial hearts, noninvasive indices of cardiac disorders and their measurement, and models of coronary circulation.

16:125:613. ADVANCED TOPICS IN BRAIN RESEARCH (3)

Papathomas. Prerequisites: 16:125:520 and permission of instructor. Advanced study of current areas of brain research. Topics include information processing in the brain, pattern recognition in different sensory modalities, advanced techniques of diagnosing different system disorders, and data recording and techniques of analysis. Topics vary depending on student interest and faculty availability.
16:125:620. NEURAL NETWORKS AND NEUROCOMPUTING (3)
Michel Tazakou. Prerequisites: Advanced standing and permission of instructor.
Classical theories such as the Perceptron; LMS algorithm; the Boltzmann machine; Hopfield nets; back propagation; associative neurons; as well as adaptive algorithms, such as the ALOPEX algorithms, examined in detail. Different applications and current literature examined and discussed.

16:125:621,622. SPECIAL PROBLEMS IN BIOENGINEERING (BA,BA)
16:125:699. NONTHESIS STUDY (1)
16:125:701,702. RESEARCH IN BIOENGINEERING (BA,BA)
See also courses listed under Electrical Engineering, as well as 16:650:528 Biomechanical Systems (3).

BIORESOURCE ENGINEERING 127
Degree Program Offered: Master of Science
Director of Graduate Program: Professor Barbara J. Turpin,
Environmental Science Building, Cook Campus (732/932-9540)

Members of the Graduate Faculty

Arend-Jan Both, Assistant Professor of Bioresource Engineering, CC; Ph.D., Cornell
Controlled-environment agriculture

Gene A. Giacomelli, Professor of Agriculture and Biosystems Engineering, Arizona; Ph.D., Rutgers
Greenhouse environmental control and crop-production systems

Uta Kroghmann, Associate Professor of Environmental Science; Ph.D., Hamburg-Harburg
Waste analysis, recycling, waste minimization, anaerobic digestion, composting

David R. Mears, Professor of Bioresource Engineering, CC; Ph.D., Rutgers
Energy alternatives for agriculture, engineering greenhouse systems: solar and waste heat; mechanization

George H. Nieswand, Professor of Environmental Systems Analysis, CC; Ph.D., Rutgers
Environmental systems analysis: water resource management; land-use planning

Kuan-Chong Ting, Professor, Ohio State; Ph.D., Illinois
Environmental control and automation for protected cultivation; systems analysis: robotics in food processing

Barbara J. Turpin, Associate Professor of Environmental Science, CC; Ph.D., Oregon Graduate Institute
Air pollution instrumentation; sampling and analysis of atmospheric particles

Adjunct Members of the Graduate Faculty

James Cavazzoni, Postdoctoral Associate; Ph.D., New York
Earth systems science and modeling: mathematical crop modeling and associated experimentation

Robert M. Cowan, Adjunct Professor of Environmental Science, CC; Ph.D., SUNY (Buffalo)
Biological treatment (kinetics, process engineering, modeling); bioremediation, industrial and hazardous-waste treatment

Andrew J. Higgins, Vice President for Engineering, Applied Waste Water Tech., Inc; Ph.D., Rutgers
Wastewater process engineering: solid waste recycling and utilization; hazardous waste

Sukwon Kang, Postdoctoral Associate; Ph.D., Cornell
Systems analysis and modeling in plant growth, food processing, and waste management; heat and mass transfer in foods; geographic information systems instrumentation and sensing

Tadashi Takakura, Professor of Agricultural Engineering, University of Tokyo; Ph.D., Tokyo
Environmental control engineering

Programs
Bioresource engineering applies the principles of engineering and technology to the production, processing, and handling of food and natural fiber. It deals with basic research and biological and engineering applications in such fields as the conservation of natural resources, irrigation and drainage, the quality of surface and groundwater, and land-use planning. Other topics include processing and storage techniques, fundamental studies of the engineering properties of biological materials, the effects of biological waste-systems on the environment, the design and development of machines and buildings, and automation in greenhouse crop-production systems and the food industry. There are no language or residency requirements.

Graduate Courses

16:127:507. (F) ENVIRONMENTAL SYSTEMS ANALYSIS (3)
Nieswand, Ting
Philosophy of the systems approach. The modeling of systems. Quantitative methods in environmental systems analysis. Application of the systems approach and techniques of systems analysis to environmental problems.

16:127:508. (S) INSTRUMENTS IN BIOENGINEERING (3)

16:127:611,612. SEMINAR IN BIOENGINEERING (1,1)
Turpin

16:127:697,698. SPECIAL PROBLEMS IN BIOENGINEERING (1,1) (BA,BA)
Directed studies of special problems that involve unique applications of bioresource engineering.

16:127:699. NONTHESIS STUDY (1)
16:127:701,702. RESEARCH IN BIOENGINEERING (BA,BA)

BIOTECHNOLOGY 126
Program Offered: Core Curriculum in Biotechnology

Participating Faculty
The following members of the graduate faculty, identified more fully under the subject headings indicated, are affiliated with the core curriculum in biotechnology:

Cory Abate-Shen, Physiology and Neurobiology
Stephen Anderson, Biochemistry
Edward Arnold, Chemistry
Helen Berman, Chemistry
Ira Black, Physiology and Neurobiology
Kenneth J. Breslauer, Chemistry
Helen M. Buettner, Chemical and Biochemical Engineering
William Craelius, Biomedical Engineering
Dennis Dunn, Biomedical Engineering
Richard H. Ebright, Chemistry and Molecular Genetics
Douglas E. Everleigh, Microbiology and Molecular Genetics
Celine Gelinas, Microbiology and Molecular Genetics
Herbert Geller, Pharmacology
Benjamin J. Glasser, Chemical and Biochemical Engineering
Max Haggblom, Microbiology and Molecular Genetics
Masayoshi Inouye, Biochemistry
Joachim Kohn, Chemistry
Casmir Kulikowski, Computer Science
Debra Laskin, Toxicology
Michael J. Leibowitz, Microbiology and Molecular Genetics
Peter Lobel, Pharmacology
Kim S. McKim, Microbiology and Molecular Genetics
Joachim Messing, Microbiology and Molecular Genetics
Prabhas Moghe, Chemical and Biochemical Engineering
Gaetano T. Montelione, Biochemistry
Robert A. Moss, Chemistry
Fernando Muzzio, Chemical and Biochemical Engineering
Henrik Pedersen, Chemical and Biomedical Engineering
Sidney Pestka, Microbiology and Molecular Genetics

See also courses listed under Electrical Engineering, as well as 16:650:528 Biomechanical Systems (3).
Core Curriculum Program

The biotechnology core curriculum provides predoctoral students with an integrated, interdisciplinary education in biotechnology. Students apply to the core curriculum after they have been admitted as full-time students in any of the biological, physical, or mathematical science doctoral programs in the Graduate School–New Brunswick. Upon graduation, students within the core curriculum receive a Ph.D. in their primary field (e.g., microbiology, biochemistry, chemical engineering) with specialization in biotechnology. Because of the interdisciplinary nature of the subject matter, the program has specific course guidelines, laboratory rotations, and seminars. These features ensure that students not only receive a solid education in their core disciplines, but also that they graduate with the cross-disciplinary skills needed to translate basic-science discoveries into technological applications.

The course structure is flexible. Formal course requirements include a minimum of 6 credits in molecular and cellular biology, 3 credits in biochemistry, and 3 credits in computer science. During each term they are enrolled, all students must complete two laboratory rotations and enroll in 16:126:603,604 Topics in Advanced Biotechnology. The laboratory rotation gives students broader exposure to the methods of biotechnology. The topics course, on the other hand, provides students with in-depth exposure to developments in biotechnology and gives them more opportunity to interact with faculty members. Students work closely with a faculty mentor from the participating faculty list on a dissertation topic. The research training focuses on protein production, tissue engineering, drug design and delivery, and biomeolecular engineering. Students in the core curriculum are expected to have a science background that includes one year of college mathematics, one year of biology, three years of chemistry (general, organic, physical), and one year of physics.

Graduate Courses

16:126:603,604. TOPICS IN ADVANCED BIOTECHNOLOGY (1.1)

Oral presentations and discussions of the current literature in biotechnology.

CELL AND DEVELOPMENTAL BIOLOGY 148

Degree Programs Offered: Master of Science, Doctor of Philosophy

Director of Graduate Program: Professor Richard W. Padgett

Nelson Biology Laboratories, Busch Campus (732/445-3430)

Members of the Graduate Faculty

Cory Abate-Shen, Associate Professor of Neuroscience and Cell Biology

UMDNJ-RWJMS/SCABM; Ph.D., Cornell Medical College

Molecular processes that control gene expression in vertebrate development and oncogenesis

Stephen Anderson, Associate Professor of Molecular Biology and Biochemistry, FAS-NB; Ph.D., Harvard

Proteases and protease inhibitors; protein folding; molecular recognition; structural bioinformatics

Brian J. Anisimovich, Assistant Professor of Surgery, UMDNJ-RWJMS; Ph.D., SUNY (Stony Brook)

Regulation of keratinocyte gene expression by retinoids and fatty acids

Bruce S. Babiarz, Associate Professor of Cell Biology and Neurosciences, FAS-NB; Ph.D., Cincinnati

Early mammalian development, implantation; mammalian developmental genetics

Gary Brewer, Associate Professor of Molecular Genetics and Microbiology, UMDNJ-RWJMS; Ph.D., Auburn

Posttranscriptional control of gene expression in disease

Steven Brill, Associate Professor of Molecular Biology and Biochemistry, FAS-NB; Ph.D., SUNY (Stony Brook)

Eukaryotic DNA replication and genome stability

Salvatore J. Caradonna, Associate Professor and Chairperson of the Department of Molecular Biology, UMDNJ-SOM; Ph.D., SUNY (Buffalo)

Molecular biology of human DNA repair; interactions with cell cycle control elements

Kiran K. Chada, Associate Professor of Biochemistry, UMDNJ-RWJMS; Ph.D., Oxford

Developmental gene expression in transgenic mice

Kuang Yu Chen, Professor of Chemistry, FAS-NB; Ph.D., Yale

Biochemistry and function of polypeptides and protein-containing elements in the DNA, cancer biology; transcription factors and cellular senescence

Suzanne Chen, Assistant Professor of Chemical Biology and Pharmacogenomics, CP; Ph.D., Albert Einstein College of Medicine

Transgenic mice predisposed to melanoma development; molecular analysis of adipoocyte differentiation; inducible genes

Xuejiao Chen, Assistant Professor of Genetics, WIM, FAS-NB; Ph.D., Cornell

Molecular genetic analysis of flower development in Arabidopsis

Lori Covey, Assistant Professor of Cell Biology and Neurosciences, FAS-NB; Ph.D., Columbia

Switch recombination in human B lymphocytes in response to T-cell factors

Bill D. Davis, Associate Professor of Cell Biology and Neurosciences, FAS-NB; Ph.D., Purdue

Science education; plant biology

Robin L. Davis, Associate Professor of Cell Biology and Neurosciences, FAS-NB; Ph.D., Stanford

Regeneration and electrophysiology of peripheral auditory neurons

David T. Dembny, Professor of Cell and Molecular Biology, FAS-NB; Ph.D., California Institute of Technology

Molecular biology of cancer, cell signaling and regulation of gene expression; structure and function of osteopontin and tissue inhibitor of metalloproteinases

Emmet A. Dennis, Professor of Cell Biology and Neurosciences, FAS-NB; Ph.D., Connecticut

Parasitology, schistosomiasis pathology

Monica Driscoll, Associate Professor of Molecular Biology and Biochemistry, CABM; Ph.D., Harvard

Molecular genetics of degenerative cell death; mechanical signaling

Isaac Edery, Assistant Professor of Molecular Biology and Biochemistry, FAS-NB/CABM; Ph.D., McGill

Molecular and cellular mechanisms underlying biological clocks

M. David Egger, Professor of Neuroscience and Cell Biology, UMDNJ-RWJMS; Ph.D., Yale

Neuropsychology; neuroanatomy; neurogenetics

Francine B. Essier, Professor of Cell Biology and Neurosciences, FAS-NB; Ph.D., Albert Einstein College of Medicine

Developmental biology; genetics

Allahverdi Farmanfarmaian, Professor of Physiology, FAS-NB; Ph.D., Stanford

Molecular aspects of mammalian reproduction

Bonnie Firestein, Assistant Professor of Cell Biology and Neurosciences, FAS-NB; Ph.D., California (San Diego)

Targeting of neuronal proteins

Dunne Feng, Associate Professor of Cell Biology and Neurosciences, FAS-NB; Ph.D., Princeton

Cell differentiation; proteases and cancer invasion

Ramsey Foyt, Assistant Professor of Surgery, UMDNJ-RWJMS; Ph.D., Toronto

Cancer, cell signaling, cell proliferation, virulence, metastasis, biophysics

Abraham Gabius, Associate Professor of Molecular Biology and Biochemistry, FAS-NB; M.D., Johns Hopkins

Mechanisms of retrotransposon replication; chromosomal rearrangements

Herbert M. Geiler, Professor of Pharmacology and Neurology, UMDNJ-RWJMS; Ph.D., Case Western Reserve

Developmental and cellular neurobiology

Donald Gerecke, Assistant Professor of Pharmacology and Toxicology, CP; Ph.D., Harvard

Molecular biology of lung fibrosis

Bijan K. Ghosh, Professor of Physiology and Biophysics, UMDNJ-RWJMS; Ph.D., Calcutta

Development of subcellular organelles

Marion Gonthier, Assistant Professor of Pharmacology and Toxicology, CP; Ph.D., UMDNJ/Rutgers

Collagen gene regulation during corneal development; regulation and function of E.M.P.R.N.J, a matrix metalloproteinase stimulator, in normal and transformed cells

David Gorski, Assistant Professor of Surgery, UMDNJ-RWJMS; Ph.D., Case Western Reserve

Transmembrane genes in tumor biology; angiogenesis inhibition in tumor therapy

Beatrice Haimovich, Assistant Professor of Surgery, UMDNJ-RWJMS; Ph.D., Pennsylvania

Cell-surface interaction; adhesion receptors mediated signals

Nathan H. Hart, Professor of Cell Biology and Neurosciences, FAS-NB; Ph.D., Harvard

Sperm–egg interactions; egg activation; role of cytoskeleton in early embryogenesis

59
The graduate program in cell and developmental biology is part of a diverse, interactive community of biological scientists working at Rutgers and at the University of Medicine and Dentistry of New Jersey—Robert Wood Johnson Medical School. The graduate program has approximately one hundred faculty members from the two universities. Faculty research spans the fields of molecular, cellular, and developmental biology. Researchers draw upon diverse experimental systems to study such subjects as developmental, human, and molecular genetics; signal transduction and regulation of gene expression; developmental biology; regulation, structure, and function of the cytoskeleton; parasitology; cellular and molecular endocrinology; ultrastructural and molecular analysis of mammalian cells; and neurobiology.

Applicants are expected to have had one year each of undergraduate mathematics, chemistry, and physics and two years of biology-related courses. Those who lack some of these prerequisites may complete them (without graduate credit) after admission to the program. Undergraduate concentrations in biology or other life sciences and research experience are desirable but not necessary. The graduate program in cell and developmental biology offers advanced studies leading to the M.S. and Ph.D. degrees. Classroom instruction combines a core of courses in biochemistry and molecular biology, molecular genetics, cellular biology, and developmental biology, with area courses aimed at a student's specialty. Other graduate-level courses at Rutgers and UMDNJ–RWJMS provide training in such related areas as neurobiology, immunology, bio-statistics, computer science, and systems physiology. The goal of the program is to provide a challenging and rewarding environment in which students can develop fully their research and teaching skills.* While requirements for the Ph.D. students may vary with the area of specialization, all students are expected to complete certain courses during their first two years in the program. This core curriculum includes biochemistry, molecular genetics, cell biology, development biology, and laboratory rotation. For advanced graduate students, the program offers special topic courses in cell and developmental biology. The minimum requirement for the Ph.D. degree is 72 credits. To qualify as a candidate for a Ph.D. degree, a student must pass a written comprehensive examination, make an acceptable oral presentation, and successfully defend a research proposal before a graduate faculty committee. A minimum of one academic year in residence is required. The program has no foreign language requirement.

Students may pursue a master's degree with or without writing a thesis. The requirement for the degree without thesis is 30 credits of course work. This includes a minimum of 1 credit of 16:48:509,510 Advanced Problems in Biology and the acceptance of the student's library or research project by a committee of three program faculty members. The requirements for the M.S. degree with thesis are a minimum of 24 course credits, 6 credits of research, and the satisfactory completion and defense of the thesis. All students must maintain a cumulative grade-point average of 3.0 or better to remain in the program. Teaching assistantships are available for first-year and advanced graduate students. The program also offers fellowships to outstanding applicants. Joint Ph.D. degrees are available in this program. Further information about these may be found in the Degree Programs Available chapter.

Graduate Courses

16:48:503. (F) CELLULAR AND MOLECULAR SIGNALING (3) Molec. Prerequisite General biochemistry. Signal/transduction at the molecular level. Use of newer research techniques emphasized.

16:48:504. (S) DEVELOPMENTAL BIOLOGY (3) Babiarz
Mechanisms responsible for the morphogenetic changes that occur during development of selected vertebrates and invertebrates. The role of intercellular communication in development, including mechanisms of action of receptors and cell-adhesion proteins needed for this process.

*Admission is offered by the consolidated graduate programs in molecular biosciences. For further information, refer to the Molecular Biosciences heading within this chapter.
16:148:507. (F) IMMUNITY TO ANIMAL PARASITES (3) Herman
Various aspects of natural and acquired humoral and cellular immune mechanisms operative in humans and other hosts against protozoan and helminth parasites. The effects of immunosuppression, antigenic variation, and stage-specific immunity in experimental parasitic infections.

16:148:509,510. ADVANCED PROBLEMS IN BIOLOGY (BA,BA)
Required for nonthesis master's degree. Also may be used for independent study. Prerequisite: Permission of graduate director. Meets the needs of individual students.

16:148:514. (F) MOLECULAR BIOLOGY OF CELLS (3)
D'Enhardt. Prerequisites: 01:119:380 and 460, or equivalents Corequisite: Graduate course in biochemistry. Fundamentals of the molecular organization and functions of cells.

16:148:517. CELLULAR AND MOLECULAR MECHANISMS OF DISEASE (3)
Theories on the cellular and molecular mechanisms that underlie the development and progression of human diseases. Cell injury, inflammation, regeneration and repair, neoplasia, immune protection and immune disorders, developmental disorders, vascular diseases, connective tissue disorders.

16:148:530. (S) HUMAN GENETICS (3)

16:148:534. (S) CYTOGENETIC ANALYSIS (4)
Scirra Covers field of eucaryotic chromosome analysis from standpoint of development and application of various techniques to the elucidation of chromosome structure, organization, and function. Examples taken largely from mammalian and human material. Some emphasis on human molecular cytogenetics and the phenotypic manifestations of chromosomal aberrations.

16:148:547,548. CURRENT TOPICS IN ENDOCRINOLOGY (1,1)
Prerequisite: Permission of instructor. Course may be repeated for credit. Biochemical, physiological, and biological aspects of important current topics of endocrine research as reflected in recent journal articles. Topics vary to reflect the state of endocrine research.

16:148:550. (S) ADVANCED DEVELOPMENTAL BIOLOGY (3)

16:148:555. (F) CELL BIOLOGY AND HISTOLOGY (4)
Wilson. Lec. 3 hrs, lab. 3 hrs. Prerequisite Permission of instructor. Study of microscopic structure of cells, tissues, and organs as seen in the light and electron microscopes. Emphasis on correlation of structure and function.

16:148:565. (F) GROSS AND DEVELOPMENTAL ANATOMY (7)
Selden, et al. Lec. 4 hrs, lab. 8 hrs. Prerequisite Permission of instructor. Study of macroscopic structure of the human body by dissection and other methods with reference to functional mechanisms and changes during development and clinical correlations.

16:148:581. (F) IMMUNOGENETICS (3)
Passmore. Prerequisite: Immunology, genetics, or permission of instructor. Examination of the genetic control of antibody structure, immune response, graft rejection, and cell surface antigens. The use of immunology as a tool in genetic research.

16:148:591. (F) IMMUNOLOGY: CELLULAR AND MOLECULAR (3)
Covey. Prerequisite: Basic immunology. Development of humoral and cell mediated immune systems.

16:148:598. SEMINAR IN CELL AND DEVELOPMENTAL BIOLOGY (1)
Student, staff, and guest lectures on current topics in cell and developmental biology.

16:148:600 THROUGH 605. SELECTED TOPICS IN CELL AND DEVELOPMENTAL BIOLOGY (1 EACH)

16:148:610,611. LABORATORY ROTATION (1.5,1.5)
Laboratory research for incoming students.

16:148:652. CURRENT CELL BIOLOGY (3)
Model Analyses of progress in all areas of cell biology.

16:148:701,702. RESEARCH IN BIOLOGY (BA,BA)

CELLULAR AND MOLECULAR PHARMACOLOGY
(See Pharmacology, Cellular and Molecular 718)

CERAMIC AND MATERIALS SCIENCE AND ENGINEERING 150

Degree Programs Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Professor W. Roger Cannon, MGMCRR, 129 Engineering Building, Busch Campus (732/445-4718)

Members of the Graduate Faculty
W. Roger Cannon, Professor of Ceramics and Materials Engineering, SE; Ph.D., Stanford
Mechanical properties; tape casting; sintering; Raman stress measurement
Frederic Cosamdeley, Professor of Ceramics and Materials Engineering, SE; Ph.D., Brown
Synthesis, characterization, and properties of nanomaterials; high-pressure; catalytic processes, especially oxidation
Harriett A. Haber, Associate Professor of Ceramics and Materials Engineering, SE; Ph.D., Rutgers
Structure-property relations; bonding and joining ceramics to metals; failure analysis; chemical mechanical polishing
Richard H. Kearsley, New Jersey Professor of Materials Science and Technology, SE; D.Sc., Birmingham
Synthesis, characterization, and properties of nanomaterials; high-pressure; flame-sprayed nanocoatings
Arnem G. Khachatryan, New Jersey Professor of Materials Science and Technology, SE; Ph.D., Kiev Institute
Theory of phase transformation in metal alloys and ceramics, computer simulation of microstructure evolution
Lisa C. Klein, Professor of Ceramics and Materials Engineering, SE; Ph.D., Massachusetts Institute of Technology
- Solid-gel processing of coatings and monoliths; sol-gel and phosphate glasses; viscosity and transformation kinetics

Richard L. Lehman, Professor of Ceramics and Materials Engineering, SE; Ph.D., Rutgers
- Glass property/composition relationships; raw materials and processing

Jing Li, Associate Professor of Chemistry, FAS-NB; Ph.D., Cornell
- Synthesis and characterization of inorganic solid compounds

Yucheng Lu, Professor of Electrical and Computer Engineering, SE; Ph.D., Colorado State University
- Solid-state electronics

M. John Matthews, Associate Professor of Ceramics and Materials Engineering, SE; Ph.D., Cambridge
- Mechanical properties of optical materials

William Mayo, Professor of Ceramics and Materials Engineering, SE; Ph.D., Rutgers
- High-pressure processing; nanomaterials; X-ray analysis

Ronald A. McCauley, Associate Professor of Ceramics and Materials Engineering, SE; Ph.D., Pennsylvania State University
- Corrosion of ceramics; phase equilibria; thermal analysis methods; luminescence; crystal chemistry; microscopy

Dale E. Niesz, Professor and Director of the Malcolm G. McIntire Center for Ceramics and Composite Materials Research, SE; Ph.D., Ohio State University
- Powder processing; sintering and fabrication; materials thermodynamics

Richard E. Riman, Professor of Ceramics and Materials Engineering, SE; Ph.D., Massachusetts Institute of Technology
- Hydrothermal synthesis; mixedness-modulated solid-state synthesis; reactive atmosphere sol-gel synthesis

Ahmad Safari, Professor of Ceramics and Materials Engineering, SE; Ph.D., Pennsylvania State University
- Preparation, characterization of electroceramic materials for dielectric, piezoelectric, and ferroelectric applications; ferroelectric and superconductor ceramics and thin films

Alvin Salkind, Professor of Biomedical Engineering, SE; D.CHE.; Polytechnic Institute of New York
- Electrochemical systems; batteries

Daniel J. Shatnifield, Professor of Ceramics and Materials Engineering, SE; Ph.D., Rutgers
- Ceramic packaging for electronics; thin film electronics; optical- and electro-optical characterization laboratories

George H. Sugel, Jr., Professor of Ceramics and Materials Engineering, SE; Director of the Fiber Optics Materials Research Program; Ph.D., Georgetown University
- Optical materials; infrared transmitting materials; radiation resistant materials; optical sensors

Thomas Tsakalakos, Professor of Ceramics and Materials Engineering, SE; Ph.D., Northwestern University
- Physical metallurgy; modulated structure materials; multilayered thin-film technology

John T. Wenzel, Professor of Ceramics and Materials Engineering, SE; Ph.D., Chicago
- Laser glasses; fiberization; sol-gel glasses

John Xu, Assistant Professor of Ceramics and Materials Engineering, SE; Ph.D., Pennsylvania State University
- Electrochemical materials

Associate Member of the Graduate Faculty

Edward M. Phillips, Professor of Packaging Science and Engineering, SE; D.CHE.; Polytechnic Institute of New York
- Electrochemical systems; batteries

Thomas Khachaturyan, Professor of Ceramics and Materials Engineering, SE; Ph.D., California Institute of Technology
- Synthesis and characterization of inorganic solid compounds; sintering; and densification of powder preforms

Adjunct Member of the Graduate Faculty

John J. Friel, Ph.D., Pennsylvania State University
- Stereology; structure property relationships; image analysis; X-ray analysis

Programs

Students may pursue M.S. and Ph.D. degrees in ceramic and materials science. In this option, the thesis work emphasizes the fundamental aspects of ceramic-material behavior. Alternatively, students can arrange M.S. and Ph.D. programs in ceramic and materials engineering. Here, the thesis focuses on engineering and developmental aspects of materials. Students with full-time jobs in industry can arrange master's degree programs without a thesis, which they take full time or part time. The curriculum includes business- and industrial-engineering courses.

Areas of specialization in ceramics include the following: fiber optics; structure and properties of glass; relation of microstructure and properties of ceramic materials; sintering mechanisms; rheology of slips; slip casting; preparation and properties of ceramic powders; dielectric materials, including ferroelectric, piezoelectric, and ferromagnetic ceramics; sol-gel processing; thin films; high-temperature materials; strength, toughness, and impact resistance; ceramic-metal systems and composites.

The facilities of the program include approximately 25,000 square feet of well-equipped laboratories. Students will have access to a field-emission scanning electron microscope; a high-resolution TEM Raman microscope; FTIR; a Thermoanalyzer; inductively coupled plasma (ICP) unit; X-ray diffraction equipment; X-ray photoelectron spectroscopy equipment; a hot isostatic press; a pressure caster; mechanical testing machines; and SEMs.

The focus of much of the research in ceramics is on the science and technology of synthesizing advanced ceramics materials. Processing ceramics from powders includes synthesis and characterization of powders, green forming (slip casting, tape casting, rapid prototype methods, injection molding, and spray drying/powder compaction), and densification of powder preforms (sintering, hot pressing, hot isostatic pressing, and preceramic polymer pyrolysis). In addition, ceramics are synthesized directly from sol-gels and used for coatings, filters, and battery components. Ceramics may be characterized mechanically, electrically, and thermally. Students will study surfaces using scanning tunneling microscopes and atomic force microscopes and by employing computer simulations using molecular dynamics. Ceramic composites are being studied to develop stronger, tougher ceramics.

Ceramics with nanocrystalline microstructures are being studied. Dielectric, ferroelectric, piezoelectric, and other active/functional materials are being developed for electronic substrates, capacitors, actuators, sensors, and smart/intelligent materials.

The fiber-optic material research program examines the synthesis of optical materials and the fabrication and characterization of optical waveguides. It also examines numerous fiber-device applications, including fiber lasers and amplifiers, optical sensors, infrared and ultraviolet transmitting fibers, and fibers for optical power delivery. The program provides extensive experimental facilities, including laboratories for preparing optical-quality oxide and non-oxide glasses, chemical vapor-deposition equipment, commercial drawing towers, and optical spectrometers. Students also will have access to fiber-optic analyzers, lasers, mechanical-testing laboratories, and optical- and electro-optical characterization laboratories.

A prospective candidate must spend a minimum of one academic year in residence as a full-time student taking courses or pursuing research.

Academic and research training in packaging science and engineering is available in this program. For further information, see the packaging science and engineering courses and program description in this section under Packaging Science and Engineering.

Graduate Courses

16:150:501. (F) Advanced Powder Processing I (3)
- Riman. Prerequisite: 16:150:531.
- Examination and comparison of classical and high-technology, ceramic-processing systems using chemical thermodynamics and kinetics; understanding the approaches for chemically synthesizing ceramic material, coprecipitation, sol-gel processing, hydrothermal synthesis, plasma, and CVD.

16:150:502. (F) Advanced Powder Processing II (3)
- Danforth
- Microstructure development; powder; consolidation behavior; and sintering process, including thermodynamics compared with kinetics, and solid state compared with liquid phase or reactive densification.

16:150:503. (F) Theory of Solid-State Materials (3)
- Khachaturyan
- Basic principles of classical and quantum mechanics, as well as the experimental basis for introduction of quantum postulates. Application of these concepts to various physical phenomena to develop an understanding of solid-state material behavior.
16:150:504. (F) STRUCTURAL DEFECTS IN SOLIDS (3)
Cosandey. Prerequisite: 16:150:551 or equivalent. Atomistic aspects of defects in solids, including point defects, dislocations, and grain boundaries; nature of partial dislocations; grain boundary-dislocation interactions; grain boundary migration and segregation phenomena; nature of interfaces.

16:150:505. (F) ADVANCED GLASS I (3)
Wenzel
Advanced topics in glass science and engineering. Major emphasis on the structure and transport properties of oxide and selected nonoxide glasses. Detailed discussion of glass structure, structural modeling, and the relationship between structure and properties.

16:150:506. (S) ADVANCED GLASS II (3)
Sigel
Correlation of the fundamental optical properties of glasses to their structure and bonding. Intrinsic absorption and scattering, color, luminescence, photochromism, laser action, and nonlinear effects in glasses.

16:150:508. ADVANCED CERAMIC-METAL SYSTEMS (3)
Greenhut
Physical and chemical principles of interactions between metals and ceramic materials. Solid, liquid, and interfacial energies. The effect of microstructure in cermet bodies and its relationship to the exhibited properties. Practical systems such as oxide base cermets, carbides, and composite materials.

16:150:509. (F) ADVANCED ELECTRONIC CERAMICS (3)
Safari. Prerequisite: 14:154:421. Electrical, optical, and magnetic properties of ceramic materials based on their electronic structure, defect chemistry, and transport processes.

16:150:510. (S) PHYSICAL PROPERTIES OF CRYSTALS (3)
Safari
Physical properties of crystals in tensor notation. What tensors are and how they are used. Common mathematical basis of tensor properties; thermodynamic relations among them.

16:150:511. THERMAL ANALYSIS OF CERAMIC MATERIALS (3)
McCaulay. Course offered in alternate years. Description of equipment used for differential thermal analysis (DTA), differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA). Calibration techniques. Interpretation of results. Relationships among sample thermal properties, particle size, sample size, crucible materials, heating rates, and atmospheres.

16:150:512. (S) ADVANCED CERAMIC MICROSCOPY (3)
McCaulay. Prerequisite: 14:150:407. Use of optical microscopy for the study of ceramic microstructures. Advanced techniques, including image analysis for studying both polished sections and thin sections. Techniques in photomicroscopy with application to a particular problem of interest to each student.

16:150:513. (F) MECHANICAL BEHAVIOR OF CERAMIC MATERIALS I (3)
Cannon
Mechanical behavior and properties of oxide and nonoxide ceramics, emphasizing fracture, microstructure, and environment. Differences in plastic behavior of ceramics related to creep, wear resistance, and hardness.

16:150:514. (S) MECHANICAL BEHAVIOR OF CERAMIC MATERIALS II (3)
Matthewson. Prerequisite: 16:150:513. In-depth usage of advanced topics concerned with mechanical properties of ceramic materials, including thin films, fibers, and stress effects on properties.

16:150:515. (F) PROPERTIES OF OPTICAL CERAMICS (3)
Harrington. Prerequisites: 16:150:505, 506. Waveguide propagation starting with Maxwell's equations, slab and cylindrical waveguides, active waveguides, fiber laser materials and configurations, infrared fiber waveguides, optical power delivery, fiber optic sensors.

16:150:516. (S) MOLECULAR BEHAVIOR OF GLASSES (3)
Prerequisites: Glass Engineering or equivalent. Atomic structure and properties of noncrystalline solids. Molecular mechanisms of macroscopic behavior. Topics include nature of the glass transition, structure/composition relations in oxide glasses, diffusion, and glass surfaces and interfaces.

16:150:517. (F) ADVANCED REFRACTORIES (3)
McCaulay
Role of the phase equilibria and microstructure in the corrosion of refractories. Stability and behavior in selected environments, including ferrous and nonferrous metals, glass, and advanced energy systems.

16:150:520. (S) X-RAY AND SPECTROGRAPHIC METHODS IN CERAMICS (3)

16:150:521. (S) X-RAY AND SPECTROSCOPIC METHODS LABORATORY (1)
Greenhut, Mayo. Corequisite: 16:150:520. Qualitative and quantitative chemical and phase analysis by X-ray fluorescence and diffraction methods, automated diffractometry, microanalysis and image analysis, strain and particle size determination, and sample preparation techniques, including random sampling.

16:150:522. (F) SCANNING ELECTRON MICROSCOPY AND X-RAY MICROANALYSIS (3)
Greenhut
Principles, operation, and application of scanning electron microscopy and X-ray microanalysis: electron optics; instrumental and signal resolution; qualitative and quantitative chemical microanalysis; image processing; signal and metallic samples for ceramic, organic, and metallic samples.

16:150:523. (F) SCANNING ELECTRON MICROSCOPY AND X-RAY MICROANALYSIS LABORATORY (1)

16:150:524. (F) ADVANCED CERAMIC CHARACTERIZATION (3)
Cosandey. Prerequisites: 14:150:309, 359. Instrumental techniques for characterization of ceramics and the study of processing and properties, including absorption and emission spectroscopy, FTIR and Raman spectroscopy, secondary ion mass spectrometry, XPS scanning Auger microscopy, neutron scattering.

16:150:525. (F) PROPERTIES OF CERAMIC SURFACES (3)
Garofalini
Surface structure of ceramic materials, absorption, surface diffusion, thin films.

16:150:526. (S) CRYSTAL CHEMISTRY OF CERAMIC MATERIALS (3)
McCaulay
Relationship of structure to composition, temperature, and pressure. Importance of ionic radii, charge, and polarizability in determining structure. Study of families of compounds, compound formation, and phase transitions.
Emphasis on special thermodynamic considerations for ceramics: chemical thermodynamics; solution thermodynamics; and thermodynamics related to phase diagrams, surfaces, and point defects.

Electrochemistry and electrochemical materials science science of advanced batteries, fuel cells, and sensors for industrial, environmental, and biomedical applications. Electrochemical methods and techniques.

Colloid or surface chemistry in solvent-based systems; characterization of colloidal systems using direct and indirect methods. Thermodynamic treatments of surfaces, adsorption, and charged interfaces. Structural models incorporating neutral and charged adsorbrates; various means of stabilizing and destabilizing colloids.

Crystal structure of metals and nature of bonding; free energy and phase diagrams; defect structure and relationship to mechanical properties; phase transformations and hardening mechanisms; recovery and recrystallization processes.

Crystal structure of metals and nature of bonding; free energy and phase diagrams; defect structure and relationship to mechanical properties; phase transformations and hardening mechanisms; recovery and recrystallization processes.

Response of metals to applied forces from both macroscopic and microscopic points of view. Crystal defect structures as they relate to plastic flow and the onset of fracture. Case studies of metal deformation and fracture, including fatigue, creep, environmentally assisted fracture, and wear.

Response of metals to applied forces from both macroscopic and microscopic points of view. Crystal defect structures as they relate to plastic flow and the onset of fracture. Case studies of metal deformation and fracture, including fatigue, creep, environmentally assisted fracture, and wear.

Response of metals to applied forces from both macroscopic and microscopic points of view. Crystal defect structures as they relate to plastic flow and the onset of fracture. Case studies of metal deformation and fracture, including fatigue, creep, environmentally assisted fracture, and wear.

Use of instrumentation in the modern analysis laboratory, such as X-ray diffractometers, creep machines, torsional pendulum. Computer-controlled data acquisition, noise reduction, and curve-fitting methods.

Principles of atomic arrangements; X-ray diffraction by real crystals and elucidation of structure-sensitive properties; identification of unknown substances, phase analysis, X-ray topographic methods, and special methods to characterize defect structures of materials.

Application of Fourier transform and convolution methods to diffraction of amorphous and crystalline materials; elucidation of lattice defects and correlation to properties of materials, dynamical theory, and application in materials science.

Nature of the electron microscope; techniques of specimen preparation; theory of electron diffraction; diffraction patterns; application to crystal structure; crystal morphology and defects in various engineering materials.

Techniques of electron microscopy and application to structure and defect structure of materials.

High-resolution imaging, Convergent-beam diffraction. Scanning transmission and analytical microscopy. Description and application of specialized microscopy techniques to materials problems, including metals, ceramics, and polymers.

Theory and practice of stereological aspects of quantitative analysis of microstructures observed in alloy, ceramic, polymeric, histological, and other materials. Determination of three-dimensional properties of microstructures by means of measurements of two-dimensional sections, transmission, or scanning electron micrographs.

Materials science, engineering, design, development and testing, packaging machinery, package production, distribution, marketing and resource utilization.

State and federal regulation of packaging and labeling for consumer and environmental protection. Regulations for engineers and scientists to design and fabricate legal containers. Forecasting and aiding in development of future trends in regulatory action.

Interrelationship between machinery and materials; package-production lines; principles of machine design and selection and economics of choice of alternatives.

Materials and design problems from point of view of chemical, physical, and engineering behavior of entire system. Emphasis on properties of packaging materials and relation of those properties to structure and performance.

Seminar in packaging

Principles and practices used in the characterization and evaluation of the engineering properties of packaging materials and packages. Gas and vapor permeation of materials and packages; physical properties of materials and packages; package dynamics.

Special problems in packaging

16:150:596. ADVANCED TOPICS IN MATERIALS (3)
Khachatryan. Pre or corequisites: 16:150:551,552 or equivalent.
Diffusional transformations in crystalline materials. Ordering.
Symmetry and long-range order. Symmetry and thermodynamics.
Nonstoichiometry and ordering in ceramic systems. Decomposition
in ceramic and metal systems. Diffusional kinetics. Elementary
atomic processes in diffusion. Diffusionless (displacing) transforma-
tions. Crystallography of crystal lattice rearrangement. Crystal
lattice coherency. Habit plane and orientation relationships. Orien-
tation relations. Shape Memory Effect. Ferroelectric and ferroelastic
transitions. Striction. Transformation-induced strain and strain-
accommodating structures. Applications to ferroelectric and ferroelastic
systems and to metal alloys.

16:150:597,598. (F,S) CASE STUDIES IN MANUFACTURING
CERAMICS (3,3)
N. Eisen
Students work in groups to research problems and present reports.
Students solve an actual industrial manufacturing problem in
cooperation with a local industrial company.

16:150:601,602. CERAMICS AND MATERIALS SEMINAR (1,1)
Cannon
Current areas of research studied and discussed.

16:150:603,604. (F,S) SPECIAL PROBLEMS IN CERAMICS AND
MATERIALS SCIENCE (BA,BA)

16:150:701,702. RESEARCH IN CERAMICS AND MATERIALS (BA,BA)

CHEMICAL AND BIOCHEMICAL ENGINEERING 155

Degree Programs Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Professor Henrik Pedersen,
Engineering Building C005, Busch Campus (732/445-2568)

Members of the Graduate Faculty

Fred R. Bernath, Associate Professor of Chemical and Biochemical Engineering, SE;
Ph.D., Rutgers
Biomedical engineering: transport phenomena

Helen M. Boettner, Associate Professor of Chemical and Biochemical Engineering,
SE; Ph.D., Pennsylvania
Neurobiology; cell motility; biomedical engineering

Yee C. Chiew, Professor of Chemical and Biochemical Engineering, SE;
Ph.D., Pennsylvania
Statistical thermodynamics

Alikis Constantinescu, Chair and Professor of Chemical and Biochemical Engineering,
SE; D.Sc., Columbia
Biochemical engineering: modeling of fermentation processes

Peter R. Couchman, Professor of Chemical and Biochemical Engineering, SE;
Ph.D., Virginia
Polymer theory, behavior of miscible systems, thermodynamics, polymers
at interfaces

Alberto M. Cusinetti, Associate Professor of Mechanical and Aerospace Engineering,
SE; Ph.D., Brown
Powder mechanics; micromechanics; computer methods

Burton Davidson, Professor of Chemical and Biochemical Engineering, SE;
Ph.D., Northwestern
Alternate fuels control theory; safety systems engineering

Panagiotis G. Georgopoulos, Associate Professor of Environmental and
Community Medicine, UMDNJ-RWJMS; Ph.D., California Institute of
Technology
Environmental chemical engineering: turbulent transport; reactive flows

Benjamin J. Glasser, Assistant Professor of Chemical and Biochemical Engineering,
SE; Ph.D., Princeton
Multiphase flows and reactors; granular materials and particulate suspensions,
nonlinear dynamics of transport processes

Masanori Hara, Professor of Chemical and Biochemical Engineering, SE;
Ph.D., Kyoto
Polymer physics; structure-property relationships of ion-containing polymers
in solid and solution

Marianthi G. Ierapetritou, Assistant Professor of Chemical and Biochemical
Engineering, SE; Ph.D., Imperial College
Process systems engineering: process design, planning and scheduling
uncertainty and environmental considerations; nonlinear and mixed
integer optimization

Johannes G. Khinast, Assistant Professor of Chemical and Biochemical
Engineering, SE; Ph.D., Graz
Reaction and environmental engineering: reactive flows; numerical analysis
of large dynamical systems

Michael T. Klein, Dean and Board of Governors Professor of Engineering, SE;
S.C., Massachusetts Institute of Technology
Fluid dynamics; reaction engineering; automated kinetic modeling
hydrocarbon conversion; reactions in supercritical fluids

Joachim B. Kuhn, Professor of Chemistry, FAS-NB; Ph.D., Weizmann Institute
of Science
Biotechnology; bioorganic chemistry; new methods for drug delivery

David S. Kossos, Professor of Chemical and Biochemical Engineering, SE;
Ph.D., Rutgers
Hazardous waste control; environmental engineering

Prabhjot V. Monga, Associate Professor of Chemical and Biochemical Engineering,
SE; Ph.D., Minnesota
Bioengineering and microarchitectures of polymeric tissue analogs; cell-biomaterial
interactions tissue engineering of liver, skin, and blood vessels; fluid flow and
"cellular stress engineering"; quantitative 3-D reconstructive confocal microscopy

Gaetano T. Monteleone, Professor of Molecular Biology and Biochemistry,
FAS-NB; Ph.D., Cornell
Nuclear magnetic resonance studies of proteins; protein molecular design;
mechanisms of protein folding

Fernando Muscio, Professor of Chemical and Biochemical Engineering, SE;
Ph.D., Massachusetts (Amherst)
Molecular dynamics of chain surfactants at the air/water interface

Balaji Narasimhan, Assistant Professor of Chemical and Biochemical Engineering,
SE; Ph.D., Purdue
Transport phenomena in polymers; polymer dynamics

Brian A. Newman, Professor of Chemical and Biochemical Engineering, SE;
Ph.D., Bristol
Structure and morphology of electroactive polymers; X-ray diffraction studies
of polymers; high-pressure polymer physics

Henrik Pedersen, Professor of Chemical and Biochemical Engineering, SE;
Ph.D., Yale
Biomedical engineering; reactor design; plant cell culture

Richard E. Rieman, Professor of Ceramic Science and Engineering, SE; Ph.D.,
Massachusetts Institute of Technology
Hydrothermal synthesis, microencapsulation, solid-state synthesis,
mixedness, reactive sol-gel halide synthesis; solution thermodynamics;
crystallization, granulation

Charles M. Roth, Assistant Professor of Chemical and Biochemical Engineering,
SE; Ph.D., Delaware
Molecular bioengineering; gene-based technologies; cell systems engineering

Alvin K. Salkind, Professor of Surgery, UMDNJ-RWJMS; D.Ch.E., Polytechnic
Institute of New York
Electrochemical engineering: energy; metal recovery

Jerry I. Scheinbeim, Professor of Chemical and Biochemical Engineering, SE;
Ph.D., Pittsburgh
Polymer electrolyte processing, structure-electroactive properties relationships in
electroactive polymeric materials; ferroelectric, piezoelectric, pyroelectric,
dielectric, and electroactive properties of polymers

Kathryn E. Uhrlisch, Assistant Professor of Chemistry, FAS-NB/SE; Ph.D., Cornell
Polymer design, synthesis, and characterization; microscopy

Shaw S. Wang, Professor of Chemical and Biochemical Engineering, SE;
Ph.D., Rutgers
Biomedical engineering; food science and technology

Martin L. Yarmush, Visiting Professor of Chemical and Biochemical Engineering,
SE; Ph.D., Rockefeller
Applied immunology; biosensorics; artificial organs and tissue engineering

Associate Members of the Graduate Faculty

Robert Cowan, Assistant Professor of Environmental Science, CC; Ph.D.,
SUNY (Buffalo)
Environmental engineering; bioremediation; bioregenerative life support

William Cramb, Associate Professor of Biomedical Engineering, SE;
Ph.D., Northwestern
Cardiac and neural electrophysiology

Carlos B. Rosas, Distinguished Visiting Professor and Administrative Director,
Pharmaceutical Engineering Program; M.E., Stevens
Fine chemicals, pharmaceuticals, and biologicals

Troy Shinbrot, Assistant Research Professor of Chemical and Biochemical
Engineering, SE; Ph.D., Maryland
Nonlinear dynamics; mixing, control and granular flow

Silvina Tomassone, Assistant Professor of Chemical and Biochemical Engineering,
SE; Ph.D., Northeastern
Molecular dynamics of chain surfactants at the air-water interface
Programs

The graduate program in chemical and biochemical engineering has three major elements: engineering science, applied chemistry, and biochemical engineering. Engineering science includes the transport processes, with an emphasis on mass transfer, thermodynamics, and applied mathematics. Applied chemistry encompasses surface chemistry, applied chemical kinetics, catalysis, synthesis, and properties of polymers, semipermeable membranes, and electropho-chemistry. Biochemical engineering deals with microbial and enzyme technology, fermentations, applied biochemical kinetics and catalysis, biological separations, and applied molecular biology.

The program combines academic instruction with practical application by stressing student projects. It encourages students to be creative and to show originality in applying basic and advanced chemical- and biochemical-engineering principles to solve research and design problems. Program participants develop practical applications for industrial processing and for improving environmental quality. At the same time, they gain a better understanding of chemical and biochemical reactions. Research efforts focus on advancing basic scientific theories and developing useful applications. Master's degree candidates may elect a thesis or nonthesis option. The thesis option consists of a minimum of 30 credits—24 course credits and 6 credits for a thesis on a research or design problem. In the nonthesis option, a candidate must complete 30 course credits and submit a critical essay. The nonthesis option is suited to the student who has extensive research experience or full-time professional responsibilities in industry. The program for the Ph.D. normally consists of a minimum of 30 credits of course work and 24 to 42 credits of research beyond the B.S. degree. The total number of credits required is 72. The course work for the Ph.D. and M.S. degrees includes the following core courses: chemical-engineering analysis; advanced transport phenomena I and II; advanced chemical-engineering thermodynamics; and kinetics, catalysis, and reactor design. The Master of Philosophy degree is available to doctoral candidates. The doctoral qualifying examination, given each year, stresses fundamentals of chemical engineering and advancements in the profession as reflected in the current graduate instructional program.

Before they complete the program, all students must give an oral presentation on their research or area of interest. There is no language or residency requirement. Students and residents in the program are involved in a broad range of research areas. Research in biochemical engineering includes such topics as enzyme and microbial engineering, biocomponent transport theory, plant and insect cell culture, imaging and biosensing, mammalian cell culture, and biomedical engineering. Chemical environmental problems involve the use of basic chemical-engineering principles such as mass, momentum, and energy balances; reactor theory; and system simulation to solve problems of surface-water and groundwater quality; advanced biological and physiochemical treatment systems; solid-waste management; incineration; and hazardous substance evaluation and disposal. Pharmaceutical-engineering research focuses on such topics as solids mixing, granular materials and particulate sus- pensions, powder processing, and crystallization. Alternate-fuels research includes enhanced alcohol fermentation and electrochemical engineering, with an emphasis on battery-failure analysis. Liquid-liquid extraction, supercritical extraction processes, and flow simulation in mixing processes are examples of mass transfer applications. Work in statistical thermodynamics is an option. Graduate assistantships and fellowships are available for both first-year and advanced graduate students. Students participating in the research program on a sponsored basis receive a stipend for either a ten-month or a twelve-month period and have their tuition remitted. Support usually is associated with sponsoring grants or contracts, and specific information on available projects is provided by the graduate director. It is common for an exchange of information on assistantships or fellowships to occur during consideration of admission when program officials try to identify students' interests.

Graduate Courses

16:155:501. (F) Advanced Transport Phenomena I (3)
Prerequisite: Undergraduate transport phenomena.

16:155:502. (S) Advanced Transport Phenomena II (3)
Prerequisite: Permission of instructor.
Energy balances derived from first and second law approaches to open systems, with reaction. Conduction in fluids and solids, both steady and unsteady examples. Convection in laminar- and turbulent-flow systems. Diffusion and its treatment in stagnant and flowing media. Two-phase systems, coupled reaction and mass transfer. Interphase transport.

16:155:503. (F) Advanced Transport Phenomena III (3)
Advanced topics in momentum, heat, and mass transfer. Special emphasis on computational techniques.

16:155:504. (S) Mixing: Theory and Applications (3)
Prerequisite: Undergraduate fluid mechanics.
Theory of mixing processes in laminar and turbulent flows. Practical aspects of mixing processes (equipment selection, design, scale-up) used in industrial operations.

16:155:507. (F) Analytical Methods in Chemical and Biochemical Engineering (3)
Prerequisites: Undergraduate differential and integral calculus and differential equations or permission of the graduate director.
Analytical solutions to deterministic mathematical models encountered in chemical and biochemical engineering, including environmental and safety systems. Emphasis is on purpose, philosophy, classification, development, and analytical solutions of models occurring in transport phenomena, thermochemical, and reactor systems.

16:155:508. (F) Chemical Engineering Analysis (3)
Prerequisite: Undergraduate or graduate degree in chemical engineering or in the biological or physical sciences.

16:155:511. (F) Advanced Chemical Engineering Thermodynamics (3)
Prerequisite: Undergraduate or graduate degree in engineering or chemistry.
Basic principles of classical chemical thermodynamics. Chemical and physical equilibria and their relationships in simple and reactive systems. Estimation and correlation of thermodynamic functions, applications of thermodynamic principles to transport and rate processes. Irreversible and statistical thermodynamic topics also introduced.

16:155:512. Advanced Chemical Engineering Molecular Thermodynamics (3)
Prerequisite: 16:155:511 or equivalent.
Statistical ensembles; ideal and nonideal gases; liquids; distribution function theories; Ornstein-Zernike equation; computer simulation methods; perturbation theories; engineering semiempirical equa- tions of state; applications to chemical-engineering systems.
16:155:514. (S) KIN ETICS, CAT ALYSIS, AND REACT OR DESIGN (3)
Prerequisite: 16:155:501 and 970, or equivalent.
Principles of applied chemical kinetics, reaction mechanisms and rate laws, and engineering design of reactor vessels. Applications to homogeneous and heterogeneous process reaction systems with internal, transphase, and external mass transfer. Noncatalytic gas-solid reaction and gas-liquid absorption with reaction. Micromixing and macromixing in reactor systems.

16:155:517. ADVANCED PROCESS CONTROL (3)
Prerequisite: Process control or permission of instructor.
Review of analysis and design of feedback-control systems.

16:155:518. (S) PROCESS SYSTEMS ENGINEERING (3)
Prerequisite: Undergraduate engineering design.

16:155:531. (F) BIOCHEMICAL ENGINEERING (3)
Prerequisites: Degree or option in biochemical engineering, or 01 or 11:115:301 and 01:119:390, or equivalent.
Integration of the principles of chemical engineering, biochemical, and microbiology. Development and application of biochemical engineering principles. Analysis of biochemical and microbial reactions.

16:155:532. (F) TOPICS IN BIOCHEMICAL ENGINEERING (3)
Prerequisite: 16:155:531.
Advanced course devoted to current topics of interest in biochemical and enzyme engineering. Topics include production, isolation, and purification of enzymes; downstream processing; design and analysis of bioreactors; bioprocess economics; modeling, optimization, and scale-up of biochemical systems. Content and format may vary from year to year.

16:155:533. (S) BIOSEPARATIONS (3)
Prerequisite: Permission of instructor.
Fundamental problems of separation processes important to the recovery of products from biological processes. Topics include membrane filtration centrifugation, chromatography, extraction, electrophoretic methods. Emphasis on protein separations.

16:155:534. (S) ENZYME ENGINEERING (3)
Prerequisite: Undergraduate or graduate degree in chemical or biochemical engineering or in the biological sciences.
Application of biochemical-engineering principles to enzyme technology. Enzyme structure and function, biochemical and biophysical properties, enzyme stability, mathematical models for inactivation. Design and analysis of enzyme and fixed microbial-cell reactors. Use of enzymes in industrial, environmental, and medical applications. Case studies of commercial enzyme processes.

16:155:542. CHEMICAL PROCESSING OF DRUGS AND FINE CHEMICALS (3)
Chemical process operations and engineering methods used in the development, scale-up, and manufacture of drugs and fine chemicals; design and regulatory compliance methods for batch multiproduct plants.

16:155:543. INDUSTRIAL CHEMISTRY OF DRUGS AND FINE CHEMICALS (3)
Chemical process development, scale-up, and regulatory environment of drugs and fine chemicals; strategies and technologies for the synthesis and semisynthesis of drugs. Transition from the bench to the FDA-approved plant.

16:155:548. ADVANCED TOPICS IN PHARMACEUTICAL ENGINEERING (3)
Thermochemical process safety; physiochemical methods at the bulk/dosage form interface; and surface chemistry of crystallization, extraction, and adsorption.

16:155:551. (F) POLYMER SCIENCE AND ENGINEERING I (3)
Prerequisite: 16:155:551.
Physical and chemical structure of polymers; morphology of polymer crystals; microscopic texture. Mechanical properties; influence of orientation; effects of temperature and environment; engineering applications.

16:155:552. POLYMER SCIENCE AND ENGINEERING II (3)
Prerequisite: 16:155:551.
Emphasis on a modern treatment of polymers, including statistical mechanics scaling concepts and polymer properties and characterization.

16:155:553. POLYMER SCIENCE AND ENGINEERING LABORATORY (1)
Prerequisite: 16:155:551.
Basic structure-property relationships of polymeric materials in their liquid, glassy, and crystalline states, including synthesis, molecular weight distribution, morphology, and thermal and mechanical properties.

16:155:554. POLYMER PROCESSING (3)
Prerequisite: 16:155:551,552.
Extrusion, transfer, and compression molding; injection molding, thermoforming, and blow molding; thermostat, thermoplastics, and elastomers. Additives and fillers, coatings, laminates, mold designs, heat sealing, and orientation in films and fibers.

16:155:555. POLYMER PHYSICS (3)
Prerequisite: 16:155:551,552.
Introduction to physics of high polymers and their properties in the solid state; discussion of dielectric, mechanical, and nuclear magnetic resonance phenomena and application to relaxation behavior; theories of rubber elasticity and viscoelasticity; yield and fracture behavior.

16:155:556. POLYMER RHEOLOGY (3)
Prerequisite: 16:155:551,552.
Introduction to viscosity and rheological phenomena in high polymers; the relation of these to molecular parameters and their applications in polymer physics, polymer engineering, and polymer processing.

16:155:557. ADVANCED POLYMER PHYSICS (3)
Prerequisite: 16:155:554,555.
Theory of thermoelastic behavior of rubbers, calculations of surface tension for single and multicomponent systems, Gibbs-DiMarzio theory of glass transitions, effect of pressure on transitions, relaxations, viscoelastic behavior of homopolymer blends, diffusion, viscosity.

16:155:558. VIBRATIONAL SPECTROSCOPY OF POLYMERS (3)
Prerequisite: 16:155:551,552.

16:155:559. SCATTERING METHODS IN POLYMER SCIENCE (3)
Prerequisite: 16:155:551,552.
Basic scattering theory and its application in studying polymers in solution and solid state: static and dynamic light scattering, small-angle X-ray scattering, and small-angle neutron scattering.
16:155:561. APPLIED SURFACE CHEMISTRY (3)
Prerequisite Undergraduate or graduate degree in chemical engineering or in the biological or physical sciences.
Phenomena and processes relevant to chemical engineering characterized by large interfacial area relative to phase volume. Fundamental principles of surface chemistry and physics, such as interfacial tension and pressure. Study of colloidal state and colloidal particles. Theories of electrochemical double layer and stability of suspensions. Application of theory to important processes such as foaming, emulsification, detergency, adsorption, oleo flotation, and rate processes controlled at a phase interface, including nucleation and crystallization.

16:155:562. SYNTHESIS AND PROPERTIES OF SOLID POLYMERS (3)
Prerequisite Undergraduate or graduate degree in chemical engineering or in the biological or physical sciences.
Advanced treatment of polymer processes and resultant polymer properties from the interrelated points of view of reaction engineering (including catalytic routes) and materials science (structure-property relationships) appropriate to the modern generation of engineering polymers.

16:155:563. (F) SEMIPERMEABLE MEMBRANES (3)
Prerequisite Undergraduate or graduate degree in chemical engineering or in the biological or physical sciences.
Applied physicochemical principles that underlie the frontier applications of barrier diffusion.

16:155:572,573. ELECTROCHEMICAL ENGINEERING I,II (3,3)
Prerequisite Undergraduate or graduate degree in chemical engineering or chemistry.
Introduction to the principles and applications of electrochemical engineering properties of electrodes. Electrochemical engineering, energy conversion, and storage thermodynamics and design features in primary and secondary fuel cells, and in metallic corrosion, electroforming, and electrolysis.

16:155:574. SOLVENT EXTRACTION ENGINEERING (3)
Prerequisite Undergraduate or graduate degree in chemical engineering or chemistry.
Advanced treatment of solvent extraction operations, including both practical design approaches and a systematic development based on the fundamental aspects of mass transfer, mass transfer with reaction, and dispersion modeling in various contractor configurations.

16:155:575. ELECTROCHEMICAL ENGINEERING TECHNIQUES (3)
Lec. 2 hrs. lab. 3 hrs. Prerequisites: 16:155:572,573.
Lecture-laboratory course providing theoretical and practical experience in techniques of studying charge-transfer and mass-transfer controlled reactions in corrosion, electroplating, battery energy conversion, the production of chemicals, and other electrochemical applications.

16:155:582. FUNDAMENTALS OF CONTAMINANT MASS TRANSFER (3)
Prerequisite Undergraduate degree in chemical, biochemical, or environmental engineering, permission of instructor.
Theory and mathematical modeling of thermodynamics, reaction, and diffusive and convective mass transfer for inorganic and organic contaminants in porous media, emphasizing behavior in sediments and saturated soils.

16:155:588,589. (F) SPECIAL PROBLEMS IN CHEMICAL ENVIRONMENTAL ENGINEERING (3,3)
Prerequisite 16:155:501,502, or equivalent.
Natural water bodies described by the techniques developed for chemical and biochemical reactor analysis. Physical transport, interfacial exchanges, and biochemical reactions. Examples drawn from reaeration processes, surface water temperature and energy balances, and stochastic variations in stream discharge.

16:155:601,602. CHEMICAL ENGINEERING GRADUATE SEMINAR (N1,N1)
Graduate students make a formal presentation on their independent study and/or research. Outside speakers also are invited.

16:155:603,604. TOPICS IN ADVANCED BIOENGINEERING (1,1)
Prerequisite Permission of instructor.
Oral presentations and discussions of current literature in biotechnology. Topics selected from the following: tissue, genetic, and protein engineering; growth control; receptor signaling; immunotechnology; neurotechnology; and others.

16:155:701,702. RESEARCH IN CHEMICAL AND BIOCHEMICAL ENGINEERING (BA,BA)

CHEMISTRY 160

Degree Programs Offered: Master of Science, Master of Science for Teachers, Doctor of Philosophy

Director of Graduate Program: Professor Roger A. Jones, Wright-Rieman Laboratories, Busch Campus (732/445-3223)
Vice Chairperson for Graduate Studies: Professor Martha A. Cotter, Wright-Rieman Laboratories, Busch Campus (732/445-2259)

Members of the Graduate Faculty

Stephen Anderson, Associate Professor of Molecular Biology and Biochemistry, FAS-NB; Ph.D., Harvard
Lionel Goodman, Professor of Chemistry, FAS-C; Ph.D., Pennsylvania Synthesis, properties of conducting polymers, quartz crystal microbalance study of electroactive surfaces
George A. Arbuckle-Keil, Professor of Chemistry, FAS-C; Ph.D., Cornell
Synthetic studies of human viruses and viral proteins
Jean S. Baum, Professor of Chemistry, FAS-NB; Ph.D., California (Berkeley)
Structural studies of proteins and nucleic acids in chemical and biological systems
Helen M. Berman, Professor of Chemistry, FAS-NB; Ph.D., Pittsburgh
X-ray crystallography and molecular modeling studies of biological molecules
Robert S. Bokevs, Professor of Chemistry, FAS-NB; Ph.D., Columbia
Chemical education
John G. Brenneman, Professor of Chemistry, FAS-NB; Ph.D., California (Berkeley)
Solid-state inorganic chemistry; thin films; nanostructures
Kenneth J. Breslauer, Professor of Chemistry, FAS-NB; Ph.D., Yale
Biopolymer structures and drug-nucleic acid interactions
Kieron Burke, Associate Professor of Chemistry, FAS-NB; Ph.D., California (Santa Barbara)
Density functional theory in chemistry and physics
Edward Castner, Jr., Associate Professor of Chemistry, FAS-NB; Ph.D., Chicago
Photoinduced reaction dynamics in solution; intramolecular interactions and dynamics in condensed phases
Kuang-Yu Chen, Professor of Chemistry, FAS-NB; Ph.D., Yale
Biophysical and biological chemistry; polynucleotides in cancer and aging
Martha A. Cotter, Professor of Chemistry, FAS-NB; Ph.D., Georgetown
Theoretical studies of liquid crystals and micellar systems
Richard H. Ebright, Professor of Chemistry, WIM/FAS-NB; Ph.D., Harvard
Protein-DNA interaction; protein engineering and regulation of gene expression
Eric L. Garfunkel, Professor of Chemistry, FAS-NB; Ph.D., California (Berkeley)
Surface science; thin-film growth; molecular adsorption on surfaces
Millie M. Georgiadis, Assistant Professor of Chemistry, WIM/FAS-NB; Ph.D., California (Los Angeles)
Radiochemical studies of retroviral enzymes
Alan S. Goldman, Professor of Chemistry, FAS-NB; Ph.D., Columbia
Organometallic reaction mechanisms, photochemistry, and catalysis
Lionel Goodman, Professor of Chemistry, FAS-NB; Ph.D., Iowa State University
Laser spectroscopy with emphasis on multiphoton processes
Martha Greenblatt, Professor of Chemistry, FAS-NB; Ph.D., Polytechnic Institute of New York
Solid-state inorganic chemistry; crystal growth
Gene S. Hall, Associate Professor of Chemistry, FAS-NB; Ph.D., Virginia Polytechnic Institute
Applied analytical chemistry; trace analysis
Gregory F. Herzog, Professor of Chemistry, FAS-NB; Ph.D., Columbia
Origin and evolution of meteorites; cosmic and solar systems
Jane Hinch, Associate Professor of Chemistry, FAS-NB; Ph.D., Cambridge
Molecular beam-surface interactions and diffraction phenomena
Stephan S. Isied, Professor of Chemistry, FAS-NB; Ph.D., Stanford
Bioinorganic chemistry; long-range intramolecular electron transfer
Laboratory for Surface Modification, for Advanced Food Technology, the Malcolm G. McLaren Center for Advanced Biotechnology and Medicine, the Center on the Rutgers–New Brunswick campuses. These include the researchers in other departments and other institutes at Rutgers including physical, bioinorganic, bioorganic, and biological chemistry; solid-state inorganic and biological polymers; and color printers.

The program for the master’s degree requires a minimum of 30 credits and either a critical essay or a thesis on some research problem. The program for the Ph.D. degree requires a thesis and an appropriate combination of course work and research credits. The Master of Philosophy degree is available to doctoral candidates.

A Ph.D. candidate must complete a minimum of 15 credits of course work. This phase includes 9 credits in his or her principal field of study (biological, inorganic, organic, or physical chemistry) and 6 credits chosen from among core courses in other subfields. The Ph.D. qualifying examination consists of a series of written cumulative examinations and the oral presentation and defense of a research proposal. There is no language requirement.

A Ph.D. candidate must spend not less than one academic year as a full-time student in residence. This residence requirement may be waived in cases of outstanding professional accomplishment and experience.

Most graduate courses are scheduled in the late afternoon and early evening hours. This enables students who are unable to attend classes during the day because of employment restrictions to pursue an M.S. degree.

Teaching assistantships and fellowships are available for both first-year and advanced graduate students, and virtually all full-time doctoral students receive financial support. Teaching assistants spend no more than six contact hours per week on their duties and normally take 6 to 10 credits of graduate courses or research each term. Fellowships normally do not entail special duties, and those who hold them can devote their time to course work and to research related to their Ph.D. dissertation. Further information on these and other matters may be found in the Graduate Program in Chemistry, a brochure available from the department.

Graduate Courses

16:160:501. (F) Chemistry of Heterocyclic Compounds (3) Prequisites 01:160:307,308, or equivalent. Covers π-deficient (pyrrole type) and π-excessive (pyridine type) heterocyclic compounds. Emphasis on synthesis, reactivity, rearrangements, utility (in general organic synthesis), and biological activity.

16:160:504. (S) Recent Advances in Organic Chemistry (3) Prerequisites 16:160:501. Selected newer topics discussed at an advanced level.

16:160:510. Introduction to Molecular Modeling (3) Prerequisites 01:160:307,308, 323,324; or equivalent. Introduction to the use of computer-assisted molecular modeling techniques for the study of chemical problems; lectures on theoretical principles; instruction in use of modern modeling programs; computer projects involving solution of chemical problems.
16:160:511,512,513. ADVANCED ORGANIC CHEMISTRY I,II,III
(3,3,3)
Prerequisites: 16:160:307,308, or equivalent.
Advanced survey of organic chemistry; molecular orbital theory, orbital symmetry correlations, structure and stereochemistry of organic molecules, chemistry of reactive intermediates, structure-reactivity relationships, molecular rearrangements.

16:160:515. (F) INTERPRETATION OF ORGANIC SPECTRA (3)
Prerequisites: 16:160:307,308, or equivalent.
Use of nuclear magnetic resonance, mass spectrometry, infrared and ultraviolet spectroscopy for the identification of organic compounds and the elucidation of organic reaction mechanisms.

16:160:518. (S) BIOORGANIC MECHANISMS (3)
Prerequisites: 16:160:307,308 and 327,328, or equivalent; 16:160:511.
Catalysis of organic reactions that are model systems for enzymatic processes. Emphasis on mechanisms of enzyme-catalyzed reactions.

16:160:520. (F) MATHEMATICAL METHODS OF CHEMISTRY (3)
Selected aspects of infinite series, vectors and matrices, functions of a complex variable, differential equations, and integral transforms as used in chemistry.

16:160:521. (F) ATOMIC AND MOLECULAR STRUCTURE (3)
Prerequisites: 16:160:327,328, or equivalent.
Introduction to the ideas of quantum chemistry and their application to the structure and properties of atoms and molecules.

16:160:522. STATISTICAL MECHANICS (3)
Prerequisites: 16:160:307,308, or equivalent.
Basic concepts and methods of equilibrium statistical mechanics. Applications to systems and phenomena of chemical interest, including ideal and real gases, chemical equilibria, phase transitions, classical liquids, polymer solutions.

16:160:525. (S) CHEMICAL THERMODYNAMICS (3)
Prerequisites: 16:160:327,328, or equivalent.
Principles of classical and statistical thermodynamics and their application to the study of homogeneous and heterogeneous equilibria.

16:160:526. PHYSICAL CHEMISTRY OF SOLUTIONS (3)
Prerequisite 16:160:525.
Thermodynamics and statistical thermodynamic properties of solutions; Brownian motion and diffusion; Debye-Hückel theory of electrolytes.

16:160:527,528. PHYSICAL CHEMISTRY OF HIGH POLYMERS (3,3)
Prerequisites: 16:160:307,308, or equivalent.
Introduction to the physical chemistry of macromolecules aimed at understanding relations between molecular structure and physical properties of high polymers.

16:160:529. MOLECULAR SPECTROSCOPY (3)
Principles of electronic and vibrational spectroscopy of polyatomic molecules. Emphasis on the quantum-mechanical basis of the spectra and the ways in which spectra yield information about molecular properties.

16:160:531. PHOTOCHEMISTRY (3)
Prerequisites: 01:160:307,308 and 327,328, or equivalent.
Absorption of light; formation of electronically excited states and their subsequent chemical reactions; fluorescence, phosphorescence, and quantum yields; applications of photochemistry to organic systems.

16:160:532. QUANTUM MECHANICS (3)
Prerequisite: 16:160:520,521.
Introduction to the principles of quantum mechanics with emphasis on operator approaches and the angular momentum problem. Approximate methods and application to simple examples.

16:160:533. CHEMICAL APPLICATIONS OF GROUP THEORY (3)
Prerequisite 16:160:521 or equivalent.
Aspects and consequences of molecular symmetry; point groups and character tables; group theory and quantum mechanics; symmetry aspects of the electronic structure in organic and inorganic molecules; selection rules for electronic and vibrational spectroscopy; ligand field theory.

16:160:534. (S) CHEMICAL KINETICS (3)
Prerequisites 01:160:327,328, or equivalent.
Chemical reaction rates, theories of molecular transformations, and the elucidation of reaction mechanisms.

16:160:535,536. CRYSTAL AND MOLECULAR STRUCTURE I,II (3,3)
Prerequisites: 16:160:307,328, or equivalent. See also 16:635:564.
Symmetry of crystals; point and space groups. Determination of crystal structure by X-ray diffraction. Analysis of X-ray photographic and diffractometer data and its processing.

16:160:537. BIOPHYSICAL CHEMISTRY I (3)
Prerequisites: 01:160:327,328, or equivalent.

16:160:538. BIOPHYSICAL CHEMISTRY II (3)
Prerequisite 16:160:537 or equivalent.
Introduction to biophysical techniques used in the study of structure and function. Theoretical methods of macromolecular analysis. Methods of macromolecular engineering and design.

16:160:539. PROTEIN ENGINEERING AND DESIGN (3)
Prerequisites: 16:160:307,308, and 11:115:403,404, or equivalent, or permission of instructor; 16:160:537 strongly recommended.
Protein structure. Protein structure-function relationships. Protein engineering methods. Protein engineering to modify the properties of existing useful proteins (e.g., ligand recognition, catalysis, allostery, stability) and to create new useful proteins. Catalytic antibodies. Semisynthetic proteins. Denovo protein design.

16:160:540. SINGLE-CRYSTAL X-RAY ANALYSIS LABORATORY (1)
Laboratory course to accompany 16:160:536. Characterization of crystals and introduction to diffractometry.

16:160:541,542. SPECIAL TOPICS IN PHYSICAL CHEMISTRY (3,3)
Prerequisites: 01:160:327,328, or equivalent.
Advanced topics of current interest.

16:160:543,544. SPECIAL TOPICS IN BIOLOGICAL CHEMISTRY (1-3 BA,1-3 BA)
Prerequisites: 16:160:537,538, or equivalent.
Advanced topics of current interest.

16:160:546. CHEMICAL SEPARATIONS (3)
Prerequisite: 01:160:348 or equivalent.
Principles of chemical separations by various chromatographic techniques.

16:160:548. SPECIAL ANALYTICAL METHODS (3)
Prerequisite: 01:160:348 or equivalent.
Advanced topics in analytical chemistry.

16:160:549. ELECTROANALYTICAL CHEMISTRY (3)
Prerequisite: 01:160:348 or equivalent.
Application of electrochemical principles and techniques, including modern polarographic methods, voltammetry, potentiometry, and chronopotentiometry.

16:160:551. ANALYTICAL SPECTROSCOPY (3)
Prerequisite: 01:160:348 or equivalent.
Theory of spectroscopy and spectrophotometry, including the analytical applications of spectrochemical methods.
Programs of graduate study leading to the M.S. and Ph.D. degrees may be arranged in a wide variety of areas. The fields of specialization available include structural analysis and design, computational mechanics, structural reliability, structural optimization, structural dynamics, concrete structures, experimental mechanics, soil mechanics and foundations, soil dynamics, soil composite materials, constitutive modeling of geomaterials, hydraulic engineering, hydromechanics, coastal studies, water and wastewater treatment, environmental fluid mechanics, water resource systems, transportation engineering, intelligent transportation systems, transportation infrastructure design operations, construction engineering, and management.

Students with a B.S. degree from an accredited civil engineering field may apply for direct admission to the graduate program. Students with backgrounds in engineering programs other than civil engineering are required to complete certain prerequisite undergraduate courses in civil engineering.

Master of Science degree candidates may elect either a thesis or nonthesis option. The thesis option consists of 24 credits of course work, 6 credits of research in a specialized area, and a final thesis presentation. In the nonthesis option, a candidate must complete 27 credits of course work, do a 3-credit special project with a report, and pass an oral final examination.

Requirements for the M.S. degree may be satisfied for all options in a part-time evening program, which is designed for students employed in industry and other students whose obligations preclude full-time study. Admission and academic standards for part-time students are the same as for full-time students. This arrangement makes it possible for students to combine day and evening schedules simultaneously or at different periods in their academic careers.
The Master of Philosophy degree is available to doctoral students. The degree of Doctor of Philosophy is primarily a research degree and is not conferred solely for completion of a series of prescribed courses. The requirements for the Ph.D. degree include a minimum of 48 credits of course work beyond the baccalaureate, a minimum of 24 credits of research beyond the M.S. degree, and successful completion of a research dissertation. There is no language requirement. Ph.D. candidates normally are required to register for at least two consecutive terms as full-time students in residence. Exceptions to this requirement may be made in special situations.

Significant computing and experimental laboratory resources are available to graduate students. The computer resources of the School of Engineering include a design, simulation, and visualization (DSV) lab with sixty Sun Ultra 10 workstations. Located within the School of Engineering is the Supercomputer Remote Access and Graphics Center, which provides facilities for developing large-scale computational programs, for high-speed access to the National Science Foundation’s Supercomputer Centers, and for graphical processing and display. Students in the Department of Civil and Environmental Engineering have access to a graduate civil engineering laboratory and to the Rutgers Intelligent Transportation Systems (RITS) computing laboratories. Silicon Graphics OZ and Sun Ultra workstations and several UNIX/PC-based stations provide excellent computational capabilities, software packages specific to civil/environmental engineering, and access to supercomputing resources. A number of research laboratories are used to complement theoretical and analytical course work and for doctoral and master’s thesis research. These laboratories include the Concrete Structures and Materials Laboratory, the Environmental Engineering Laboratory, the Fluid Mechanics and Environmental Hydraulics Laboratory, the Large-Scale Structural Laboratory, the Rutgers Asphalt Pavement Laboratory (RAPL), the Soil Dynamics and Highway Materials Laboratory, and the Soil Mechanics Laboratory. Additional research opportunities are provided through the department’s Center for Advanced Infrastructure and Transportation (CAIT).

Degree programs in civil and environmental engineering may be arranged with the program director. Details may be found in Program Information Manual for Graduate Students, available on request from the program office.

Graduate Courses

16:180:501. (F) Analytical Methods in Civil Engineering (3)
Yang
Review of series solutions of differential equations; perturbation methods, applications in civil engineering; derivations of well-posed partial differential equations for engineering problems and their classical solutions; Fourier analysis; applications of probability and statistics to model loads and responses of engineering systems.

16:180:515. (F) Structural Analysis (3)
Balaguru
Principle of superposition as applied to statically indeterminate structures; energy methods; approximate methods for the analysis of trusses and frames; failure theories; plastic analysis; introduction to matrix methods for structural analysis; analysis of composite structures.

16:180:516. (S) Advanced Structural Design I (3)
Nassif
Topics include elastic and inelastic column and plate buckling; plate girder design; bracing design; structural modeling and analysis; bridge design; composite design; connections.

16:180:517. (F) Structural Dynamics (3)
Yang
Analysis of structural members and systems subjected to dynamic loads; single-degree-of-freedom and multi-degree-of-freedom analytical models of civil engineering structures; free vibrations, harmonic and transient excitation, foundation motion, response spectrum, Lagrange’s equation; modal superposition and direct integration methods; response by a general purpose dynamic computer code.

16:180:519. (F) Advanced Structural Analysis (3)
Balaguru
Rigorous matrix formulation of the stiffness and flexibility methods of structural analysis applied to skeletal structures. Development of computer programs for the analysis of space and plane trusses and frames.

16:180:522. (S) Finite Element Methods in Civil Engineering (3)
Yang
Prerequisite: 14:180:402 or 16:180:515. General finite element formulation of two- and three-dimensional boundary-value problems; advanced finite element techniques; finite element formulation problems in continuum mechanics; applications in civil engineering problems; use of a general purpose finite element software package; introduction to the boundary element method.

16:180:523. (S) Structural Optimization (3)
Prerequisite: 16:180:519.
Developments in optimal structural design. Optimality criteria methods. Formulation of structural design problems as optimization problems using special techniques, linear and nonlinear optimization methods. Fully stressed design versus optimal design.

16:180:524. (S) Bridge Design (3)
Nassif
Prerequisite: 16:180:413, 426.
History, development, and classification of bridges; use of LRFD-AASHTO specifications for the design of basic straight-girder type bridges, including composite and noncomposite I and box girders; simple and continuous spans; substructure design; field testing and monitoring; and repair and rehabilitation.

16:180:525. Structural Reliability (3)
Nassif
Elements of probability theory and its application to structural engineering, statistical distributions of load, probable strength of structural elements, safety analysis and reliability prediction of structural systems, and reliability-based design codes.

16:180:526. Structural Stability (3)
Speron
Prerequisite: 14:440:125 or 16:180:515 or 16:650:531.
Elastic and inelastic buckling of members under pure compression, pure moment, and combined compression and moment; local buckling; buckling of frames, plates, and shells.

16:180:527. Bridge Design II (3)
Nassif
Advanced bridge-analysis methods, such as the grillage analogy, semicontinuum method, and orthotropic-plate method; design of cable-stayed bridges; dynamic analysis of bridges; bridge testing, monitoring, and instrumentation techniques; nondestructive testing of bridges; bridge inspection and rehabilitation.

16:180:531. Traffic Engineering (3)
Balé, Ozbay
Techniques and hardware used for real-time traffic-data collection, sources of errors and sample-size determination; design parameters, including economic and human factors, as well as environmental constraints; experiment design for model-development and transportation-operations analyses; deterministic and stochastic models of traffic processes, including queuing theory, headway distributions, and gap acceptance; stream-flow characteristics, including car-following and multilane models, bottleneck, fuel consumption, and noise models; models for automatic vehicle control; network operations; models for modes of traffic; traffic control, short-term planning, and system evaluation.

16:180:532. Transportation Planning (3)
Balé, Ozbay
Intelligent Transportation Systems (ITS) projects in U.S., Europe, and Japan; advanced traveler-information systems; advanced traffic-management systems; automated highway systems; commercial vehicle operations; operational field tests; system architecture; human factors; safety; institutional and legal issues; multimodal ITS applications; modeling ITS as hybrid systems; evaluation and selection of candidate Intelligent Transportation Systems.
16:180:533. TRAFFIC OPERATIONS (3)

Wiley; Ozbay
Real-time transportation operations; transportation-system evaluation; demand modeling; time-sensitive transportation problems; including real-time traffic control and network-wide feedback control; linear and nonlinear network optimization; deterministic and stochastic queuing models of the control of rush hour traffic; traffic-signal timing; incident management; operational strategies for strategic versus tactical transportation infrastructure planning; operation of parking facilities; congestion management strategies; automatic vehicle control.

16:180:534. DESIGN OF TRANSPORTATION FACILITIES (3)

Wiley; Ozbay
Software and hardware to design, test, and evaluate transportation systems; field studies, development and use of computer models, and instrumentation of small- and full-scale hardware models; geographic-information systems, artificial intelligence, and computer graphics for design and evaluation; optimization software for vehicle scheduling and routing and traffic assignment; visual-simulation development tools for rapid prototyping of selected transportation systems; simulated life-cycle analysis and validation techniques; data acquisition and control; advanced data-visualization tools to test and evaluate developed models.

16:180:535. (F) MECHANISTIC PAVEMENT DESIGN (3)

Staff
Pavement design principles for new and rehabilitated pavements. Material characterization, flexible and rigid pavement design, laboratory and field data collection and analysis, pavement-management practices. Deflection back calculation and pavement-design software.

16:180:537. INTELLIGENT TRANSPORTATION SYSTEMS (3)

Ozbay
Focuses on Advanced Traveler-Information Systems (ATIS) and advanced traffic-management components of Intelligent Transportation Systems (ITS). Students also learn about Commercial Vehicle Operations (CVO), Advanced Vehicle-Control Systems (AVCS), and Advanced Rural Transportation Systems (ARTS).

16:180:541. (F) ADVANCED REINFORCED CONCRETE I (3)

Nay
Ultimate load theories in flexure, shear, diagonal tension, and torsion of symmetrical and nonsymmetrical members; behavior of compression members in uniaxial and biaxial compression, stability of long columns; first-order and second-order solutions and the P-Δ effects; serviceability behavior and theories for deflection and cracking of one- and two-dimensional members; wind analysis and continuity in floor systems and frames; failure mechanisms for two-way slabs and plates; energy-design solutions; seismic design of concrete structures.

16:180:542. (S) ADVANCED REINFORCED CONCRETE II (3)

Nay
High-strength, high-performance concretes and composites; long-term effects; performance characteristics; biaxial and triaxial confinement; micro and macro mechanics of concrete; fracture-mechanics theory; shear transfer in multilayered systems; limit theory at failure of indeterminate concrete frames and continuous beams; moment redistribution and ductility of joints; plastic hinging and rotational capacities of confined-concrete members and structural systems; membrane and bending theories for the design and analysis of concrete shells and folded plates, including buckling behavior.

16:180:544. (S) PRESTRESSED CONCRETE (3)

Nay
Theory of prestressed concrete; partial loss in prestressing and long-term effects due to creep, shrinkage, and relaxation; service-load and ultimate-load evaluation of pretensioned and post-tensioned elements in flexure, shear, and torsion; camber, deflection and crack control; two-way prestressed concrete-floor systems; prestressed portal frames; posttensioned liquid- and gas-containing circular tanks; prestressed shells and dome roofs for circular tanks.
16:180:571. (F) ADVANCED SOIL MECHANICS (3)
Gucunski
Elasticity and plasticity models; stress-strain relations for soils; failure criteria; elastic solutions for half-space and layered systems; one- and three-dimensional consolidation theory; computer applications.

16:180:572. (S) SOILS ENGINEERING (3)
Mahter
Earth pressure theories; stability of natural slopes and open cuts; stability of built embankments, earthquake effects, rapid drawdown and seepage problems, slope-stabilization techniques; retaining walls; computer application in slope stability.

16:180:574. (S) GROUNDWATER ENGINEERING (3)
Lee
Porous media; fundamental equations of groundwater flow; confined flow; unconfined flow; hydraulics of wells; numerical methods; groundwater contamination; investigation; remediation and cleanup; monitoring; computer applications.

16:180:575. (F) THEORETICAL SOIL MECHANICS (3)
Gucunski
Theory of semi-infinite elastic media; elastic equilibrium. Stress-strain behavior of soils, constitutive models for soils. Applications of plasticity models to compute soil behavior.

16:180:577. (F) ADVANCED FOUNDATION ENGINEERING (3)
Staff Lec. 2 hrs., design lab. 3 hrs. Prerequisites: 16:180:571, 572.
Subsurface investigations; site preparation and improvement; flexible retaining structures; caissons; drilled shafts; underground structures; pile foundations; foundations subjected to dynamic loads; marine structures; environmental effects of construction.

16:180:578. (S) SOIL DYNAMICS (3)
Gucunski
Review of basic vibration theories as applied to soil dynamics; elastic wave propagation in soils; elements of seismic soil explorations; dynamic soil properties; laboratory evaluation of dynamic soil properties; liquefaction; machine foundations; fundamentals of soil-structure interaction; earthquake engineering; computer applications.

16:180:580. (S) ENGINEERING ROCK MECHANICS (3)
Mahter
Methods of rock exploration, physical and mechanical properties of rocks; deformation; in-situ strength; hydrothermal effects on rocks; stability of rock masses; state of stress and strain around tunnels, shafts, and domes; stabilization of rocks.

16:180:581. (S) PHYSICOCHEMICAL PROPERTIES AND STABILIZATION OF SOILS (3)
Mahter
Relationship between physical properties and selected chemical and mineralogical characteristics emphasizing fine-grained and colloidal fractions; problems affecting site use, including weak, compressible soil; high shrink-swell potential and erodibility; stabilization techniques, including compaction, earth reinforcement, drainage and erosion control, admixture stabilization, precompression, grouting.

16:180:582. (S) EARTHQUAKE ENGINEERING: DYNAMIC SOIL-STRUCTURE INTERACTION (3)
Gucunski
Seismicity; size of earthquakes; estimation of ground motion parameters; seismic hazard analysis; site response analysis; design ground-motion building-code provisions; soil-structure interaction effects and formulation; simplified models; solutions in frequency and time domains.

16:180:586. (S) ADVANCED FLUID MECHANICS (3)
Guo
Basic laws and equations of fluid flows; exact and approximate solutions; potential flows; boundary layer flows; turbulent flows in pipes and open channels; free turbulent jets and wakes; turbulence and transport phenomena; transient flows.

16:180:588. (S) THEORY OF HYDRAULIC MODELS (3)
Guo
Geometric, kinematic, and dynamic similarity between prototypes and models. Similarity laws; model techniques; undistorted and distorted models; models for hydraulic structures, free-surface flows, flows over erodible beds, and hydraulic machinery. Environmental applications.

16:180:590. (S) COASTAL ENGINEERING (3)
Guo
Generation and propagation of tides; salinity intrusion, pollutant flushing, and sedimentation in estuaries; circulation in the coastal ocean; coastal water-quality modeling; coastal wetlands; gravity waves; coastal erosion; coastal-structure design.

16:180:601,602. ADVANCED TOPICS IN CIVIL ENGINEERING (BA,BA)
Selected topics of current interest in any specialized field of civil engineering.

16:180:611,612. ADVANCED TOPICS IN ENVIRONMENTAL ENGINEERING (BA,BA)
Selected topics of current interest in any specialized field of environmental engineering.

16:180:691,692. SEMINAR IN CIVIL AND ENVIRONMENTAL ENGINEERING (NO,NO)
Contemporary developments and special topics in research and engineering design in civil and environmental engineering presented and discussed by faculty, students, and invited speakers.

16:180:693,694. SPECIAL PROJECT (3,3)
Nonthesis study. Special project under the supervision of a professor. Requires a technical report.

16:180:701,702. RESEARCH IN CIVIL AND ENVIRONMENTAL ENGINEERING (BA,BA)
Thesis work for M.S. or Ph.D. degree.

CLASSICS 190

Degree Programs Offered: Master of Arts, Master of Arts for Teachers, Doctor of Philosophy

Director of Graduate Program: Professor T. Corey Brennan, 008 Ruth Adams Building, Douglass Campus (732/932-9797)
Web Site: http://classics.rutgers.edu

Members of the Graduate Faculty

John Bodell, Professor of Classics, FAS-NB; Ph.D., Michigan
Latin literature and epigraphy; Roman history

Robert H. Bolton, Professor of Philosophy, FAS-NB; Ph.D., Michigan
Ancient philosophy; philosophy of language and metaphysics

T. Corey Brennan, Associate Professor of Classics, FAS-NB; Ph.D., Harvard
Roman history

Jack L. Cargill, Professor of History, FAS-NB; Ph.D., California (Berkeley)
Greek history and epigraphy

Lowell Edmunds, Professor of Classics, FAS-NB; Ph.D., Harvard
Greek literature, mythology, intellectual history

Thomas J. Figueira, Professor of Classics, FAS-NB; Ph.D., Pennsylvania
Greek political history; the social history of classical antiquity; Greek prose

William W. Forthofer, Professor of Classics, FAS-NB; Ph.D., Pennsylvania
Ancient philosophy

Archer St. Clair Harvey, Associate Professor of Art History, FAS-NB; Ph.D., Princeton
Late antique and early Christian art

John F. Kenfield III, Associate Professor of Art History, FAS-NB; Ph.D., Princeton
Greek and Roman art

David Marsh, Professor of Italian, FAS-NB; Ph.D., Harvard
Classical influences on Renaissance literature

Pierre Pellegrini, Visiting Professor of Philosophy, FAS-NB; Professor of Philosophy, CREA (France); Ph.D., Paris I
Ancient philosophy

Stephen Reinert, Associate Professor of History, FAS-NB; Ph.D., California (Los Angeles)
Byzantine history

75
Programs

Graduate training in the Department of Classics focuses on interpreting the original Latin and Greek in the light of modern literary criticism and archaeological data. It also makes use of the theories and methodologies of other disciplines that deal with ancient Greece and Rome, namely ancient history, art history, philosophy, and epigraphy. While the study of original texts is central, the program attempts to relate these texts to the present day. The aim is to prepare students to apply their knowledge of the classics to the general humanistic tradition.

The Ph.D. candidate is expected to have a knowledge of all major authors, including work beyond the Greek fourth and fifth centuries B.C. and the Republican and Augustan periods of Rome. While the candidate is expected to research a specific aspect of the classics, he or she also should be acquainted with the interdependence of Greek and Roman culture.

Students may supplement their work with related programs, such as art history, comparative literature, or philosophy.

The M.A. candidate must demonstrate a general knowledge of the principal ancient authors and may write a thesis (equivalent to 6 credits). While the candidate may emphasize either Greek or Latin, he or she must have a knowledge of both languages. The student also is expected to demonstrate a reading knowledge of French, German, or Italian. The M.A. examination tests the candidate’s knowledge of the Greek and Latin languages, of course material, and of material on the general reading list. It consists of three hours of translation and three hours of general questions in history, literature, and philosophy. Students may take the M.A. examination after completing 30 credits of graduate work. General reading lists for the M.A. and Ph.D. degrees are available to all graduate students at the department office. Reading lists for special fields and authors can be worked out with the graduate adviser.

The M.A. program in Latin for teachers is designed to assist Latin teachers in secondary schools. Candidates are expected to pass a competency test in ancient Greek, but they may bypass this requirement by demonstrating a reading knowledge of French, German, or Italian. The student is expected to complete a total of 30 credits, of which 24 are graduate credits. The remaining 6 credits are to be taken outside of Latin literature in such areas as ancient history and ancient philosophy. In addition, candidates must complete an expository or critical essay, which normally relates to course work, and they must pass a comprehensive examination based on course work and the reading list of Latin authors.

The Ph.D. candidate is expected to complete at least 48 credits of course work beyond the bachelor’s degree and to demonstrate a reading knowledge of German and either French or Italian.

Course work includes Greek or Latin composition. This requirement may be waived upon successful completion of an equivalent examination. The qualifying examination covers the following four areas, with a three-hour examination in each: (1) a knowledge of the principal Greek and Latin authors as specified on the reading list; (2) a particular Greek or Latin author; (3) a special field, such as a period of ancient literature, a literary genre, ancient philosophy, or a period of Greek or Roman art and archaeology or history; and (4) translation from Latin and Greek. The Master of Philosophy degree is available to doctoral candidates.

After he or she completes satisfactorily the qualifying examination, the Ph.D. candidate forms a dissertation committee, which must include three professors on the graduate faculty of the Department of Classics and one professor from outside this group. The candidate then submits a dissertation proposal to this committee for approval. The proposal includes a general statement of the project, a list of chapters and of topics to be treated within each chapter, and an annotated bibliographical survey. The candidate must have his or her proposal in an acceptable form within the term that follows the qualifying examination.

An interdisciplinary Ph.D. in art history and classical archaeology may be worked out with advisers from the art history and classics programs. Students in such a program would have to show proficiency in French, German, Greek, and Latin. An option in ancient history is available to M.A. and doctoral students.

Graduate Courses

Two or three of the following courses are offered each term:

16:190:503. INTRODUCTION TO GRADUATE LITERARY STUDY: LATIN (3)
Close readings and basic critical techniques of interpreting Latin literature.

16:190:504. INTRODUCTION TO GRADUATE LITERARY STUDY: GREEK (3)
Close readings and basic critical techniques of interpreting Greek literature.

16:190:505. STUDIES IN CLASSICS (3)
Topics in the field of classics selected for special study.

16:190:507,508. READINGS IN CLASSICS (3,3)
Readings in areas of special interest in Latin and/or Greek authors.

16:190:509. PROSEMINAR: MATERIALS AND METHODS (3)
Prerequisite: Reading knowledge of Latin and Greek.
Introduction to the discipline of classical philology. Topics covered include bibliography, lexicography, linguistics, textual history and criticism, geography, paleography, papyrology, epigraphy, and literary theory.

16:190:510. HELLENISTIC LITERATURE (3)
Extensive readings in the major authors of the Hellenistic Age (350–30 B.C.), especially those who influenced Roman literature and thought.

16:190:511. GREEK LITERATURE OF THE ROMAN PERIOD (3)
Greek authors of the Roman period (30 B.C.—A.D. 500) selected with a view to their influence on the literature and thought of the Roman Empire.

16:190:519,520,521,522. LATIN LITERATURE SEMINAR (3,3,3,3)
Work of a different Latin author (for example, Catullus, Propertius/Tibullus, Virgil, Ovid/Petrarch). Offered during Summer Session.

16:190:523. SEMINAR ON ROME AND POMPEII (3)
Research and instruction at Rutgers and in Italy on Rome and Pompeii. Includes oral presentations and a paper.

16:190:525. HISTORIANS OF REPUBLICAN ROME (3)
Critical reading of selected fragments from Roman annalistic writers, and an intensive study of the historical writings of Caesar and Sallust.

16:190:526. HISTORIANS OF IMPERIAL ROME (3)
Selected major Greek and Latin texts for the history of the Roman Empire. The periods covered by Tacitus to Ammianus Marcellinus.

16:190:530. ARISTOTLE: CONSTITUTION OF THE ATHENIANS (3)
Analysis of Aristotle’s Athenian Politia and other documents pertaining to the development of Greek political institutions.

16:190:557. HOMER (3)
The Ilid and Odyssey in their historical, literary, and cultural background.
Several major dialogues of Plato studied with special emphasis on the philosophical problems they raise.

Greek history of the sixth and fifth centuries B.C. in the Greek historiographic tradition. Emphasis on detailed study of the texts, especially Thucydides.

Tragedians: Aeschylus, Sophocles, and Euripides; the comedies of Aristophanes.

Study of the beginnings of the Greek historiographic tradition in the sixth and fifth centuries B.C., with primary emphasis on Herodotus.

Greek and Roman prose fiction of the postclassical period in its literary and sociohistorical contexts.

Study of the styles of Attic prose of the fifth and fourth centuries and composition in the manner of select authors of classical Attic Greek.

Study of the stylistic development of Latin prose and composition in the manner of select classical authors.

Selected works from the dramatic literature of Rome.

Study of the conventions of Greek and Roman comedy.

The Edges, Georgics or Aenid of Vergil, with attention to literary predecessors, cultural context, influence, and ancient and modern criticism.

Individual topics for research and criticism involving relationships among the elegiac poets, Horace, and Vergil.

Study of the development of classical biography through selected works from major authors in Greek and Latin, including Xenophon, Plutarch, Nepos, and Suetonius.

Comparative study of Homer, Apollonius, Vergil, and Lucan as epic poets.

Intensive study of special Greek and Roman archaeological monuments and their significance for the literature, religion, and history of the classical civilizations.

Practical introduction to the study of Latin inscriptions, with emphasis on the reading, interpretation, and editing of texts on stone.

Practical introduction to the study of Latin manuscripts from the Middle Ages and Renaissance, with emphasis on the reading, interpretation, editing, and transmission of Latin texts.

Study of the relationship between the media of publication and conventions of reading in antiquity and the literary forms of classical Greek and Latin literature.

Archaeological survey of urban planning; architectural and artistic achievements in Rome and the provinces seen in the broader perspective of Augustus’s political and cultural program.

Stylistic and thematic discussion of the works of individual sculptors and of major monuments, such as temple pediments and friezes from 480 B.C. to the end of the fourth century.

The major stylistic periods of Roman sculpture in historical reliefs, sarcophagi, and portraiture from the late Republic to the age of Constantine the Great.

Theophrastus’s Characters and at least two plays of Menander, with emphasis on the various kinds of characters recognized in Greek literature and their relationship to plot and dramatic action.

Selected Greek public orations with emphasis on their significance in political history and their place in the development of Greek rhetoric.

Special philosophical problems studied in reference to Aristotle’s work; emphasis on the variety of Aristotle’s interests and the significance of his conceptual language.

The continuity and development of satire in Greek and Latin literature. Major emphasis on the Roman satirists.

Selected orations, treatises, or letters of Cicero against the background of his private and public life, his sources in Greek and Roman thought, and his influence on later Western tradition.

The origin and development of Latin literature from its birth in the third century B.C. to the end of the Republic.

Extensive reading in the major authors of the first and second centuries of the Roman Empire, with emphasis on the continued development of poetry and prose.

Extensive reading in the major authors of the Archaic period; Pindar; beginnings of tragedy and comedy.

Extensive reading in the major authors of the classical period not covered in 16:190:681,682 and in Hellenistic literature.

16:190:701,702. Research in Classics (BA,BA)
Cognitive science focuses on the nature and development of such abilities as perception, language, reasoning, planning, and problem solving in biological and artificial systems. This area of study is well represented at various departments at Rutgers, and the Rutgers Center of Cognitive Science (RuCCS), located on the Busch campus, helps coordinate this program. Members of the center may have joint appointments with such participating academic departments as biomedical engineering, computer science, linguistics, philosophy, and psychology, as well as with the Center for Computer Aids for Industrial Productivity, the Laboratory of Vision Research, and the School of Communication, Information and Library Studies.

The program offers students enrolled in various graduate programs a chance to carry out structured research in cognitive science with guidance from relevant faculty advisers. In addition, the program brings together students from different disciplines and provides them with a common research environment.

Students with an interest in any aspect of cognitive science may take a concentration in this area while they continue their regular studies toward a Doctor of Philosophy degree. Admission to the certificate program and selection of courses and research project are subject to the approval of the Cognitive Science Certificate Committee. Admission is based on academic performance and interests and requires the approval of the graduate program in which the student is enrolled.

Program Requirements
To receive the Certificate in Cognitive Science, the student must complete successfully the requirements for a Ph.D. in his or her department and meet the following additional requirements:

2. Carry out a research project under the direction of a participating faculty member, normally outside the program in which the student is registered. Project proposals must be approved by the Cognitive Science Certificate Committee.
3. Take a minimum of 9 additional credits from approved courses in biomedical engineering, cognitive science, computer science, linguistics, philosophy, and psychology. At least 9 credits must be taken from outside the graduate program in which the student is registered. Courses in other related fields may be submitted by petition.

Graduate Courses

16:185:500. PROSEMINAR IN COGNITIVE SCIENCE (3)
Multidisciplinary introduction to the core areas of cognitive science. Gives students from diverse backgrounds the chance to work together. Student research interests discussed.

16:185:600, 601, 602, 603, 604. SEMINAR IN COGNITIVE SCIENCE I,II,III,IV,V (3 EACH)
Topical seminar conducted by participating faculty or visiting scholars at the Center for Cognitive Science.

16:185:699. INDEPENDENT STUDIES IN COGNITIVE SCIENCE (BA)
May be used to meet the research project requirement for the Certificate in Cognitive Science with approval of certificate committee. Supervised independent study.

Communication, Information, and Library Studies 194
Students opting to focus on information science learn about human information behavior and systematic responses to it. Communication research is a major emphasis.

Communication processes deals with three interrelated areas: communication theories and research methods; health-communication campaigns, interpersonal communication, and intercultural communication. Communication processes looks at systems, institutions, and policies and assesses their impact on individuals and organizations and upon national and international affairs. Students may focus on any of the following: communication processes, library science, and research skills for scholarly activity or for leadership positions.

Communication processes deals with three interrelated areas: social interaction, organizational communication, and mediated communication. Research areas include such contemporary issues as health, gender, globalization, identity, and policy. Health-communication research is a major emphasis.

Communication processes deals with three interrelated areas: social interaction, organizational communication, and mediated communication. Research areas include such contemporary issues as health, gender, globalization, identity, and policy. Health-communication research is a major emphasis.

Communication processes deals with three interrelated areas: social interaction, organizational communication, and mediated communication. Research areas include such contemporary issues as health, gender, globalization, identity, and policy. Health-communication research is a major emphasis.

Communication processes deals with three interrelated areas: social interaction, organizational communication, and mediated communication. Research areas include such contemporary issues as health, gender, globalization, identity, and policy. Health-communication research is a major emphasis.

Communication processes deals with three interrelated areas: social interaction, organizational communication, and mediated communication. Research areas include such contemporary issues as health, gender, globalization, identity, and policy. Health-communication research is a major emphasis.
information-seeking activities, information-retrieval systems, and information structures. Library science looks at libraries and information centers as part of the worldwide information environment. Students learn how to design, manage, and evaluate information systems and how to make these systems responsive to users’ needs.

Media studies examines the political, social, psychological, and economic impact of the media. It describes the historical conditions that gave rise to contemporary media and covers both the traditional mass media and the new electronic technologies.

To earn a Ph.D. degree, students must complete a minimum of 36 credits of doctoral-level course work and accumulate 24 credits of dissertation research. In addition, Ph.D. candidates must have completed at least 24 credits of course work at the master’s degree level.

There is no language or residency requirement, and students may pursue the Ph.D. on a full- or part-time basis. Students are required to enroll for a minimum of 6 credits during each of the first two terms in the program. Teaching and research assistantships that include tuition remission and various fellowships are available for highly qualified full-time students.

The Master of Philosophy degree is also available to doctoral candidates. The School of Communication, Information and Library Studies (SCILS) offers an M.L.S. degree in library and information studies and a Master of Communication and Information Studies. These programs are described in the SCILS catalog.

Graduate Courses

16:194:600. Ph.D. Colloquium (0)
Belkin. Required each term in course work. Forum for the presentation of research by guest speakers, faculty, and students.

16:194:601. Information and Communication Processes (3)
Nature of information and communication processes, and the role of information and communication in individual, social, and institutional behavior. Particular emphasis on conceptual linkages between information and communication processes.

16:194:602. Research Foundations (3)
Concepts, method, and practices of social science research in relation to communication, information science, and library studies.

16:194:603. Qualitative Research Methods (3)
Qualitative approaches for examining information processes, including information definition, acquisition, evaluation, and use.

16:194:604. Quantitative Research Methods (3)
Prerequisite 16:960:532 or 17:610:511. Facets of research; problem areas; research techniques and experiments.

16:194:605. Current Research Issues (3)
Prerequisites 16:194:603 and 604. Integrative treatment of fundamental assumptions, paradigms, and directions in contemporary research on information, communication, and information systems in various fields, particularly information science and communication.

16:194:610. Seminar in Information Studies (3)
Major problems, trends, and developments in information science and technology. Critical survey of current research and findings.

16:194:612. Human Information Behavior (3)
Prerequisite 16:194:610 or permission of instructor. Precursors to and characteristics of human information-seeking behavior, individual and social within and outside of institutional information systems. Relations between such behavior and information-system design and relevant technologies.

16:194:614. Information Retrieval Theory (3)
Prerequisites 16:194:610 and 612, or permission of instructor. Examines the basic problems of information retrieval from theoretical and experimental points of view. Develops a basis for the specification of design principles for IR systems.

16:194:617. Knowledge Representation for Information Retrieval (3)
Concurrent consideration of options for knowledge representation, methods for evaluating the effect of these options on costs and effectiveness, and research relating to knowledge representation for information retrieval.

16:194:619. Experiment and Evaluation in Information Systems (3)
Prerequisites 16:194:612, 614, or permission of instructor. Measures, models, and methods for macroevaluation of impact of information systems within their environment and for microevaluation of performance of system components.

16:194:620. Interpersonal Communication (3)
Contemporary theories and major lines of classic and current research concerning interpersonal communication.

16:194:621. Organizational Communication Research (3)
Survey of major principles and research and analytic techniques related to organizational communication.

Current mass communication theories and approaches analyzed from a research perspective. Topics include audiences, uses and gratifications, socialization processes and effects, and agenda setting.

16:194:632. Scholarly and Scientific Communication (3)
Study of the processes through which scholarly, scientific, and technical ideas are communicated: mentoring; professional, national, and international information networks; scholarly and scientific publishing; examines other aspects of specialized information transfer.

Interdisciplinary review and exploration of current research in the communication, structure, processes, and products of research and scholarship.

16:194:641. Information Policy and Technology (3)
Impact of modern revolution in information technology; related challenges of contemporary problems in information policies at individual, organizational, national, and international levels. Use of information indicators.

16:194:642. Information Regulation and Law (3)
Historical and contemporary legal and regulatory issues stemming from the application of information technology.

16:194:643. Information Indicators (3)
Integrated treatment of measures, indicators, and methods for quantitative description of information and communication systems, resources, and activities. Emphasis on drawing relations among different measures and application to information-policy studies.

Prerequisite 17:610:570 or equivalent. Systematic consideration of the evolution of management theory leading to an evaluation of contemporary theoretical and research issues in planning, organizing, staffing, leading, and controlling the information organization.

80
16:194:648. ORGANIZATIONAL ASSESSMENT AND CHANGE (3)
Offered in alternate years
Systematic consideration of the theories and strategies of assessment, planning, development, and change at the organizational and programmatic levels in nonprofit and profit-seeking information organizations.

16:194:655. (S) MEASUREMENT AND EVALUATION OF LIBRARY SERVICES (3)
Major issues, obstacles, and developments in approaches to measurement and evaluation of information services. Emphasis on methodology and strategies for implementation.

16:194:656. THEORIES AND ISSUES IN LIBRARY STUDIES (3)
Examination of the intellectual foundations for librarianship as a discipline, the development of a broadened understanding of pervasive theories and research issues, and the identification and exploration of research literature in librarianship and pertinent allied fields.

16:194:660. AUDIENCE STUDIES (3)
The nature of audiences, how audiences emerge, and how audiences can be studied. Weak/strong effects, uses and gratifications, reader response theory, cultural studies.

16:194:662. MEDIA LITERACY (3)
Theories of media education and approaches to media pedagogy.

16:194:663. MEDIA HISTORY AND INSTITUTIONS (3)
The history of print and electronic media, emphasizing the media's political economy, the interrelationship of media and society, and the ideological component in writing history.

16:194:664. MEDIA AND CULTURE (3)
Cultural approaches to media studies. Topics include cultural theory; aesthetics and taste; representation and ideology; consumer culture; media, culture, and identity; gender, race, class, and sexuality in media; fandom and subcultures.

16:194:665. MEDIA AND POLITICS (3)
Theories and research relating old and new media to political decision making. Topics include public attitudes and opinion, media policy, interest articulation, political culture, ideology, rhetoric and content analysis, framing, agenda-setting.

16:194:666. SOCIAL CONSTRUCTION OF NEWS (3)
Social science research on news and the news media; diverse scholarly perspectives, comparing them with the views of journalists, journalism critics, and the public.

16:194:695. TEACHING APPRENTICESHIP (0)
Prerequisite: 9 credits in Ph.D. program. A noncredit teaching apprenticeship to provide doctoral candidates with classroom experience.

16:194:696,697. SPECIAL TOPICS (3,3)
Possible topics include communication technology and policy; naturalistic inquiry; human/computer interaction; history of U.S. mass media; intercultural communication; and race, gender, and the media.

16:194:698. INDEPENDENT STUDY (3)

16:194:699. INDEPENDENT STUDY (3)

16:194:701,702. DISSERTATION RESEARCH (BA,BA)

COMMUNICATION STUDIES
(See the catalog of the School of Communication, Information and Library Studies for information about programs leading to the Master of Communication and Information Studies.)

COMPARATIVE LITERATURE 195

Degree Programs Offered: Master of Arts, Doctor of Philosophy

Active Director of Graduate Program: Professor Andrew Welsh,
205 Ruth Adams Building, Douglass Campus (732/932-7606)

Members of the Graduate Faculty

Derek Attridge, Distinguished Visiting Professor of English, FAS-NB; Ph.D., Cambridge
Literary theory; literary language; poetic form; James Joyce

Louise K. Barnett, Professor of English, FAS-NB; Ph.D., Bryn Mawr
English and American literature

Stephen Bronner, Professor of Political Science, FAS-NB; Ph.D., California (Berkeley)
Critical theory; political theory

Abena P. A. Busia, Associate Professor of English, FAS-NB; D.Phil., Oxford
African women in British and American fiction

Ed Cohen, Associate Professor of English, FAS-NB; Ph.D., Stanford
Cultural studies; gender studies

Drucilla Cornell, Professor of Law and Women's Studies, SL-N and FAS-NB;
J.D., California Law School (Los Angeles)
Feminist theory; aesthetics

Harriet A. Davidson, Associate Professor of English, FAS-NB; Ph.D., Vanderbilt
Modern and contemporary poetry; modern British and American literature

Marianne DeKoven, Professor of English, FAS-NB; Ph.D., Stanford
Modernism; women's studies

Elin F. Diamond, Professor of English, FAS-NB; Ph.D., California (David)
Drama and dramatic theory; feminist and literary theory

Josephine Diamond, Professor of French, FAS-NB; Ph.D., Cornell
Nineteenth- and twentieth-century literature; critical theory; women's studies; feminist theory

Lowell Edmunds, Professor of Classics, FAS-NB; Ph.D., Harvard
Greek literature, mythology, intellectual history

Uri A. Eisenzeig, Professor of French, FAS-NB; Ph.D., Paris
French literature; literary theory; Western literature of the nineteenth and twentieth centuries

Franco Ferrucci, Professor of Italian, FAS-NB; Ph.D., Pavia
Renaissance studies; critical theory

Jerry Aline Flieger, Professor of French, FAS-NB; Ph.D., California (Berkeley)
Twentieth-century literature; critical theory; women's studies and feminist theory

Sandy Flitterman-Lewis, Associate Professor of English, FAS-NB; Ph.D., California (Berkeley)
Feminist cultural analysis with an emphasis on film and literature

William Galperin, Professor of English, FAS-NB; Ph.D., Brown
Romantic literature; literary theory; media studies

Mary S. Gossy, Associate Professor of Spanish, FAS-NB; Ph.D., Harvard
Spanish and Latin American literature; feminist and critical theory; lesbian and gay studies

Peter Li, Associate Professor of Chinese, FAS-NB; Ph.D., Chicago
Chinese studies

Jorge Marcovecchi, Associate Professor of Spanish, FAS-NB; Ph.D., Texas
Contemporary Spanish-American literature; literacy and orality, regionalism: critical theory

Michael McKeon, Professor of English, FAS-NB; Ph.D., Columbia
Seventeenth- and eighteenth-century literature; critical theory; historical criticism

Alicia Ostriker, Professor of English, FAS-NB; Ph.D., Wisconsin
Romantic and modern literature; contemporary poetry

Gerald Pirog, Associate Professor of Slavic Languages and Literature, FAS-NB;
Ph.D., Yale
Slavic languages and literatures; critical theory; poetry

Nicholas Rennie, Assistant Professor of German, FAS-NB; Ph.D., Yale
Eighteenth- to twentieth-century aesthetics; age of Goethe; critical theory; German intellectual history

Bruce Robbins, Professor of English, FAS-NB; Ph.D., Harvard
Critical theory; modern fiction

Louis Sass, Professor of Clinical Psychology, GSAPP; Ph.D., California (Berkeley)
Literature and psychology; hermeneutics

Bruce Robbins, Professor of English, FAS-NB; Ph.D., Harvard
Critical theory; modern fiction

Louis Sass, Professor of Clinical Psychology, GSAPP; Ph.D., California (Berkeley)
Literature and psychology; hermeneutics

Bruce Robbins, Professor of English, FAS-NB; Ph.D., Harvard
Critical theory; modern fiction

Louis Sass, Professor of Clinical Psychology, GSAPP; Ph.D., California (Berkeley)
Literature and psychology; hermeneutics
Paul Schullow, Associate Professor of Japanese, FAS–NB; Ph.D., Harvard
Japanese literature (Edo period); gender and sexuality in Japanese literature; Japanese women’s writing
Louisa Schein, Associate Professor of Anthropology, FAS–NB; Ph.D., California (Berkeley)
China; cultural studies
Richard Serrano, Assistant Professor of French and Comparative Literature, FAS–NB; Ph.D., California (Berkeley)
Francophone, classical Arabic and classical Chinese literatures; lyric poetry
Ben Silvestri-Laureggi, Assistant Professor of Spanish, FAS–NB; Ph.D., Yale
Twentieth-century Latin American literature and cultural studies; gender and queer theory; psychoanalysis; postcolonial criticism
Serge Sobolevitch, Associate Professor of Comparative Literature, FAS–NB; Ph.D., Princeton
Theater arts; symbolism; neoclassicism; theater history
Mary Speer, Professor of French, FAS–NB; Ph.D., Princeton
Medieval language and literature; theory and practice of editing
James Swenson, Associate Professor of French, FAS–NB; Ph.D., Yale
Eighteenth-century literature; critical theory
Antonia Tripoliti, Associate Professor of Religion, FAS–NB; Ph.D., Pennsylvania
Hellenistic Greek literature and thought; patriarchs; Neoplatonism
Ching-I Tu, Professor of Chinese, FAS–NB; Ph.D., Washington
Chinese studies; poetry and literary criticism
Janet A. Walker, Professor of Comparative Literature, FAS–NB; Ph.D., Harvard
The novel; comparative East-West poetics
Steven F. Walker, Professor of Comparative Literature, FAS–NB; Ph.D., Harvard
Renaissance, literature and mythology; Jungian criticism
Andrew Welsh, Associate Professor of English, FAS–NB; Ph.D., Pittsburgh
Old English and medieval studies; poetry
Alan Williams, Professor of French, FAS–NB; Ph.D., SUNY (Buffalo)
Film history and theory; literary theory; contemporary French literature
Yael Zerubavel, Professor of History, FAS–NB, and Director of the Center for the Study of Jewish Life, Ph.D., Pennsylvania
Jewish studies; folklore

Programs

The graduate program in comparative literature enables students to pursue literary studies across national, linguistic, cultural, and disciplinary boundaries. Areas of study include genres, periods, movements, East-West poetics, colonial and postcolonial literatures, and minority and marginalized literatures. In addition, students can explore such issues as literature and gender and the interaction of literature with other fields. The program draws upon a distinguished and diverse faculty from several disciplines. It seeks to combine the rigor of a structured curriculum with flexibility to meet the needs of individual students. Each student arranges his or her program in consultation with the graduate director and an adviser. Students may take as many as 50 percent of their courses from other departments.

Candidates for the M.A. degree must complete 30 credits of course work and pass two foreign language examinations. In addition, they must pass two written examinations, one on theory and a second on a genre studied within a century or a limited period. Candidates for the Ph.D. degree must complete 45 credits of course work and 24 research credits. After they have completed 12 credits at Rutgers, students entering the program with an M.A. degree from another university may apply to transfer as many as 24 credits. They will need permission of the graduate director and the graduate dean, however, to complete the transfer. In addition, candidates must pass three foreign language examinations and the two written examinations mentioned above. There also are three oral examinations. One deals with a second genre studied over at least three centuries, a second covers a literary movement, and the third focuses on a topic related to the dissertation. The degree will be conferred after successful defense of the dissertation. Applications requesting consideration for fellowship grants should be submitted before February 1. The Guide for Graduate Students in Comparative Literature is available in the program office.

Graduate Courses

16:195:501. HISTORY OF LITERARY CRITICISM (3)
Required of all graduate students in comparative literature. Readings in the major theoretical statements of literary critics and aestheticians from Plato to the end of the nineteenth century.

16:195:502. WOMEN AND WRITING (3)
Social, aesthetic, and theoretical issues of women and writing through representative writers, movements, texts, and contexts.

16:195:503. POETRY IN TRANSLATION (3)
Study of translation as creative interpretation, with emphasis on Greco-Roman classics. Readings may include works by Euripides, Homer, Aristophanes, and others.

16:195:505,506. STUDIES IN MEDIEVAL LITERATURE (3,3)
Basic English and continental texts, with emphasis on relationships with modern literature.

16:195:507,508. PROVENCAL LANGUAGE AND LITERATURE (3,3)
Introduction to Old Provençal, with readings in major troubadours, and tracing of troubadour influences on the early lyrics of Western Europe.

16:195:509. STUDIES IN THE RENAISSANCE (3)
Survey of intellectual currents and study of representative works, including epic, lyric, prose fiction, and drama; analysis of stylistic changes from the early to the late Renaissance.

16:195:511. STUDIES IN THE NEOCLASSICAL PERIOD (3)
Late sixteenth- and seventeenth-century development of neoclassical intellectual, artistic, and literary doctrines, stressing the Italian baroque origins of the movement, its French development, and its English repercussions.

16:195:512. THE ENLIGHTENMENT (3)
Major authors studied with emphasis on literary and aesthetic concerns and their link to the philosophical.

16:195:513. ROMANTICISM (3)
European romanticism as a literary movement, emphasizing the genre of the lyric, the novel, and the drama.

16:195:514. SYMBOLISM (3)
English, German, and American roots of French symbolism; its influence on such figures as Ruben Dario and A. Blok.

16:195:515. STUDIES IN CONTEMPORARY LITERATURE (3)
Assessment of major trends in today’s literature, with equal attention paid to the traditions they question and the evolving society they illustrate.

16:195:516. TOPICS IN COMPARATIVE LITERATURE (3)
Directed readings and frequent written analyses.

16:195:517,518. INDIVIDUAL STUDIES IN COMPARATIVE LITERATURE (3,3)

16:195:519. TOPICS IN COMPARATIVE LITERATURE AND OTHER FIELDS (3)

16:195:521. TOPICS IN NON-WESTERN LITERATURE (3)

16:195:601. THE NOVEL (3)
Generic and thematic study of the novel as it evolved in Europe and the Western world in general. Some attention to the non-Western novel.

16:195:602. POETRY (3)
Studies in poetic genres.

16:195:603. DRAMA (3)
Studies in dramatic genres.

16:195:604. STUDIES IN NARRATIVE (3)
Studies in narrative genres.

16:195:605. MAJOR AUTHORS (3)
Close study, in a comparative context, of the works of one or more major authors.
16:195:606. Theory and Practice of Translation (3)
Consideration of various approaches to a common text, with attempts at creative practice.

From historical to scientific, to legal texts; from biography to autobiography, to private correspondence. The rhetoric and form of nonfictional prose and its relation to literature.

16:195:608. Advanced Topics in Comparative Literature (3)
Relationships between literature and such fields as art, history, anthropology, philosophy, and music.

16:195:609. Comparative Literature and Other Fields (3)
Comparative and intertextual studies, and other approaches. Readings of theoretical texts and literary works of Eastern and Western worlds, including conceptions of literature, literary genres, and critical terminology.

16:195:610. East-West Literary Relations (3)
Literary works of Eastern and Western worlds studied in the comparative context of actual historical meetings.

16:195:611. Psychoanalytic Approaches to Literature (3)
Function of literature viewed from a psychoanalytic perspective; (the psycho)analysis of the literary text; approaches to the biography of the artist; literary responses to modern psychoanalysis.

16:195:612. Literature and the Social Order (3)
Society in the text; literary texts in society. Political and ideological aspects of a complex interaction.

16:195:613. Minority Literatures (3)
Literary texts written and read by minority groups in various contexts. The social, philosophical, and aesthetic implications of the very notion of minority literature.

15:617:510. Introduction to Literary Theory (3)
Open to second-term graduate students; priority given to students from programs participating in the Council of Languages and Literature. Introduction to contemporary literary theory, including formalism, structuralism, poststructuralism, feminism, psychoanalysis, cultural studies, and other approaches. Readings of theoretical texts and applications to short literary texts from a variety of literatures.

COMPUTER SCIENCE 198

Degree Programs Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Professor Eric Allender, H442 Hill Center, Busch Campus (732/445-3629)

Members of the Graduate Faculty
Eric Allender, Professor of Computer Science, FAS-NB; Ph.D., Georgia Institute of Technology
Complexity theory; parallel and probabilistic computation

Dave Ang, Ph.D., Columbia
Artificial intelligence representation and theory formation; computational design

Riccardo Bianchini, Assistant Professor of Computer Science, FAS-NB; Ph.D., Rochester
Parallel and distributed systems; operating systems and architecture

Alexander Borgeaud, Professor of Computer Science, FAS-NB; Ph.D., Toronto
Artificial intelligence in the design of information systems

Vesely Chvatil, Professor of Computer Science, FAS-NB; Ph.D., Waterloo
Algorithms, combinatorics, graph theory, operations research

Douglas DeCarlo, Assistant Professor of Computer Science, FAS-NB/Rutgers

Computer graphics, computer vision, human-computer interaction

Stanley Dunn, Professor of Biomedical Engineering, SE; Ph.D., Maryland
Computer vision; image understanding; pattern recognition

Martin Farach-Colton, Associate Professor of Computer Science, FAS-NB; M.D., Johns Hopkins; Ph.D., Maryland
Computational biology; design and analysis of algorithms

Michael Fredman, Professor of Computer Science, FAS-NB; Ph.D., Stanford
Data structures and algorithms; computational complexity

Apostolos Gerasoulis, Professor of Computer Science, FAS-NB; Ph.D., SUNY (Stony Brook)
Parallel processing algorithms; numerical analysis

Michael D. Grigoriadis, Professor of Computer Science, FAS-NB; Ph.D., Wisconsin
Mathematical programming; algorithms; structural and network optimization

Peter Hammer, Professor of Mathematics and Operations Research, FAS-NB; Ph.D., Bucharest
Boolean methods in operations research; discrete optimization

Haym Hirsh, Associate Professor of Computer Science, FAS-NB; Ph.D., Stanford
Artificial intelligence; machine learning

Liviu Iftode, Assistant Professor of Computer Science, FAS-NB; Ph.D., Princeton
Distributed and parallel systems; operating systems; mobile computing

Tomasz Imieliński, Chairperson and Professor of Computer Science, FAS-NB; Ph.D., Polish Academy of Sciences
Mobile wireless computing; data mining

Jeffrey Kahn, Professor of Mathematics, FAS-NB; Ph.D., Ohio State
Combinatorics

Bahman Kalantari, Associate Professor of Computer Science, FAS-NB; Ph.D., Minnesota
Mathematical programming; matrix scaling; duality theory; approximation algorithms; approximation of a polynomial root-finding

Leonid Khachiyan, Professor of Computer Science, FAS-NB; Ph.D., D.Sc., USSR
Academy of Sciences
Mathematical programming; complexity; discrete optimization

Janos Komlós, Professor of Mathematics, FAS-NB; Ph.D., Eötvös Loránd University; Probability; combinatorics; theoretical computer science

Ulrich Kremer, Assistant Professor of Computer Science, FAS-NB; Ph.D., Rice
Compilers for parallel machines; compiler-directed power and energy management

Cezar Iuliu Kulisz, Assistant Professor of Computer Science, FAS-NB; Ph.D., Harvard
Artificial intelligence; pattern recognition; imaging; biomedical applications

Saul Y. Levy, Associate Professor of Computer Science, FAS-NB; Ph.D., Tel Aviv
Massively parallel architectures; algorithms

Richard Martin, Assistant Professor of Computer Science, FAS-NB; Ph.D., California (Berkeley)
High-performance network design and analysis; parallel and distributed systems; languages; high throughput I/O systems

Dimiter Metaxas, Professor of Computer Science, FAS-NB; Ph.D., Toronto
Physio-based modeling; computer graphics and animation; computational vision; medical imaging

L. Thorne McCarty, Professor of Computer Science and Law, FAS-NB; S.L.N.; J.D., Harvard
Artificial intelligence; knowledge representation; logic programming

Peter Meer, Associate Professor of Electrical and Computer Engineering, SE; D.Sc., Technion (Israel)
Computer vision; image processing; pattern recognition

Evangelia Michaili-Tzanakou, Professor of Biomedical Engineering, SE; Ph.D., Syracuse
Visual pattern recognition; neural networks; neural computing

Nalini H. Minsky, Professor of Computer Science, FAS-NB; Ph.D., Harvard
Distributed computing; computer vision; security; software engineering

Badi Naff, Professor of Computer Science, FAS-NB; Ph.D., Massachusetts
Computer networks; network protocols; sensor networks

Craig Neill-Manning, Assistant Professor of Computer Science, FAS-NB; Ph.D., Waseda
Biometric technologies; digital libraries; machine learning; data compression

Thu Nguyen, Assistant Professor of Computer Science, FAS-NB; Ph.D., Washington
Distributed computing; computer networks; networking

Marvin C. Paul, Professor of Computer Science, FAS-NB; B.S., Clarkson
Computer network protocols; data communications

Gerard C. Richter, Professor of Computer Science, FAS-NB; Ph.D., Harvard
Numerical solutions of differential and integral equations

Barbara Ryder, Professor of Computer Science, FAS-NB; Ph.D., Rutgers
Programming languages; software engineering; parallel and distributed computing
Michael Saks, Professor of Mathematics, FAS–NB; Ph.D., Massachusetts Institute of Technology

Combination; complexity theory; algorithms

Charles P. Schmidt, Professor of Psychology, FAS–NB; Ph.D., Iowa

Artificial intelligence; belief systems; inference; cognition

Eduardo Sontag, Professor of Mathematics, FAS–NB; Ph.D., Florida

Nonlinear control; neural networks

William L. Steiger, Professor of Computer Science, FAS–NB; Ph.D., Australian National

Algorithms; parallel computations; computational geometry

Louis Steinberg, Associate Professor of Computer Science, FAS–NB; Ph.D., Stanford

Artificial intelligence; knowledge-based design; VLSI; machine learning

Matthew Stone, Assistant Professor of Computer Science, FAS–NB/Rutgers; Ph.D., Pennsylvania

Natural language generation; conversational dialogue agents; knowledge representation and logic programming

Mario Szegedy, Associate Professor of Computer Science, FAS–NB; Ph.D., Chicago

Complexity theory; PCP theory, combinatorics, geometry, algebra

Endre Szemerédi, State of New Jersey Professor of Computer Science, FAS–NB; Sc.D., Moscow

Number theory; extremal graphs; theoretical computer science

Robert Vichnevetsky, Professor of Computer Science, FAS–NB; Ph.D., Brussels

Numerical analysis simulation of systems; computational fluid dynamics

Associate Members of the Graduate Faculty

Charles L. Hedrick, Director, New Brunswick Computing Services, FAS–NB; Ph.D., Carnegie Mellon

Networking; distributed computing environments

Miles Murdocca, Director, Internet Institute, FAS–NB; Ph.D., Rutgers

Optical computing; adaptive architectures; parallel processing

Donald E. Smith, Research Associate Professor of Computer Science, FAS–NB; Ph.D., Rutgers

Object-oriented languages; A1 for design optimization; intelligent tutoring systems

Brett Vickers, Assistant Professor of Computer Science, FAS–NB; Ph.D., California (Irvine)

High-speed networks and traffic control; multimedia systems

Programs

The program in computer science offers courses in most areas of the field and provides flexible options for advanced research. To enter the program, applicants must have completed an accredited undergraduate program in computer science or at least taken the core courses required for an undergraduate degree in computer science. This includes a substantial background in mathematics, especially calculus, linear algebra, discrete mathematics, and probability/combinatorics. Students should have at least one term of undergraduate mathematics, including calculus and at least one term in all of these subjects and two terms in calculus. Finally, applicants should have taken high-level languages, data structures, assembly language and machine organization, algorithm design and analysis, and an advanced undergraduate-level elective course. All applicants are required to take the Graduate Record Examination's general and computer science examinations.

Candidates for an M.S. degree have two options. They may complete 30 credits of course work and write an acceptable expository essay, or they may take 24 credits of course work and submit a master's thesis worth 6 credits. The candidate also must pass the program's master examination, which is designed to ensure breadth of knowledge. Courses are offered to help students prepare for the examination.

A candidate for the Ph.D. degree must complete 48 hours of course work beyond the bachelor's degree. Students who enter the program after earning a master's degree may apply to transfer 24 of the 48 credits required for the lower degree. Normally, the program requires one year in residence, but in special cases the department will consider alternatives to full-time residence. In addition, the student must pass a qualifying examination before beginning his or her thesis research, which forms a major part of the Ph.D. program (24 credits). The thesis should cover original investigations in one or more problems in computer science. A Master of Philosophy degree is available to doctoral candidates.

Current research being done by the graduate faculty is expected to stimulate doctoral research. Faculty research interests include algorithms, artificial intelligence, combinatorics, complexity theory, computational biology, computational geometry, computational linguistics, data structures, distributed systems, graphics, human-computer interaction, information systems, knowledge representation, machine learning, mathematical programming, and mobile computing. Faculty members also are exploring numerical analysis, networking, optimization, parallel computing and systems, programming languages and compilers, software engineering, and vision. All qualified graduate students are eligible to be considered for teaching assistantships and fellowships. Also, several grant-supported research projects have research assistantships for advanced graduate students.

Several coupled computing environments supporting faculty, graduate students, and undergraduates are accessible from a variety of desktop workstations (Sun, DEC, NCR, Dell, Apple). These environments provide file and secure service using multithreaded servers (Sun, SGI, PC) over high-speed networks that support shared printers and modems. All faculty and graduate student offices are equipped with networked workstations for servers that support large-memory and massive parallel computing. In addition, dedicated research and instructional laboratories are available. Students, for example, have access to electronic laboratories and classrooms, clusters of PCs, and two 64-processor Sun Enterprise 10,000 units. The department's computer facilities are run by the staff of the Laboratory for Computer Science Research.

All facilities are located in the CoRE (Computer Research and Engineering) Building, which also houses the Center for Discrete Mathematics and Theoretical Computer Science (DIMACS), and in the Hill Center for the Mathematical Sciences, which also houses the Library of Mathematical Sciences.

Further information may be found in the Graduate Program in Computer Science, a brochure available from the program and on the web at [web address].

Graduate Courses

16:198:501. (F) DATA STRUCTURES AND ALGORITHMS (3) Intended for students who have not had undergraduate preparation in the subject. May not be taken for credit toward a graduate degree in computer science.

16:198:505. COMPUTER STRUCTURES (3) Lecture, 120. Prerequisite Admission requirements

Hardware subsystems. Computer organization, memory systems, arithmetic, I/O, control, data communications, parallel processors, RISC architectures, and other topics of current interest.

16:198:507. (F) ADVANCED COMPUTER ARCHITECTURE (3) Lecture, 120. Prerequisite Admission requirements

Advanced topics in computer architecture, including advanced processor design, models and workload characteristics for multiprocessor systems, memory and cache coherence and consistency, multiprocessor architecture, and I/O.

16:198:509. (F) FOUNDATIONS OF COMPUTER SCIENCE (3) Lecture, 120. Prerequisite Admission requirements

Introduction to first-order logic, emphasizing methods used in computer science. Introduction to mathematical models of computation, especially deterministic and nondeterministic Turing machines, computability theory, and space and time complexity theory. P and NP.

16:198:510. NUMERICAL ANALYSIS (3) Lecture, 120. Prerequisite Admission requirements

Derivation, analysis, and application of methods used to solve numerical problems with computers; solution of equations by iteration, approximation of functions, differentiation and quadrature, differential equations, linear equations and matrices, least squares.
16:198:533. (S) NATURAL LANGUAGE PROCESSING (3)
Stone. Prerequisite: 16:198:530 or permission of instructor.
Survey of models and reasoning required in computational systems
that use natural language to communicate. Linguistic description
and computational models of syntax, semantics, discourse, and
conversation. Algorithms for parsing, generation, dialogue man-
agement, and collaboration.

16:198:534. (S) COMPUTER VISION (3)
DeCarlo. Prerequisite: 16:198:530 or permission of instructor.
Provides an understanding of processes involved in formation
of images of visual scenes; examines how computational approaches
for transforming, estimating, or recognizing such images are
formulated and implemented. Course also looks at where these
methods can and have been applied. Stresses implementation and
practical use of a wide variety of vision algorithms.

16:198:535. (S) PATTERN RECOGNITION THEORY AND
APPLICATIONS (3)
Kulikowski. Prerequisite: 16:198:530.
Pattern recognition as an inductive process, statistical classification,
parametric and nonparametric methods, adaptive methods, error
estimation, applications in image processing, character, speech
recognition, and diagnostic decision making.

16:198:536. (S) MACHINE LEARNING (3)
Hirah. Prerequisite: 16:198:530 or permission of instructor.
Survey of machine learning, including decision-tree and rule
learning systems, neural networks, Bayesian approaches, nearest
neighbor methods, PAC-learning, genetic algorithms, reinforce-
ment learning, and inductive logic programming.

16:198:538. (S) COMPLEXITY OF COMPUTATION (3)
Allender. Prerequisites: 16:198:509, 513.
Complexity classes, reducibilities, and complete sets. Relations-
ships between time and space complexity, between serial and
parallel computation, and among deterministic, probabilistic,
and nondeterministic computation. Complexity theoretic notions
of randomness.

16:198:539. (F) THEORY OF COMPUTATION (3)
Allender. Prerequisite: 16:198:509 or equivalent.
Mathematical theory of computing machines. Computable func-
tions, recursive and recursively enumerable sets, recursion and
fixed-point theorems, abstract complexity and complexity theoretic
analogues of aspects of recursive-function theory, algorithmic
(Kolmogoroff) complexity theory.

16:198:540. (S) COMBINATORIAL METHODS IN COMPLEXITY
THEORY (3)
Lower bounds in circuit, communication, and proof complexity.
Interactive proof systems, approximation, and consequences.

16:198:541. (S) DATABASE SYSTEMS (3)
Recommended: 16:198:509 or equivalent.
Relational data model. Relational query languages and their
expressiveness. Dependency theory and relational normalization.
Physical database design. Deductive databases and object-oriented
databases. Optimization of relational queries.

16:198:545. (S) DISTRIBUTED SYSTEMS (3)
Bianchini, Ristov, Martin, Nguyen. Prerequisite: 16:198:519.
Basic mechanisms for building distributed systems (remote-
procedure call, synchronization, transactions), components of
distributed operating systems (file systems, distributed shared
memory), and issues in wide-area distributed systems (security,
wide-area clustering).

16:198:552. (S) COMPUTER NETWORKS (3)
Nath, Nguyen, Vickers Prerequisite: 01:198:416.
Computer network protocols and architecture. Protocol design.
Internetworking and TCP/IP. Medium access, routing, and traffic
control. Network security. Integrated and differentiated services.
Network programming. Network simulation.

16:198:553. (F) DESIGN OF INTERNET SERVICES (3)
Vickers. Prerequisite: 16:198:552.
Internet applications, services, and programming models. Middle-
ware, proxy caches, and directory services. Web server architecture
and commodity clustering systems for scalable services. Electronic
commerce. Multimedia streaming. Internet security and firewalls.

16:198:556. (F) PARALLELISM: ALGORITHMS AND COMPLEXITY (3)
Friedman, Stenger, Szmierdi. Prerequisite: 16:198:513.
Recommended: 16:198:505, 514.
Models of parallelism. Complexity classes. Lower bounds, simul-
ations, separation results. Algorithms: arithmetic, comparison tasks,
matrixes, graphs. Routing and scheduling problems. Architectures
and structures.

16:198:580. (S) TOPICS IN COMPUTERS IN BIOMEDICINE (3)
Farad-Cotton, Kulikowski, Nevill-Manning. Prerequisite: 16:198:513 or 520,
depending on the term, or permission of instructor.
Survey of computational methods in biology or medicine; topics
vary from instructor to instructor and may include computational
molecular biology, medical reasoning, and imaging.

16:198:583. (S) TOPICS IN SOFTWARE DESIGN (3)
Miasky. Prerequisites: Proficiency in at least two of the following areas database
systems, programming languages, and AI.
In-depth study of selected topics in the areas of software engineer-
ing, distributed computing, and electronic commerce and security.
Course leads to research in these areas.

16:198:587. (S) EXPERT SYSTEMS (3)
Kulikowski. Prerequisite: 16:198:530 and permission of instructor.
Scope and characterization of expert systems. Consultation
processes and expertise. Knowledge acquisition and representation.
Methods of inference under uncertainty and problem-solving strat-
egies. Review of existing expert systems and specialized languages.

16:198:594. (S) PROGRAMMING LANGUAGES (3)
Ryder. Prerequisite: 16:198:515.
Advanced topics in the design and implementation of program-
ning languages (e.g., compiling for parallel architectures, data-flow
analysis and its applications, very high-level program optimization,
automatic programming, theory of programming languages).

16:198:596. (S) PROBLEMS IN COMPUTER SCIENCE (3)
Allender, Fredman, Stenger, Szmierdi. Prerequisites: 16:198:509 and, depending
on the topic, 16:198:530 and/or 538.
Careful study of papers on the topic selected for the given term.
Examples include parallelism and zero-knowledge proofs, random-
ness and information theory, probabilistic aspects of computation,
topics in complexity theory.

16:198:598. TOPICS IN ARTIFICIAL INTELLIGENCE (3)
Prerequisite: 16:198:530 or permission of instructor.
A special topics course covering particular areas of research in
artificial intelligence.

16:198:601,602,603,604,605,606. SELECTED PROBLEMS IN
COMPUTER SCIENCE (BA,BA,BA,BA,BA,BA)
Prerequisite: 6 graduate credits in computer science with grades of B+ or better.
In-depth study of a topic chosen by the student and professor.

16:198:607,608. PROBLEMS IN NUMERICAL METHODS (BA,BA)
Gerasoulis, Vichnevetsky. Prerequisites 16:198:525 or 526 or 527 or equivalent
experience, and permission of instructor.
Formal lectures and individual projects under the guidance of the
instructor. Topics follow the material covered in 16:198:525,526,
and/or 527. Final project may include the implementation and
evaluation of computer programs.

16:198:671,672,673,674,675,676. SEMINAR IN COMPUTER SCIENCE (3,3,3,3,3,3)
For advanced graduate students who have at least 18 graduate credits in
computer science.
Current research. Several seminars are given each term.
16:198:701, 702. Research in Computer Science (BA,BA)
Prerequisite: Permission of thesis advisor. For students working on their master's theses or doctoral dissertations.

CURATORIAL STUDIES
(See Art History)

ECOLOGY AND EVOLUTION 215

Degree Programs Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Professor Timothy Casey, Environmental and Natural Resources Building, Cook Campus (732/932-2971)

Members of the Graduate Faculty

Kenneth W. Able, Professor and Director of the Marine Field Station, CC/FAS–NB; Ph.D., William and Mary
Ecology and behavior of fishes, marine and estuarine ecology

James E. Applegate, Professor of Ecology, Evolution, and Natural Resources, CC; Ph.D., Pennsylvania
Wildlife management

Tamar Barkay, Associate Professor of Biochemistry and Microbiology, CC; Ph.D., Maryland
The role of microorganisms in transformations of metals in the environment

Joanna Burger, Professor of Biology, FAS-NB, and of Ecology, Evolution, and Natural Resources, CC; Ph.D., Minnesota
Animal behavior and ecology, salt marsh ecology, ecological risk, reptile behavior

Timothy M. Casey, Professor of Entomology, and of Ecology, Evolution, and Natural Resources, CC; Ph.D., California (Los Angeles)
Physiological ecology; energetics and thermoregulation, biodiversity

Jonathan J. Cole, Associate Scientist, Institute of Ecosystem Studies; Ph.D., Cornell
Aquatic ecology; biogeochimistry; microbiology

John Dighton, Professor of Biology, FAS–C, Ph.D., Lardon
Role of fungi in nutrient dynamics in forest soils and impacts of pollution

David W. Ehrenfeld, Professor of Biology, and of Ecology, Evolution, and Natural Resources, CC; M.D., Harvard; Ph.D., Florida
Conservation ecology; biology of marine turtles

Joan G. Ehrenfeld, Professor of Ecology, Evolution, and Natural Resources, CC; Ph.D., CUNY
Plant community ecology

Douglas E. Ewel, Professor of Biochemistry and Microbiology, and of Ecology, Evolution, and Natural Resources, CC; Ph.D., Exeter
Microbial ecology; cellulose recycling, endomycorrhizae

Sandra E. Finslay, Assistant Scientist, Institute of Ecosystem Studies; Ph.D., Georgia
Marine invertebrate ecology

Dunne Fong, Associate Professor of Biological Sciences, FAS–NB; Ph.D., Princeton
Biodiversity; free-living parasitic protozoa

Susan E. Ford, Associate Research Professor of Marine and Coastal Sciences; CC; Ph.D., Duke
Estuarine ecology; host-parasite environment interactions

Randi Guagler, Professor of Ecology, Evolution, and Natural Resources, CC; Ph.D., Wisconsin
Invertebrate pathology, insect mating systems, vector biology

Michael Hochfelder, Professor of Environmental and Community Medicine, UMDNJ-RWJMS; M.D., Albert Einstein; Ph.D., CUNY (Queens)
Avian behavioral ecology; environmental toxicology

J. Frederick Grassle, Director and Professor, Institute of Marine and Coastal Sciences, CC; Ph.D., Duke
Marine ecology; oceanography

Judith P. Grassle, Professor of Marine and Coastal Sciences, IMCS/CC; Ph.D., Duke
Marine invertebrate ecology; population genetics

Edwin J. Green, Professor of Ecology, Evolution, and Natural Resources, CC; Ph.D., Virginia Polytechnic Institute
Forest ecology; quantitative methods

Peter M. Groffman, Associate Scientist, Institute of Ecosystem Studies; Ph.D., Georgia
Terrestrial microbial ecology

Steven N. Handel, Professor of Ecology, Evolution, and Natural Resources, CC; Ph.D., Cornell
Plant population ecology; pollination biology; ecological genetics

Jean M. Hartman, Associate Professor of Landscape Architecture, CC; Ph.D., Connecticut
Plant community ecology; natural disturbance processes; wetlands

Colleen Hatfield, Assistant Professor of Ecology, Evolution, and Natural Resources, CC; Ph.D., New Mexico
Spatial distribution of resources; ecosystems

Geoff Henebry, Assistant Professor of Biological Sciences, FAS–N; Ph.D., Texas (Dallas)
Landscape ecology; remote sensing; ecological modeling

Emanuel B. Hey, Associate Professor of Ecology, Evolution, and Natural Resources, CC; Ph.D., SUNY (Stony Brook)
Molecular evolution; population genetics

Henry B. John-Alder, Associate Professor of Animal Sciences, CC; Ph.D., California (Irvine)
Ecological physiology and endocrinology; herpetology

Karl Kjer, Assistant Professor of Entomology, CC; Ph.D., Minnesota
Phylogeny of the trichoptera; molecular phylogenetics

Eric Knox, Assistant Professor of Biological Sciences, FAS–N; Ph.D., Michigan
Systematics, biogeography, and spatiotemporal; adaptation in plants

Richard L. Lathrop, Jr., Associate Professor of Ecology, Evolution, and Natural Resources, CC; Ph.D., Wisconsin (Madison)
Remote sensing; landscape ecology

Gene E. Likens, Senior Scientist and Director, Institute of Ecosystem Studies; Ph.D., Wisconsin
Limbology; biogeochimistry of streams and lakes; analysis of ecosystems

Robert E. Loveland, Associate Professor of Ecology, Evolution, and Natural Resources, CC; Ph.D., Harvard
Physiological ecology; growth and modeling; salt marsh ecology

Gary M. Lovett, Associate Scientist, Institute of Ecosystem Studies; Ph.D., Dartmouth
Terrestrial ecosystem ecology; biogeochemistry; air pollution

Richard A. Luft, Professor of Marine and Coastal Sciences, CC; Ph.D., Maine
Marine ecology and paleoecology; shelf ecology; deep-sea ecology

Michael L. May, Professor of Entomology, CC; Ph.D., Florida
Physiological and behavioral ecology; insect ecology

Bonnie J. McCoy, Professor of Anthropology and Human Ecology, CC; Ph.D., Columbia
Human ecology; fisheries ecology

George R. McGhee, Jr., Professor of Ecology, FAS–NB; Ph.D., Rochester
Community paleoecology; ecosystem evolution

Terry R. McGuire, Associate Professor of Biological Sciences, FAS–NB; Ph.D., Illinois
Behavioral and neural genetics; behavioral ecology

Mark D. Morgan, Associate Professor of Biology, FAS–C; Ph.D., California (Davis)
Limnology; biogeochimistry; Pine Barrens ecosystems

Peter J. Morin, Professor of Ecology, Evolution, and Natural Resources, CC; Ph.D., Duke
Community ecology; herpetology; aquatic entomology

George E.B. Morren, Jr., Professor of Human Ecology, CC; Ph.D., Columbia
Human ecology; tropical ecosystems; agriculture; people-animal interactions; remote sensing

Richard S. Ostfeld, Assistant Scientist, Institute of Ecosystem Studies; Ph.D., California (Berkeley)
Population and behavioral ecology; small mammals; herbivore-plant interactions

Michael L. Pace, Associate Scientist, Institute of Ecosystem Studies; Ph.D., Georgia
Aquatic ecosystems: plankton; microbial ecology

Steward T.A. Pickett, Associate Professor of Marine and Coastal Sciences, CC; Ph.D., Illinois
Plant populations and community organization; vegetation dynamics

Harry W. Power, Associate Professor of Ecology, Evolution, and Natural Resources, CC; Ph.D., Michigan
Evolution of social behavior; avian ecology

Emily W.B. Russell, Associate Research Professor of Geological Sciences, FAS–N; Ph.D., Rutgers
Paleoecology; long-term plant succession; plant migration

Kathleen M. Scott, Associate Professor of Biological Sciences, FAS–NB; Ph.D., Yale
Mammalogy; functional morphology; paleoecology; arthropod systematics

Peter E. Smouse, Professor of Theoretical and Applied Genetics, and of Ecology, Evolution, and Natural Resources, CC; Ph.D., North Carolina State
Mathematical ecology; ecological genetics

Edmund W. Stiles, Professor of Ecology, Evolution, and Natural Sciences, CC; Ph.D., Washington
Plant-plant interactions; evolutionary ecology; vertebrate ecology

David L. Strayer, Assistant Scientist, Institute of Ecosystem Studies; Ph.D., Cornell
Freshwater ecology; energy flow; ecology of freshwater invertebrates

Michael V.K. Sukhdeo, Associate Professor of Ecology, Evolution, and Natural Resources, CC; Ph.D., Michigan
Systematics, biogeography, and speciation; adaptation in plants

Richard Triemer, Professor of Biological Sciences, FAS–NB; Ph.D., North Carolina (Chapel Hill)
Evolution of algae and protozoa

Robert Trivers, Professor of Anthropology, FAS–NB; Ph.D., Harvard
Natural selection and social theory; evolutionary genetics

87
Andrew P. Vayda, Professor of Anthropology and Human Ecology, CC; Ph.D., Columbia
Human ecology, tropical ecosystems
Daniel Warrenberg, Associate Professor of Environmental and Community Medicine, UMDNJ-RWJMS; Ph.D., SUNY (Stony Brook)
Ordination; spatial patterns; epidemiology
Judith S. Weiss, Professor of Biology, FAS-N; Ph.D., New York
Effects of environmental factors on the development of aquatic animals
James White, Associate Professor of Plant Pathology, CC; Ph.D., Texas
Fungal systematics; ecology of fungi; fungal-plant symbioses
Daniel C. Wilfroth, Professor of Biology, FAS-NB; Ph.D., California (Berkeley)
Physiological ecology of eutrophers

Adjunct Members of the Graduate Faculty
Steven E. Clemants, Vice President for Science, Brooklyn Botanic Garden; Ph.D., CUNY
Flora of New York metro region, systematics of Chenopod
Vladcheslav Deuschchenov, Research Scientist, Phytech, Inc., CC; Ph.D., Mascow
Pedagogical
Plant response to heavy-metal-contaminated soils
Brian L. Howes, Assistant Scientist, Woods Hole Oceanographic Institution;
Ph.D., Boston
Biogeochemistry of coastal wetlands
Michael J. Kennish, Research Marine Scientist in Marine and Coastal Sciences;
CC; Ph.D., Rutgers
Marine pollution, marine ecology, marine geology
C. Everett Smith, Curator, American Museum of Natural History; Ph.D., Michigan
Fish ecology

Programs
The graduate program in ecology and evolution is concerned with the relations between organisms and the environment and with interactions among organisms. It is sponsored by participating faculties in the biological sciences. Normally, a one-year residence of two full-time, consecutive terms following the qualifying examination is required for the Ph.D. candidate. A minimum of 72 credits (30 in course work, 42 in research) is required. Two M.S. programs require 30 credits, 18 of which must be at the graduate level.

The program provides a broad spectrum of courses and research opportunities to qualified students who seek careers in university teaching and research or employment opportunities in governmental agencies or private institutions.

Areas of specialization include behavior, conservation biology, ecosystem ecology, evolutionary biology, marine biology, population and community ecology, population genetics, molecular evolution, restoration ecology, and behavior.

Graduate Courses

16:215:506. (F) ESTUARINE ECOLOGY (4)
Able, Loveland. Sam. 2 hrs., lab. 3 hrs
Fundamental study of aquatic organisms in the estuarine waters of coastal New Jersey; life cycles, food chains, and the relationships of organisms to one another.

16:215:510. CONSERVATION ECOLOGY (3)
D. Ehrenfeld
Major threats to ecosystems and species; the differential responses of different ecosystems to external perturbations; techniques of ameliorating environmental damage and preserving species; the role of the ecologist in conservation.

16:215:513. POPULATION GENETICS (3)
Smouse. Prerequisite Genetcs
Factors affecting gene frequencies in populations and leading to the origin of new species. An introduction to the analysis of continuously distributed polygenic traits.

16:215:514. CONSERVATION GENETICS (3)
Focus on applications of population genetic and quantitative genetic approaches to captive breeding and in situ conservation of endangered species. Genetic considerations intertwined with demographic problems facing species in decline resulting from habitat loss or fragmentation.

16:215:515. (F) NATURAL HISTORY OF NEW JERSEY (3)
Lec 2 hrs., lab. 3 hrs Prerequisite General biology
Ecological aspects of the natural history of New Jersey. Field and laboratory studies of special use and interest to biology teachers.

16:215:525. (F) ECOLOGY OF FRESHWATER ORGANISMS (4)
Lec 3 hrs., lab. 3 hrs Prerequisite Limnology or aquatic biology
Detailed consideration of distribution, abundance, and metabolism of organisms in lakes and streams. An introduction to the theory and techniques of systems ecology.

16:215:528. (S) BEHAVIORAL ECOLOGY OF FISH (3)
Investigation into fish behavior, with emphasis on the ecological significance of migrations, reproduction, feeding, habitat selection, and antipredator strategies. Student research topics.

16:215:531. (F) ADVANCED ORNITHOLOGY (3)
Study of avian biology, including taxonomy, population dynamics, and distribution of birds, and a critical review of current ornithological research. The laboratory consists of field and museum experience and independent research.

16:215:533. (S) THE BEHAVIOR OF ANIMAL POPULATIONS (3)
Burger. Prerequisite Animal behavior or ecology.
Topics in ecological adaptations of behavior; emphasis on the population level. Student research topics.

16:215:546. BEHAVIORAL GENETICS (4)
McGuire. Prerequisite Background in genetics, behavior. Recommended: Statistics.

16:215:550. ADVANCED EVOLUTION (4)
Handel, Hey. Prerequisite Genetics
Examination of the major elements and controversies of evolutionary theory. Emphasis on genetic variation, natural selection, adaptation, and speciation.

16:215:555. ECOLOGY AND ECOLOGICAL RISK (3)
Burger
Principles of ecology and risk analysis, environmental hazards and resultant risk analysis.

16:215:565. COMMUNITY DYNAMICS (4)
Morin
Patterns and processes involving sets of two or more coexisting species. Theoretical and empirical studies.

16:215:570. MOLECULAR EVOLUTION (3)
Hey
Analysis of actual data sets estimating historical process.

16:215:575. (F) QUANTITATIVE ECOLOGY AND EVOLUTION (3)
Morin. Prerequisite Calculus. Recommended FORTRAN programming.
Application of differential equations and linear algebra to specific ecological phenomena (e.g., growth, competition, predator-prey). Dynamic modeling of simple (three- and four-component) ecosystems; students develop their own models.

16:215:582. TOPICS IN SOCIOBIOLOGY (3)
Powel. Prerequisite Genetcs, ecology, and permission of instructor.
Application of Darwinian reasoning and the comparative method to the study of the evolution and expression of social behavior. Rigorous formation and testing of disprovable hypotheses emphasized.

16:215:588. TOPICS IN ADVANCED ECOLOGY (3)
Literature review and synthesis of a selected current topic in applied or theoretical ecology.
Graduate Courses in Other Programs

Descriptions for the courses listed below can be found elsewhere in this catalog and in the graduate catalogs for Camden and Newark. In addition to these courses taught by members and associates of the ecology program, many other courses of interest to ecology graduate students are offered by the programs in entomology, economics, plant science and technology.

Lec./sem. 3 hrs., lab./field 3 hrs. Prerequisite: Ecology.
Population dynamics and demography, natural selection and evolution, life history strategies, population regulatory mechanisms, species interactions and coevolution, variability among populations and ecological differentiation, and island biogeography.

16:215:595. (F) Coadaptation of Plants and Animals (3)
Stites. Prerequisite: Botany or ecology or evolutionary biology.
Introduction to coevolution, plant-herbivore interaction, pollination biology, seed predation, and dispersal.

Sukhdin
Introductory seminar required for all first-year ecology and evolution students.

16:215:603,604. Special Topics in Ecology (BA,BA)

Individual study in an area of expertise of the faculty.

Critical review of ecosystem ecology, including biogeochemical cycles and budgets, ecosystem energetics, the theory and history of ecosystem ecology, and the response of ecosystems to disturbance.

ECONOMICS 220

Degree Programs Offered: Master of Arts, Doctor of Philosophy
Director of Graduate Program: Professor Barry Sophier,
New Jersey Hall, College Avenue Campus (732/932-7451)
Web Site: http://www.economics.rutgers.edu
Email: gradprog@econ.rutgers.edu

Members of the Graduate Faculty

Robert J. Alexander, Professor Emeritus of Economics, FAS–NB; Ph.D., Columbia
Latin American economic development and policies; history of radical movement

Rosanne Altshuler, Associate Professor of Economics, FAS–NB; Ph.D., Pennsylvania
Tax policy analysis

Monroe Berkowitz, Professor Emeritus of Economics, FAS–NB; Ph.D., Columbia
Economics of disability programs

Michael D. Bordo, Professor of Economics, FAS–NB; Ph.D., Chicago
Monetary history and theory

John F. Burton, Jr., Professor of Industrial Relations and Human Resources, SMLR; Prerequisite: Ph.D., Michigan
Social insurance; employment law; collective bargaining

Roberto Chang, Associate Professor of Economics, FAS–NB; Ph.D., Pennsylvania
Macroeconomic policy, open economy macroeconomics

Manoranjan Dutta, Professor of Economics, FAS–NB; Ph.D., Pennsylvania
U.S.-Asia economics; econometric models; macroeconomics; new perspectives

Ira N. Gaing, Professor of Economics, FAS–NB; Ph.D., Cornell
Economic development; labor economics

Gary A. Giggioatto, Professor of Economics, FAS–NB; Ph.D., Columbia
Economic theory and social choice

Norman Clickmann, Director, Center for Urban Policy Research and State of New Jersey Professor of Urban Planning and Policy Research, EJBSPPP; Ph.D., Pennsylvania
Urban and regional economics

H. Peter Gray, Professor Emeritus of Economics Ph.D., California
International trade and business finance

Mark R. Kilglingsworth, Chair and Professor of Economics, FAS–NB; D.Phil, Oxford
Labor economics

Roger W. Klein, Professor of Economics, FAS–NB; Ph.D., Yale
Econometrics

Cheng-few Lee, Professor of Finance, SB–NB; Ph.D., SUNY (Buffalo)
Health economics

Peter D. Loeb, Professor of Economics, FAS–N; Ph.D., Rutgers
Applied econometrics and transportation economics

Matiyahu Marcus, Professor of Economics, FAS–NB; Ph.D., Brown
Competition in regulated industries; cost of capital of public utilities

Richard P. McLean, Professor of Economics, FAS–NB; Ph.D., SUNY (Stony Brook)
Game theory and its applications

Barry Maslow, Associate Professor of Economics, FAS–NB; Ph.D., Pennsylvania
Macroeconomics; international finance; time-series econometrics

Peter J. Parks, Associate Professor of Agricultural Economics, CC; Ph.D., California (Berkeley)
Technological change in LDC agriculture; science and technology policy

Thomas J. Pray, Professor of Economics, FAS–NB; Ph.D., Stanford
International trade; trade policy

Hugh T. Rockoff, Professor of Economics, FAS–NB; Ph.D., Chicago
American economic history

Jeffrey Rubin, Professor of Economics, FAS–NB; Ph.D., Duke
Health economics

Louise B. Russell, Professor of Economics, FAS–NB; Ph.D., Harvard
Economics of medical care; cost-effectiveness and cost-benefit analysis

Kazuo Sato, Professor of Economics, FAS–NB; Ph.D., Yale
Macroeconomic theory and international economics

Joseph J. Senecka, Professor of Economics, FAS–NB; University Vice President for Academic Affairs; Ph.D., Pennsylvania
Environmental economics; state and local economic policy

Neil Shefflin, Associate Professor of Economics, FAS–NB; Ph.D., Rutgers
Applied econometrics; financial economics

Leslie E. Small, Professor of Agricultural Economics, CC; Ph.D., Cornell
Irrigation management and agricultural development in Asia

Barry Sophier, Associate Professor of Economics, FAS–NB; Ph.D., Iowa
Experimental economics
Robert C. Stuait, Professor of Economics, FAS–NB; Ph.D., Wisconsin
Comparative economic systems
Shanti S. Tangri, Professor Emeritus of Economics, FAS–NB; Ph.D.,
California (Berkeley)
Population, development, environmental economics
Michael K. Tausch, Professor Emeritus of Economics, FAS–NB; Ph.D.,
Massachusetts Institute of Technology
Income and wealth distributions
Hiroki Tsurumi, Professor of Economics, FAS–NB; Ph.D., Pennsylvania
Bayesian econometrics and statistical inference
Francis C.M. Vella, Associate Professor of Economics, FAS–NB; Ph.D., Rochester
Applied econometrics
Eugene N. White, Professor of Economics, FAS–NB; Ph.D., Illinois
Monetary and financial history
John D. Worrall, Professor of Economics, FAS–C; Ph.D., Rutgers
Labor supply; Workers' Compensation Insurance; economics of disability

Associate Members of the Graduate Faculty
Adesoji O. Adelajy, Professor of Agricultural and Food Economics, CC; Ph.D.,
West Virginia
Production economics; econometrics; economics of food firms; agricultural policy
at the urban fringe
Colin Campbell, Assistant Professor of Economics, FAS–NB; Ph.D., Northwestern
Industrial organization
Sewin Chan, Assistant Professor of Economics, FAS–NB; Ph.D., Columbia
Public economics; household behavior
Simon J. Evenett, Assistant Professor of Economics, FAS–NB; Ph.D., Yale
International trade
Eric Friedman, Assistant Professor of Economics, FAS–NB; Ph.D., California (Berkeley)
Microeconomics; game theory; cost allocation learning
Jessie C. Hartline, Associate Professor of Economics, FAS–NB; Ph.D., Rutgers
Finance; international finance; development; sector-reduction productivity
Joseph P. Hughes, Associate Professor of Economics, FAS–NB; Ph.D., North Carolina
Production economics; efficiency measurement; banking
Douglas L. Kruse, Professor of Human Resource Management, SMLR;
Ph.D., Harvard
Profit sharing; employee ownership; worker displacement; wage differentials; disability
Jinpeng Ma, Associate Professor of Economics, FAS–C; Ph.D., SUNY
(Stony Brook)
Economic theory
Filippo Occino, Assistant Professor of Economics, FAS–NB; Ph.D., Chicago
Monetary economics
Oded Palmon, Associate Professor of Finance, SB–NB; Ph.D., Chicago
Public finance; applied microeconomics; corporate finance
Argia M. Sbordone, Assistant Professor of Economics, FAS–NB; Ph.D., Chicago
Macroeconomics; business cycle; analysis; monetary economics
Stephanie Schmitt-Grohe, Assistant Professor of Economics, FAS–NB;
Ph.D., Chicago
Macroeconomics
Hilary Sigman, Assistant Professor of Economics, FAS–NB; Ph.D., Massachusetts
Institute of Technology
Environmental economics
Yanni Toumanas, Assistant Professor of Economics, FAS–N; Ph.D., Northwestern
Theory of the firm; information economics; industrial organization; bargaining theory

Programs
The M.A. and Ph.D. are full-time day programs. Entering M.A.
and Ph.D. students are expected to have a basic knowledge of
calculus (differential and integral) and linear algebra, which are
used in the basic microeconomics and statistics courses. Courses
16:220:500, 501, 502, 504, 505, 506, and 507 are prerequisites for each
elective field course.

The M.A. program offers students two options, one with a
master's essay and one without. Under the first plan, students take
thirty hours of course work and complete a master's essay. The
oral examination in defense of the essay, which serves as the com-
prehensive examination for the master's degree, includes tests on
economic theory and quantitative methods. Students who complete
30 credits and pass the theory portions of the Ph.D. qualifying
examination can earn the M.A. degree without writing a master's
essay. Students in the M.A. program are required to take two term courses in microeconomic theory and macroeconomic theory, one course in statistical methods and econometrics, and two courses in economic history.

The Ph.D. program consists of course work, qualifying examina-
tions, and the dissertation. The Ph.D. requires 48 credits of course
work (sixteen courses). Because students are not permitted to take
more than four courses a term, course work for the Ph.D. requires
at least two academic years to complete. Graduate and teaching
assistants normally are not permitted to take more than three
courses a term. The Master of Philosophy degree is available to
doctoral candidates.

Ph.D. students take one course in mathematical methods, two
courses in microeconomic theory, two courses in macroeconomic
theory, 6 credits in statistical methods and econometrics, one course
in economic history, and one course in either applied microeco-
nometrics or macroeconometrics. The balance of the course of study is
determined by each student's requirements. To ensure breadth of
coverage, each Ph.D. student is required to take at least two courses
in two elective fields offered in the program.

There are nine elective fields: economic theory, econometrics,
ecconomic history, monetary theory, public finance, development
economics and economic systems, international economics, labor
and human resources, and industrial organization.

The first part of the Ph.D. qualifying examination is a written test
in microeconomic theory and macroeconomic theory. Students are
expected to take this part after one year of course work. The second
part of the qualifying exam, consisting of exams in two elective
fields, must be taken within 18 months of successful completion
of the microeconomic and macroeconomic theory examinations.
A student who fails any written examination must retake it at
the next examination period. (Examinations are given twice yearly.)

Doctoral students also are required to complete a second-year
research paper over the summer of their second year and write a
dissertation proposal in the summer of their third year. The
dissertation, which is written under the supervision of a faculty
committee, must be defended in a final examination before the
student's committee.

Graduate Courses

16:220:500. MATHEMATICAL METHODS FOR MICROECONOMICS (3)
Prerequisites: Background in calculus and linear algebra.
Basic mathematical tools for consumer and producer theory.
Compact sets; differential calculus; sets; separation theorems;
constrained optimization and the Kuhn-Tucker theorem; applications
in consumer and producer theory.

16:220:501. MICROECONOMIC THEORY I (3)
Corequisite 16:220:500 or permission of instructor.
General equilibrium theory; the Arrow-Debreu model, decision
making under uncertainty; the von Neumann-Morgenstern theory,
risk aversion, applications to insurance problems and portfolio
choice, applications to competitive equilibrium with uncertainty.

16:220:502. MICROECONOMIC THEORY II (3)
Prerequisite 16:220:501.
Introduction to the theory of games and related economic models
with informational asymmetries. Topics include noncooperative
games and models of moral hazard and adverse selection.

16:220:503. MATHEMATICAL METHODS FOR
MACROECONOMICS (3)
Prerequisites: Background in calculus and linear algebra.
Basic mathematical tools for dynamic economic models. Linear
algebra from echelon form to projection operators; quadratic
forms; linear difference and differential equations; dynamic
programming and control theory; applications to dynamic models
of macroeconomics; growth and human capital.

16:220:504. MACROECONOMIC THEORY I (3)
Introduction to economic dynamics, economic growth, business
cycles, and the role of macroeconomic policy.

16:220:505. MACROECONOMIC THEORY II (3)
Prerequisite 16:220:504.
General equilibrium modeling of the macroeconomy. Topics
include the stochastic growth model and multiple equilibrium.
Empirical validation is stressed.
Prerequisite: Background in calculus and linear algebra.
Background in statistical inferential procedures used in economic data analyses. Sampling theory and Bayesian viewpoints. Probability, random variables and distributions, estimation, testing hypotheses, and sampling distribution of estimators.

16:220:507. Econometrics I (3)
Prerequisite: 16:220:506 or equivalent.

16:220:508. Econometrics II (3)
Prerequisite 16:220:507.
Estimation and testing in simultaneous equation systems. Multivariate methods and time series analysis. Bayesian inference in econometrics.

16:220:509. Applied Econometrics for Microeconomics (3)
Prerequisite 16:220:507 or permission of instructor.
Econometric tools for empirical microeconomic models. Parametric and nonparametric qualitative choice models; survival analysis. Recent papers discussed.

Prerequisite 16:220:507 or permission of instructor.
Econometric tools for empirical macroeconomic time-series models. Exogeneity tests; spectral analysis; nonstationarity; state-space models; structural shifts and prediction. Recent papers discussed.

16:220:513. Monetary Theory (3)
Theories of the role of money in relation to the volume of economic activity and the price level.

16:220:514. Structure of the Financial System (3)
The financial system and its relationship to the real sector, including portfolio theory, the term structure of interest rates, and other theoretical and empirical issues in finance.

16:220:515. Public Economics I (3)
Welfare theory, collective action, externalities, public goods, benefit-cost analysis, social-welfare programs, social insurance.

16:220:516. Public Economics II (3)
Tax-policy analysis. Optimal taxation; tax-incidence analysis; the efficiency costs of taxation; and the measurement of the effects of taxation on economic behavior.

16:220:517. The Economics of the State and Local Public Sector (3)
Economics of state and local governments. Evolution of federalism; expenditure and revenue decisions and intergovernmental grants; stabilization and distributional aspects of state/local finances. Several specific state/local problems.

Major determinants of international trade flows, including technological differences, factor endowments, and monopolistic competition. Recent theoretical and empirical innovations, including theories of tariff formation and the political economy of trade policy, and evaluations of competing explanations of trade flows.

16:220:519. International Economics II (3)

16:220:520. Economics of the Labor Market (3)
Theory and evidence on labor supply, static and dynamic. Theory and evidence on labor demand. Wage differentials and unemployment. Applications to policy problems: economics of the welfare system; low-income labor markets. Economics of trade unions.

16:220:521. Economics of Human Resources (3)
Analysis of advanced topics in labor economics, with emphasis on prospects for original research. Topics may include investment in human capital; job search, matching, and turnover; labor contracts; race and sex discrimination; bargaining and strikes; economics of the family; population economics; unemployment; distribution of earnings.

16:220:522. Industrial Organization I (3)
Models of imperfect competition. Applications to price determination, vertical integration, product quality, advertising, and research and development. Strategic models of entry deterrence and contracting. Implications for antitrust policy. Empirical research on industry structure, conduct, and performance.

16:220:523. Industrial Organization II (3)

Analysis of differing economic systems with emphasis on plan/market comparisons, performance, economic reform, and contemporary issues of transition.

16:220:526. Economic Development I (3)
Problems of resource allocation for promoting economic growth and structural change in the context of poverty and inequality.

16:220:527. Economic Development II (3)
Selected topics in contemporary development economics.

16:220:540. European Economic History (3)
Origins and spread of industrialization; world war and depression; economic integration; and European union.

16:220:541. American Economic History (3)
The colonial economy; economics of slavery and race; industrialization; development of agriculture; banking and financial markets; the Great Depression; the role of government; and long-term economic growth.

16:220:545. Uncertainty and Imperfect Information (3)
Blaug, M. Econ. Prerequisite: 16:220:501.
Theory of choice under risk and uncertainty, risk aversion, stochastic dominance. Selected applications include contingent claims, rational expectations, screening, search, adverse selection, moral hazard, agency, common knowledge, and games of incomplete information.

16:220:546. Topics in Game Theory (3)
Introduction to topics in noncooperative and cooperative game theory that are of relevance to economic problems.

Selected problems in the design and economic analysis of voting systems. Emphasis on the role of voting institutions in various applied contexts in micro- and macroeconomics.

16:220:548. Advanced Topics in Microeconomics (3)
Topics chosen by instructor may include theory of optimal control, general equilibrium, natural resources, incomplete markets.
16:220:549. Experimental Economics (3)
Introduction to analysis by experimental methods of selected problems in economic theory, focusing on theory of individual choice under uncertainty and game theory, as well as bargaining theory, industrial organization, social choice theory, and financial markets.

16:220:602. Seminar in Econometrics (3)
Statistical inference in econometrics from Bayesian and non-Bayesian points of view. Special topics may include inference on structural shifts, model selection, Kalman-filter models, and qualitative choice models.

16:220:603. Seminar in Monetary Theory (3)
Advanced topics with emphasis on the main current controversies in the field.

16:220:604. Seminar in Public Economics (3)
Selected topics in recent research in economic history.

16:220:605. Seminar in Labor and Human Resources (3)
Special topics. Topics have included economics of transfer programs, economics of health, economics of fertility.

16:220:606. Seminar in International Economics (3)
Economic systems and related issues of transition.

16:220:607. Seminar in Economics of Latin America (3)
Analysis of selected topics relating to the comparison of planned and market economic systems and related issues of transition.

Advanced topics in development economics emphasizing skills in modeling and estimation.

16:220:609. Seminar in Economic Development (3)
Papers by students, faculty, and visiting scholars on topics selected by the seminar participants.

16:220:610. Seminar in Macroeconomics (3)
Topics and controversies at the frontier of macroeconomics. Emphasis on development of analytical skills and use of empirical and theoretical tools.

16:220:611. Seminar in Applied Econometrics (3)
Applied work in macroeconometrics and microeconometrics; use of data and standard statistical packages.

16:220:612. Seminar in Macroeconomics (3)
Selected topics in recent research in economic history.

16:220:701,702. Research in Economics (BA,BA)

EDUCATION 300

Degree Program Offered: Doctor of Philosophy

Director of Graduate Program: Professor Richard DeLisi, 10 Seminary Place, College Avenue Campus (732)/932-7496, ext. 8104

Members of the Graduate Faculty:

Steven Barnett, Professor of Educational Theory, Policy, and Administration, GSE; Ph.D., Michigan
Economics of education; educational policy; evaluation

Harold Bedar, Professor of Educational Theory, Policy, and Administration, GSE; Ed.D., Columbia
Adult-literacy policy; adult education

Alisa A. Belzer, Assistant Professor of Educational Theory, Policy, and Administration, GSE; Ph.D., Pennsylvania
Adult-literacy education, professional development and policy

Sarane Boeckx, Professor of Educational Theory, Policy, and Administration, GSE; Ph.D., Johns Hopkins
Sociology of education; sociology of children; cross-cultural analysis of child care and early childhood education

Katrina E. Bulkley, Assistant Professor of Educational Theory, Policy, and Administration, GSE; Ph.D., Stanford
Educational policy and politics; educational reform, and school choice

Gregory Camilli, Professor of Educational Psychology, GSE; Ph.D., Colorado
Statistics and measurement

Kenneth D. Carlson, Professor of Educational Theory, Policy, and Administration, GSE; Ed.D., SUNY (Buffalo)
History of philosophy of education

Clark Chinn, Assistant Professor of Educational Psychology, GSE; Ph.D., Illinois
Economics of transfer programs, economics of health, economics of fertility

James M. Giarelli, Assistant Professor of Educational Theory, Policy, and Administration, GSE; Ph.D., Florida
Educational policy; management industrial relations and human resources

Lesley Morrow, Associate Professor of Educational Psychology, GSE; Ph.D., Pennsylvania
Developmental psychology

Bari Erlichson, Assistant Professor of Educational Policy, EJBSPPP; Ph.D., Stanford
American government; education policy

Eugenia Etikina, Assistant Professor of Educational Psychology, GSE; Ph.D., Moscow State Pedagogical University
Psychology and science education

Richard Falk, Professor of Mathematics, FAS-NB; Ph.D., Cornell
Applied mathematics; numerical analysis

William Firestone, Professor of Educational Theory, Policy, and Administration, GSE; Ph.D., Chicago
Applied mathematics; numerical analysis

Eugenia Etkina, Associate Professor of Educational Psychology, GSE; Ph.D., Pennsylvania
Developmental psychology

David Goldin, Associate Professor of Educational Psychology, GSE; Ph.D., Princeton
Economics of education; educational policy

Martin Gelissen, Assistant Professor of Educational Psychology, GSE; Ph.D., Indiana
Psychology and science education

Susan Golbeck, Associate Professor of Educational Psychology, GSE; Ph.D., Pennsylvania State University
Psychology and science education

Richard DeLisi, Professor of Educational Psychology, GSE; Ph.D., Catholic University of America
Educational psychology; policy implementation; math standards implementation

William Garman, Associate Professor of Educational Theory, Policy, and Administration, GSE; Ed.D., Pennsylvania State University
Economics of education; educational policy

James A. Giarelli, Professor of Educational Theory, Policy, and Administration, GSE; Ph.D., Florida
Educational psychology; policy; ethics and education; civic education

Martin Giese, Assistant Professor of Educational Psychology, GSE; Ph.D., Indiana
Psychology and science education

Susan Golbeck, Associate Professor of Educational Psychology, GSE; Ph.D., Pennsylvania State University
Psychology and science education

Gerald Goldin, Professor of Educational Theory, Policy, and Administration, GSE; Ph.D., Princeton
Mathematics

David Gruen, Assistant Professor of Educational Psychology, GSE; Ph.D., Massachusetts Institute of Technology
Public policy; role of experts

Sandra Harris, Professor of Educational Psychology, FAS-NB/GSAPP; Ph.D., New York (Buffalo)
Economics of education; educational policy

Cindy Hmelo, Assistant Professor of Educational Psychology, GSE; Ph.D., Vanderbilt
Psychology and science education

Ivan Z. Holowinsky, Professor of Educational Psychology, GSE; Ed.D., Temple University
Mental retardation; developmental disability

Linda Lederer, Professor of Educational Psychology, GSE; Ph.D., Rutgers
Instructional development; educational policy

Barbara Lee, Professor of Educational Psychology, GSE; Ed.D., Ohio State University
Public policy; role of experts

Lorraine McCune, Professor of Educational Psychology, GSE; Ed.D., Rutgers
Instructional development; educational policy

Richard Muller, Assistant Professor of Educational Psychology, FAS-NB; Ph.D., Pittsburgh
Psychology and science education

Naftaly Minsky, Professor of Educational Psychology, FAS-NB; Ph.D., Hebrew University
Psychology and science education

Leslie Morrow, Associate Professor of Educational Psychology, GSE; Ph.D., Fordham
Instructional development; educational policy

Joseph Naus, Professor of Educational Psychology, FAS-NB; Ph.D., Harvard
Psychology and science education

Angela O'Donnell, Associate Professor of Educational Psychology, GSE; Ph.D., Texas A&M University
Psychology and science education

Douglas Penfield, Professor of Educational Psychology, GSE; Ph.D., California (Berkeley)
Psychology and science education

Educational Psychology and Developmental Psychology
Wallis Reid, Associate Professor of Learning and Teaching, GSE; Ph.D., Columbia
Fred S. Roberts, Professor of Mathematics, FAS-NB/DIMACS; Ph.D., Stanford
Discrete mathematics, graph theory, decision making, measurement theory.
Joseph Rosenheim, Professor of Mathematics, FAS-NB; Ph.D., Cornell
Mathematics education.
Alan Rosenthal, Professor of Public Policy, EJBSPPP; Ph.D., Princeton
Political science.
Sharon Ryan, Assistant Professor of Learning and Teaching, GSE; Ph.D., Columbia
Early childhood education.
Larry Scanlon, Associate Professor of English, FAS-NB; Ph.D., Johns Hopkins
Medieval studies; pedagogy; humanities computing.
Nobuo Shimahara, Professor of Educational Theory, Policy, and Administration,
GSE; Ed.D., Boston
Anthropology of education; ethnographic research methods; comparative education.
Jeffrey Smith, Professor of Educational Psychology, GSE; Ph.D., Chicago
Measurement; research methods.
Michael Smith, Associate Professor of Learning and Teaching, GSE; Ph.D., Chicago
Secondary English education.
Dorothy Steckland, State of New Jersey Professor of Reading, GSE; Ph.D.,
New York
Literacy: reading and writing development.
Daniel Tanner, Professor of Educational Theory, Policy, and Administration, GSE;
Ph.D., Ohio State
Curriculum policy at federal, state, and local levels.
Saundra Tomlinson-Clarke, Associate Professor of Educational Psychology, GSE;
Ph.D., Florida State
Multicultural, psychosocial development.
Barbara Turnbull, Assistant Professor of Educational Psychology, GSE, Ph.D.,
British Columbia
Evaluation and measurement.
Kay Vandergrift, Professor of Library and Information Science, SCILS;
Ed.D., Columbia
Library services for children; educational media services.
Carl Van Horn, Professor of Public Policy, EJBSPPP; Ph.D., Ohio State
Employment policy and public policy.
Stanley Wietlispach, Professor of Educational Psychology, GSE; Ph.D., Columbia
Special education law and policy.
Carol Weinstein, Professor of Learning and Teaching, GSE; Ed.D., Harvard
Classroom management; learning to teach.
Louise Wilkinson, Professor of Educational Psychology and Dean of the Graduate
School of Education, Ed.D., Harvard
Language and social development.
Robert Wilson, Professor of Mathematics, FAS-NB; Ph.D., Yale
Mathematics.
Nancy Wolff, Assistant Professor of Urban Studies and Community Health,
EJBSPPP; Ph.D., Iowa
Methodology; coding methods; program evaluation.
John Young, Associate Professor of Educational Psychology, GSE; Ph.D., Stanford
Educational statistics and measurement.

Programs

The Ph.D. in education prepares individuals for faculty and research positions in academia, government, and the private sector. There are four areas of focus: educational policy, mathematics education, literacy education, and educational psychology.

In the educational-policy focus, students research specific educational-policy issues and examine how those policies get formulated and how they are implemented. They also look at the intended and unintended outcomes of these educational policies. Graduates of the program are prepared to seek research jobs in academia, government, or business.

Students opting for the mathematics-education track learn how to conduct basic research on the ways people at all age levels learn and deal with mathematical concepts. Students research the psychology of learning mathematics and the way that individuals solve problems. A strong background in mathematics, statistics, or computer science is required for admission. The program is designed to prepare students for academic careers, as opposed to the Ed.D. program, which develops school leaders in mathematics education.

In the literacy focus, students investigate the range of literacies in a global, multicultural society. They look at particular curricular choices and instructional strategies that foster learning. They examine the authoritative use of language in a wide range of settings and review the history and politics of literacy education. Students pay particular attention to the effects of culture, social class, and status on the ways language is used, valued, and understood. The Ph.D. program is centered on basic research, in contrast to the Ed.D., which stresses applying and interpreting new discoveries.

The educational psychology focus prepares students to advance psychological theory through empirical inquiry and to apply the results to improving educational practice. The program uses the latest scientific theories to explain how people learn, how they teach others, and how they differ from one another. Students apply the result of this basic psychological research to improving the way people are taught and how they learn. A strong background in research methodology is critical to this endeavor.

Only students who have demonstrated the potential for outstanding research are selected for the program. Among the factors considered for admission are a baccalaureate degree in a relevant area; an undergraduate cumulative grade-point average of at least 3.0; a cumulative graduate grade-point average of at least 3.5 (if applicable); strong performance on the Graduate Record Examination Test; a personal statement reflecting prior experience or an interest in independent scholarship; and three letters of recommendation from former professors or employers. In addition, foreign applicants must provide a TOEFL score indicative of proficiency in English. Additional criteria may be set by each focus track.

Students must complete at least 48 credits of course work, which is distributed as follows: 6 credits in prethesis research in the education concentration (policy, mathematics, literacy, educational psychology); 6 credits in the education core (educational theory, research, and practice); at least 12 credits in research methods, including courses in quantitative and qualitative methodologies; at least 18 credits in the education concentration; and at least 6 credits in the appropriate cognate disciplines. An additional 24 credits of dissertation research are required. Students must maintain a cumulative GPA of at least 3.25 in their doctoral course work. Students may petition the faculty of the Ph.D. in education to transfer up to 24 graduate credits from course work taken elsewhere toward these requirements.

Each Ph.D. student is assigned a research adviser. Students must complete at least two research projects before they are admitted to dissertation candidacy, and they must pass a qualifying examination that is evaluated by a faculty committee in the area of concentration. Students are admitted to dissertation candidacy by the faculty after they have completed successfully the above requirements. In addition, students must provide evidence of successful teaching experience, which is documented by a portfolio submitted for evaluation by the faculty.

Graduate Courses

Courses are open to degree students only.

16:300:501. PROSEMINAR IN EDUCATIONAL THEORIES AND PRACTICE (3)
Examines fundamental issues in education through the reading of major theoretical works. Explores how these issues inform current research.

16:300:503. PROSEMINAR IN EDUCATIONAL RESEARCH (3)
Explores selected contemporary educational issues through reading research conducted from a variety of methodological perspectives. Explores assumptions through commentaries on the conduct of educational research.

16:300:509. QUALITATIVE RESEARCH METHODS IN EDUCATION I: INTRODUCTION (3)
Introduction to qualitative research techniques, examining their potential and limitations for investigating educational questions and issues. Topics include interviews, field notes, and observations.

16:300:511. QUANTITATIVE RESEARCH METHODS IN EDUCATION I: INTRODUCTION (3)
Introduction to quantitative research techniques, examining their potential and limitations for investigating educational questions and issues. Topics include one- and two-sample tests of hypotheses, analysis of variance, multiple comparison procedures, regression, and effect size.
16:300:513. Qualitative Research Methods in Education II: Design and Analysis (3)
Critical examination of the philosophy and techniques of qualitative methods; design of studies and analysis of qualitative data.

16:300:515. Quantitative Research Methods in Education II: Design of Experiments (3)
Critical examination of sampling distributions, analysis of variance models, planned and post hoc comparisons, trend analysis, randomized block designs, within-subject designs, and higher-order factorials.

16:300:517. Qualitative Research Methods in Education III: Educational Ethnography (3)
Intensive survey and application of methods and strategies in ethnography available to educational researchers; emphasis on fieldwork employing ethnographic data-gathering techniques that involve participant observation and interview.

Techniques for analyzing data gathered in nonexperimental studies, including matrix algebra, multiple regression, partial and semipartial correlations, variance partitioning, dummy and effect coding, and analysis of covariance.

16:300:520. Program Evaluation: An Introduction to Methods and Practice (3)
Prerequisite: 16:300:511 or 16:960:532 and permission of instructor. Topical survey. Activities include hands-on evaluation projects.

16:300:531. Language in Education I (3)
Social and cognitive dimensions of literacy learning and the extent to which they can be generalized across learners.

16:300:532. Language in Education II (3)
Prerequisite: Permission of instructor. The role of language in thinking and social life; variation in language use across social groups and situations.

16:300:535. Foundations of Language I (3)
Topics include functional motivation of linguistic structure, linguistic sign, phonetics, phonemic and morphemic analyses, word semantics, and correctness.

16:300:536. Foundations of Language II (3)

16:300:538. Foundations of Literacy Instruction (3)
Designed for reading teachers and reading specialists. Offers strategies for achieving literacy in subjects ranging from early childhood to adults. Helps reading professionals organize and manage literacy instruction and staff development.

16:300:539. Diagnosis and Correction of Reading Difficulties (3)
Teaching methods for individual and small-group instruction. Topics include strategies to strengthen literacy development, selection of appropriate assessment materials, and written evaluation/intervention reports both for caregivers and for school districts.

16:300:541. Introduction to Economics and Education (3)
Economic concepts and their application to education; topics include demand for and supply of education, measuring return on educational investment, productivity and efficiency in the educational sector, and the relationship between human capital and economic growth.

16:300:545. Educational Planning and Policy Development (3)
Problem-solving and decision-making models, including studies of values, goal establishment, performance objectives, measurement and assessment techniques, policy development and executive leadership, and information systems; the multicultural nature of society; and the identification of people with special learning needs.

16:300:551. Evaluation of Educational and Social Programs (3)
Prerequisite: Permission of instructor. Evaluation of educational and social institutions, programs, and policies, including the social context of evaluation and the political aspects of conducting educational evaluations. Compares and contrasts evaluation and research. Hands-on data analysis and interpretation using a social policy data set.

16:300:561. Introduction to Mathematics Education (3)
Required of all graduate students in mathematics education. Theoretical perspectives and empirical studies. Students develop projects on topics of current interest.

16:300:563. Research into the Development of Mathematical Ideas (3)
A systematic study of the development of mathematical ideas in children from elementary school through high school. Includes the study and analysis of videotape recordings of children doing mathematics and accompanying data. Students endeavor in some cases to trace the development of mathematical ideas over time.

16:300:581. Educational Psychology I: Theories of Development (3)
Classical and contemporary theories of human development. Topics include the relations between evolution and development, nature-nurture, individual-society, and biology-culture. The processes through which change occurs over the course of the human life span.

16:300:582. Educational Psychology II: Theories of Cognition and Instruction (3)
Major theories of human learning, cognition, and instruction. Topics include knowledge representation, learning and instructional strategies, domains of application, and research methods.

16:300:591. Cognitive Development (3)
Theory and research in children’s intellectual development from birth through adolescence. Neo-Piagetian, information processing, and sociocultural approaches to cognition. Current research, including children’s memory development, social cognition, language, problem solving, spatial thinking, and theory of mind. Implications for schooling considered.

16:300:593. Cooperative and Collaborative Learning (3)
The cognitive and affective consequences of various forms of peer learning.

16:300:595. The Psychology of Sex Differences (3)
Current psychological theories of sex role development; evidence for and against sex differences throughout the life span; intellectual abilities, achievement, motivation, and behavior; dependence and aggression.

16:300:597. Language Acquisition (3)
Theories of language acquisition and the functions of language for the child; topics include prelinguistic behavior, the nature of one-word utterances, the acquisition and development of early syntax and semantics, the relation of thought to language, and the development of communication and conversation skills.

16:300:600,601. Prethesis Research (BA,BA)
Students engage in educational research under the supervision of faculty mentors.
16:300:621. **Seminar in Literacy Education Research (3)**
Prerequisite: Permission of instructor.
Current research in literacy education and related areas of literacy; critical evaluation of published reports; development of mature ideas for writing a proposal, conducting research, and completing a thesis in these areas.

16:300:641. **Productivity and Efficiency in Education (3)**
How and where the education dollar is spent, as well as how it is raised. Definitions and measures of efficiency and productivity in primary, secondary, and postsecondary education; productivity trends in education, efficient allocation of school resources, school size and productivity, and efficiency implications of school-financing methods.

Managing change in educational institutions from three perspectives: technical, political, and cultural.

The development, implementation, and effects of federal and state education policies; examples of key policy issues as cases for the exploration of political, policy design, and implementation issues.

16:300:647. **Historical Research in Educational Policy (3)**
U.S. historiography and the influence social science has had upon historical research in general and historical research in education in particular.

16:300:661. **Seminar in Mathematics Education Research (3)**
Prerequisite: Practicum or permission of instructor.
Formulation of one or more research question(s); discussion of their theoretical perspectives; design of a pilot study; collection of data; and identification and implementation of a suitable framework for analysis.

16:300:663. **Mathematical Education Practicum (BA)**
Prerequisite: Permission of instructor. Laboratory or fieldwork activity in which students work on a project, often in mathematics classrooms with individual children and/or small groups.

16:300:665. **Topics in Mathematics Education (3)**
Prerequisites: 16:300:561 and permission of instructor.
Selected topics in the learning and teaching of mathematics.

16:300:681. **Qualitative Analysis and Ranking Techniques (3)**
Prerequisite: 16:300:511 or 16:960:532.
Systematic study of chi-square techniques for analyzing educational data. Distribution-free rank tests for independent and dependent samples, confidence intervals, and measures of association.

16:300:683. **Applied Multivariate Analysis (3)**
Prerequisite: Permission of instructor.

16:300:685. **Causal Modeling (3)**
Prerequisite: Permission of instructor.
Introduction to structural equation modeling, including latent variables; confirmatory factor analysis; diagnosing model fit and testing alternative models; and multimodel designs. Multilevel (or hierarchical) linear models as related to multimodel designs (e.g., identifying hierarchical structures, random compared with fixed effects); variance components; and designs with repeated measurements.

16:300:687. **Item Response Theory (3)**
Prerequisite: 16:300:511 or 16:960:532 and permission of instructor.
Introduction to item response theory (IRT), which encompasses a group of probabilistic measurement models widely used in standardized testing programs. Foundations and assumptions underlying IRT, comparison of various IRT models, application of IRT to practical testing situations, and implementation of IRT using the BILOG computer program.

16:300:691. **Cognitive and Motivational Learning Strategies (3)**
The theoretical basis for a variety of learning and motivational strategies, assessment of strategies, problems related to learning from different sources of information, individual differences in strategy use.

16:300:695. **Topics in Educational Psychology (3)**
Prerequisite: Permission of instructor.
Provides advanced doctoral students an opportunity for advanced study of a topic of personal interest within selected areas of psychology.

16:300:701, 702. **Research in Education (BA, BA)**

Educational Psychology; Educational Theory, Policy, and Administration; Learning and Teaching

(See the catalog of the Graduate School of Education for information on the Ed.M., Ed.D., and Ed.S. degrees.)

Electrical and Computer Engineering 332

Degree Programs Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Professor Michael Bushnell,
134 Electrical Engineering Building, Busch Campus
(732/445-2578)
Email: bushnel@ece.rutgers.edu

Members of the Graduate Faculty

Grigore C. Burdea, Associate Professor of Electrical and Computer Engineering, Ph.D., and Ed.S. degrees.)

Electrical and Computer Engineering 332

Degree Programs Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Professor Michael Bushnell,
134 Electrical Engineering Building, Busch Campus
(732/445-2578)
Email: bushnel@ece.rutgers.edu

Members of the Graduate Faculty

Grigore C. Burdea, Associate Professor of Electrical and Computer Engineering, Ph.D., and Ed.S. degrees.)

Electrical and Computer Engineering 332

Degree Programs Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Professor Michael Bushnell,
134 Electrical Engineering Building, Busch Campus
(732/445-2578)
Email: bushnel@ece.rutgers.edu

Members of the Graduate Faculty

Grigore C. Burdea, Associate Professor of Electrical and Computer Engineering, Ph.D., and Ed.S. degrees.)

Electrical and Computer Engineering 332

Degree Programs Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Professor Michael Bushnell,
134 Electrical Engineering Building, Busch Campus
(732/445-2578)
Email: bushnel@ece.rutgers.edu

Members of the Graduate Faculty

Grigore C. Burdea, Associate Professor of Electrical and Computer Engineering, Ph.D., and Ed.S. degrees.)

Electrical and Computer Engineering 332

Degree Programs Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Professor Michael Bushnell,
134 Electrical Engineering Building, Busch Campus
(732/445-2578)
Email: bushnel@ece.rutgers.edu

Members of the Graduate Faculty

Grigore C. Burdea, Associate Professor of Electrical and Computer Engineering, Ph.D., and Ed.S. degrees.)

Electrical and Computer Engineering 332

Degree Programs Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Professor Michael Bushnell,
134 Electrical Engineering Building, Busch Campus
(732/445-2578)
Email: bushnel@ece.rutgers.edu

Members of the Graduate Faculty

Grigore C. Burdea, Associate Professor of Electrical and Computer Engineering, Ph.D., and Ed.S. degrees.)

Electrical and Computer Engineering 332

Degree Programs Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Professor Michael Bushnell,
134 Electrical Engineering Building, Busch Campus
(732/445-2578)
Email: bushnel@ece.rutgers.edu

Members of the Graduate Faculty

Grigore C. Burdea, Associate Professor of Electrical and Computer Engineering, Ph.D., and Ed.S. degrees.)

Electrical and Computer Engineering 332

Degree Programs Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Professor Michael Bushnell,
134 Electrical Engineering Building, Busch Campus
(732/445-2578)
Email: bushnel@ece.rutgers.edu

Members of the Graduate Faculty

Grigore C. Burdea, Associate Professor of Electrical and Computer Engineering, Ph.D., and Ed.S. degrees.)

Electrical and Computer Engineering 332

Degree Programs Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Professor Michael Bushnell,
134 Electrical Engineering Building, Busch Campus
(732/445-2578)
Email: bushnel@ece.rutgers.edu

Members of the Graduate Faculty

Grigore C. Burdea, Associate Professor of Electrical and Computer Engineering, Ph.D., and Ed.S. degrees.)

Electrical and Computer Engineering 332

Degree Programs Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Professor Michael Bushnell,
134 Electrical Engineering Building, Busch Campus
(732/445-2578)
Email: bushnel@ece.rutgers.edu

Members of the Graduate Faculty

Grigore C. Burdea, Associate Professor of Electrical and Computer Engineering, Ph.D., and Ed.S. degrees.)

Electrical and Computer Engineering 332

Degree Programs Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Professor Michael Bushnell,
134 Electrical Engineering Building, Busch Campus
(732/445-2578)
Email: bushnel@ece.rutgers.edu

Members of the Graduate Faculty

Grigore C. Burdea, Associate Professor of Electrical and Computer Engineering, Ph.D., and Ed.S. degrees.)

Electrical and Computer Engineering 332

Degree Programs Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Professor Michael Bushnell,
Sigrid R. McAfee, Associate Professor of Electrical and Computer Engineering, SE; Ph.D., Polytechnic Institute of New York
Solid-state electronics deep levels in semiconductors; molecular beam epitaxy and MO-CVD Gallium Arsenide, AlGaAs, and GaAs on silicon
Peter Meier, Associate Professor of Electrical and Computer Engineering; SE; Ph.D., Technion (Israel)
Computer vision; image processing; pattern recognition
Evangelia Micheli-Tzanakou, Professor of Biomedical Engineering; Ph.D., Yale
Visual-pattern recognition; evoked potentials; image quality
Sophocles J. Orfanidis, Associate Professor of Electrical and Computer Engineering; SE; Ph.D., Rutgers
Ph.D., Columbia
Communication theory; source coding; information theory; wireless communications
Jian H. Zhao, Associate Professor of Electrical and Computer Engineering; Ph.D., UC, Berkeley
Parallel and distributed computing; software engineering
Paul Panayotatos, Assistant Professor of Electrical and Computer Engineering; SE; Ph.D., Illinois
Biomedical devices
Joseph Wilder, Associate Professor of Electrical and Computer Engineering, SE; Ph.D., Princeton
Visualization; computer graphics; computational geometry; numerical analysis
Deborah E. Silver, Associate Professor of Electrical and Computer Engineering, SE; Ph.D., Stanford
Biomedical devices
Peddapullaiah Sannuti, Professor of Electrical and Computer Engineering; Ph.D., Illinois
Communication and control systems: singular perturbation analysis of Kalman filter with weak measurement noise
George K. Shoane, Professor of Biomedical Engineering; SE; Ph.D., California (Berkeley)
Biomedical devices
Visiting Professor of Electrical and Computer Engineering, SE; Ph.D., Florida
Ph.D., Columbia
Image processing; pattern recognition; machine vision
Roy D. Yates, Associate Professor of Electrical and Computer Engineering; Ph.D., Massachusetts Institute of Technology
Data networks; queuing; stochastic processes
Jian H. Zhao, Professor of Electrical and Computer Engineering; SE; Ph.D., Carnegie Mellon
Biomedical devices
Seminor interferential growth and optoelectronic devices

Associate Members of the Graduate Faculty
Eswaran S. Agrawal, Visiting Professor of Electrical and Computer Engineering; SE; Ph.D., Illinois
VLSI circuit design; switching circuit analysis; computer-aided design
Michael F. Caggiano, Assistant Professor of Electrical and Computer Engineering; SE; Ph.D., California (Los Angeles)
High-performance and microwave IC design
Kristin Dana, Assistant Professor of Electrical and Computer Engineering; SE; Ph.D., Columbia
Computer vision; computer graphics; computer animation; computer-aided design
Stanley M. Dunn, Professor of Biomedical Engineering; SE; Ph.D., Maryland
Computer engineering; image processing; pattern recognition; machine vision; software engineering
James C. Evans, Research Professor of Electrical and Computer Engineering; SE; Ph.D., New York
Radio techniques to minimize system cost and signal-processing complexity
Narayanan B. Mandayam, Assistant Professor of Electrical and Computer Engineering; SE; Ph.D., Rice
Communication theory; spread spectrum; wireless systems; multicarrier systems
Ivan Maric, Assistant Professor of Electrical and Computer Engineering; SE; Ph.D., Rutgers
Networks and distributed systems for collaborative information processing and learning, image reconstruction; machine vision
Manish Parashar, Assistant Professor of Electrical and Computer Engineering; SE; Ph.D., Syracuse
Parallel and distributed computing; software engineering
Michael A. Parker, Assistant Professor of Electrical and Computer Engineering; SE; Ph.D., Syracuse
Solid-state electronics; electrical interconnects and switching; nanoscale devices and quantum effects in semiconductors
Steve Petrucci, Professor of Biomedical Engineering; SE; Ph.D., Rutgers
Electronics pulse circuits design and analysis; analytical instrumentation

Pavdom Spasojevic, Assistant Professor of Electrical and Computer Engineering; SE; Ph.D., Texas A&M
Wireless communications; sequence estimation; multiple access; and multiuser detection

Programs

The graduate program in electrical and computer engineering has facilities for education and research in the following areas: computer engineering, control systems, digital signal processing, communications, and solid-state electronics. Computer engineering involves the architecture and design of computing machines, information processing, and software engineering. Control systems is concerned with the design, analysis, simulation, and mathematical modeling of systems to ensure that an automatic process (e.g., robot or spacecraft) meets and maintains certain criteria. Digital-signal processing deals with discrete-time information processing, digital-filter design, spectral analysis, and special-purpose signal processors. Electrical communications systems analysis and design involves the study of source and channel encoding, analog and digital modulation methods, information theory, and telecommunication networks. Wireless communications and wireless information networks focus on analysis, measurement, and simulations. Solid-state electronics encompasses microwave switching devices, semiconductor lasers, electro-optical modulation, solar cells, integrated circuits, and the characterization of semiconductor materials and devices. This broad base of research areas provides students with the flexibility to create individualized programs of study.

Students with a B.S. degree from an accredited electrical engineering school may apply for direct admission to the graduate program. Students with backgrounds in other concentrations, such as physics, mathematics, and computer science, may be admitted into the doctoral program. Students from electrical technology programs may be admitted to the graduate program. The Graduate Record Examination general test is required for admission to the program.

Masters of Science degree candidates may elect either a thesis or nonthesis option. The thesis option consists of 24 credits of course work, 6 credits of research in a specialized area, and a final thesis presentation. In the nonthesis option, a candidate must complete 30 credits of course work, pass a written comprehensive examination, and submit a satisfactory tutorial paper. The M.S. comprehensive examination is given twice a year.

Requirements for the M.S. degree may be satisfied for all options in a part-time evening program designed specifically for students employed in industry and other students whose obligations preclude full-time study. Admission to the graduate program requires that applicants have completed the equivalent of a Bachelor's degree or the Ph.D. degree also are eligible for the Certificate in Wireless Communications (see the Wireless Communications subject heading for further information and requirements for this certificate).

Admission into the Ph.D. program requires an M.S. degree in electrical engineering. Applicants having an M.S. degree in a closely related discipline may be admitted into the doctoral program provided they complete their preparation in courses approved by the department. Students are required to pass the Ph.D. comprehensive examination, including a dissertation proposal. The Ph.D. qualifying examination normally consists of four preliminary oral exams, a major oral exam, and presentation of a dissertation proposal. The oral qualifying examination is generally given twice a year. A Ph.D. candidate, in conjunction with an advisor, is required to select a dissertation committee, submit a plan of study, and present orally a dissertation proposal.

Minimum requirements for the Ph.D. degree include 48 credits beyond the baccalaureate degree in courses approved by the dissertation adviser. These 48 credits are in addition to 24 credits of dissertation research beyond the M.S. degree. A public defense...
serves as the final Ph.D. dissertation examination. There is no foreign language requirement. The residence requirement depends upon the area of specialization. The Master of Philosophy degree is available to doctoral candidates.

Graduate Courses

16:332:501. (F) SYSTEM ANALYSIS (3)

16:332:503/504. ELECTRIC NETWORK THEORY I,II (3,3)
Prerequisite: 16:332:501
Network synthesis of driving point and transfer impedances using Foster, Bott-Duffin, Brune, and Darlington techniques; topological methods for analysis of active and passive networks; flow-graph techniques; state-space formulation of general networks; computer-aided network design.

16:332:505. (S) CONTROL SYSTEM THEORY I (3)
Prerequisite: 16:332:501

16:332:506. (F) CONTROL SYSTEM THEORY II (3)
Prerequisite: 16:332:505
Review of state-space techniques; transfer function matrices; concepts of controllability, observability, and identifiability. Identification algorithms for multivariable systems; minimal realization of a system and its construction from experimental data. State-space theory of digital systems. Design of a three-mode controller via spectral factorization.

16:332:508. (S) SAMPLED DATA CONTROL SYSTEMS (3)
Prerequisite: 16:332:505
Methods of analysis and synthesis of discrete-time systems; various transformations and semigraphical techniques applied to both digital and digitally controlled continuous processes with deterministic and/or random signals.

16:332:510. (S) SYNTHESIS OF OPTIMUM CONTROL SYSTEMS (3)
Prerequisite: 16:332:505, 506
Formulation of both deterministic and stochastic optimal control problems. Various performance indices; calculus of variations; derivation of Euler-Lagrange and Hamilton-Jacobi equations and their connection to two-point boundary value problems, linear regulator and the Riccati equations. Pontryagin’s maximum principle; its application to minimum time, minimum fuel, and bang-bang control. Numerical techniques for Hamiltonian minimization. Bellman dynamic programming; maximum principle and invariant imbedding.

16:332:512. (S) NONLINEAR AND ADAPTIVE CONTROL THEORY (3)
Prerequisite: 16:332:505
Nonlinear servo systems; general nonlinearities; describing function and other linearization methods; phase-plane analysis and Poincare theorems. Liapunov’s method of stability; Popov criterion; circle criterion for stability. Adaptive and learning systems; identification algorithms and observer theory; input adaptive, model-reference adaptive, and self-optimizing systems. Estimation and adaptive algorithms via stochastic approximation. Multivariable systems under uncertain environment.

16:332:514. (S) STATISTICAL DESIGN OF AUTOMATIC CONTROL SYSTEMS (3)
Prerequisite: 16:332:505.

16:332:519. ADVANCED TOPICS IN SYSTEMS ENGINEERING (3)
Prerequisite Permission of instructor.
Advanced study of various aspects of automatic control systems. Possible topics include identification, filtering, optimal and adaptive control, learning systems, digital and sampled data implementations, singular perturbation theory, large-scale systems, game theory, geometric control theory, and control of large flexible structures. Topics vary from year to year.

16:332:521. (F) DIGITAL SIGNALS AND FILTERS (3)
Sampling and quantization of analog signals; z-transforms; digital filter structures and hardware realizations; digital filter design methods; DFT and FFT methods and their application to fast convolution and spectrum estimation; introduction to discrete-time random signals.

16:332:525. (F) OPTIMUM SIGNAL PROCESSING (3)
Prerequisite: 16:332:521 or permission of instructor.
Block processing and adaptive signal processing techniques for optimum filtering, linear prediction, signal modeling, and high-resolution spectral analysis. Lattice filters for linear prediction and Wiener filtering. Levinson and Schur algorithms and their split versions. Fast Cholesky factorizations. Periodogram and parametric spectrum estimation and superresolution array processing. LMS, RLS, and lattice adaptive filters and their applications. Adaptation algorithms for multilayer neural nets.

16:332:526. (S) ROBOTIC SYSTEMS ENGINEERING (3)

16:332:527. (F) DIGITAL SPEECH PROCESSING (3)
Prerequisite: 16:332:521.
Acoustics of speech generation; perceptual criteria for digital representation of audio signals; signal processing methods for speech analysis; waveform coders; vocoders; linear prediction; differential coders (DPCM, delta modulation); speech synthesis; automatic speech recognition; voice-interactive information systems.

16:332:529. (S) IMAGE CODING AND PROCESSING (3)
Visual information, image restoration, coding for compression and error control, motion compensation, advanced television.

16:332:533. (S) COMPUTATIONAL METHODS FOR SIGNAL RECOVERY (3)
Prerequisite: 16:332:521, 541.
Linear shift varying systems; discrete constrained estimation techniques; applications in image restoration; image reconstruction; spectral estimation and channel equalization using decision feedback.

16:332:535. (F) MULTIRRESOLUTION SIGNAL PROCESSING ALGORITHMS (3)
Algebraic models and algorithms, sampling lattices, multiresolution transforms, filters, rate conversion, deconvolution and projection.
16:332:539. ADVANCED TOPICS IN DIGITAL SIGNAL PROCESSING (3)
Prerequisite: Permission of instructor.
Emphasis on current research areas. Advanced treatment of such topics as digital filter design, digital filtering of random signals, discrete spectral analysis methods, and digital signal processor architectures.

16:332:541. (F) STOCHASTIC SIGNALS AND SYSTEMS (3)
Axioms of probability; conditional probability and independence; random variables and functions thereof; mathematical expectation; characteristic functions; conditional expectation; Gaussian random vectors; mean square estimation; convergence of a sequence of random variables; laws of large numbers and Central Limit Theorem; stochastic processes, stationarity, autocorrelation, and power spectral density; linear systems with stochastic inputs; linear estimation; independent increment, Markov, Wiener, and Poisson processes.

16:332:542. (S) INFORMATION THEORY AND CODING (3)
Prerequisite 16:332:541.
Noiseless channels and channel capacity; entropy, mutual information, Kullback-Leibler distance, and other measures of information; typical sequences, asymptotic equipartition theorem; prefix codes, block codes, data compression, optimal codes, Huffman, Shannon-Fano-Elias, arithmetic coding; memoryless channel capacity, coding theorem and converse; Hamming, BCH, cyclic codes; Gaussian channels and capacity; coding for channels with input constraint; introduction to source coding with a fidelity criterion.

16:332:543. (F) COMMUNICATION NETWORKS I (3)

16:332:544. (S) COMMUNICATION NETWORKS II (3)
Prerequisite 16:332:543.
Network and protocol architectures. Layered-connection management, including network design, path dimensioning, dynamic routing, flow control, and random-access algorithms. Protocols for error control, signaling, addressing, fault management, and security control.

16:332:545. (F) COMMUNICATION THEORY (3)
Prerequisite 16:332:541.
Orthonormal expansions, effect of additive noise in electrical communications, vector channels, waveform channels, matched filters, band width, and dimensionality. Optimum receiver structures, probability of error, bit and block signaling, introduction to coding techniques.

16:332:547. (F) DIGITAL COMMUNICATIONS I (3)
Prerequisite 16:332:545.
Functional characterization of digital signals and transmission facilities, band-limited and time-limited signals, modulation and demodulation techniques for digital signals, error probability, intersymbol interference and its effects, equalization and optimization of baseband binary and M-ary signaling schemes. Application to satellite and space communication systems emphasized.

16:332:548. (S) DIGITAL COMMUNICATIONS II (3)
Continuation of 16:332:547. Application of information-theoretic principles to communication system analysis and design. Source and channel-coding considerations, rudiments of rate-distortion theory. Probabilistic error-control coding impact on system performance. Introduction to various channel models of practical interest, spread spectrum communication fundamentals. Current practices in modern digital communication system design and operation.

16:332:549. (S) DETECTION AND ESTIMATION THEORY (3)
Prerequisite 16:332:541.
Statistical decision theory, hypothesis testing, detection of known signals and signals with unknown parameters in noise, receiver performance, and error probability; applications to radar and communications. Statistical estimation theory, performance measures and bounds, efficient estimators. Estimation of unknown signal parameters, optimum demodulation, applications. Linear estimation, Wiener filtering, Kalman filtering.

16:332:551. (S) FAADING COMMUNICATION CHANNELS (3)
Prerequisite 16:332:548.
Characterization and modeling of fading and/or dispersive channels, analog and digital communication system performance, diversity reception, optimum demodulators for channel memory effects. Applications include troposcatter, HF, atmospheric scattering, and optical channels. Emphasis on analysis of space communication and optical communication system performance.

16:332:555. (F) MICROWAVE CIRCUITS: DESIGN AND ENGINEERING (3)
Prerequisite 16:332:580 or equivalent.
Overview of modern microwave engineering, including transmission line, network analysis, integrated circuits, diodes, amplifier and oscillator design.

16:332:556. (S) MICROWAVE SYSTEMS (3)
Prerequisite 16:332:580 or equivalent.
Microwave subsystems, including front-end and transmitter components, antennas, radar, terrestrial communications, and satellites.

16:332:559. ADVANCED TOPICS IN COMMUNICATIONS ENGINEERING (3)
Prerequisite Permission of instructor.
Topics such as source and channel coding, modern modulation techniques, telecommunication networks, and information processing.

16:332:560. (F) COMPUTER GRAPHICS (3)

16:332:561. (F) MACHINE VISION (3)
Prerequisite 16:332:501.

16:332:562. (S) VISUALIZATION AND ADVANCED COMPUTER GRAPHICS (3)
Prerequisite 16:332:560.
Advanced visualization techniques, including volume representation, volume rendering, ray tracing, composition, surface representation, advanced data structures. User interface design, parallel and object-oriented graphic techniques, advanced modeling techniques.

16:332:563. (F) COMPUTER ARCHITECTURE I (3)
Fundamentals of computer architecture using quantitative and qualitative principles. Instruction set design with examples and measurements of use, basic processor implementation: hardwired logic and microcode, pipelining; hazards and dynamic scheduling, vector processors, memory hierarchy; caching, main memory and virtual memory, input/output, and introduction to parallel processors, SIMD and MIMD organizations.
16:332:564. (S) Computer Architecture II (3)
Prerequisite: 16:332:563.
Advanced hardware and software issues in mainstream computer architecture design and evaluation. Register architecture and design, instruction sequencing and fetching, cross-branch fetching, advanced software pipelining, acyclic scheduling, execution efficiency, predication analysis, speculative execution, memory access ordering, prefetch and preloading, cache efficiency, low-power architecture, and issues in multiprocessors.

16:332:565. (F) Neurocomputer System Design (3)
Prerequisite: 16:332:563.
Principles of neural-based computers, data acquisition, hardware architectures for multilayer, tree, and competitive learning neural networks, applications in speech recognition, machine vision, target identification, and robotics.

16:332:566. (S) Parallel and Distributed Computing (3)
Prerequisite: 16:332:563 and 564.
Introduction to parallel and distributed computing technologies, including systems, architectures, programming models, languages, and software tools. Parallelization and distribution models; parallel architectures; cluster and networked metacomputing systems; parallel/distributed programming; applications; and performance analysis.

16:332:567. (F) Software Engineering I (3)
Overview of software development process. Formal techniques for requirements analysis, system specification, and system testing. Distributed systems, system security, and system reliability. Software models and metrics. Case studies.

16:332:568. (S) Software Engineering II (3)
Prerequisite: 16:332:567.

16:332:569. (F) Database System Engineering (3)
Relational data model, relational database management system, relational query languages, parallel database systems, database computers, and distributed database systems.

16:332:570. (S) Robust Computer Vision (3)
Prerequisite: 16:332:561.
A toolbox of advanced methods for computer vision using robust estimation, clustering, probabilistic techniques, invariance. Applications include feature extraction, image segmentation, object recognition, and 3-D recovery.

16:332:571. (S) Virtual Reality Technology (3)
Prerequisite: 16:332:560.

16:332:574. (F) Computer-Aided Digital VLSI Design (3)
Advanced computer-aided digital VLSI chip design, CMOS technology, domino logic, precharged busses, case studies of chips, floor planning, layout synthesis, routing, compaction circuit extraction, multilevel circuit simulation, circuit modeling, fabrication processes and other computer-aided design tools.

16:332:575. (S) VLSI Array Processors (3)
Prerequisite: 16:332:574.
VLSI technology and algorithms; systolic and wavefront-array architecture; bit-serial pipelined architecture; DSP architecture; transputer; interconnection networks; wafer-scale integration; neural networks.

16:332:576. (S) Testing of Ultra Large Scale Circuits (3)
Prerequisite: 16:332:563.

16:332:577. (S) Analog and Low-Power Digital VLSI Design (3)
Prerequisite: 16:332:574.
Transistor design and chip layout of commonly used analog circuits, such as OPAMPs, A/D, and D/A converters; sample-and-hold circuits; filters; modulators; phase-locked loops; and voltage-controlled oscillators. Low-power design techniques for VLSI digital circuits, and system-on-a-chip layout integration issues between analog and digital cores.

16:332:579. Advanced Topics in Computer Engineering (3)
Prerequisite: Permission of instructor.
In-depth study of topics pertaining to computer engineering, such as microprocessor system design; fault-tolerant computing; real-time system design. Subject areas vary from year to year.

16:332:580. (F) Electric Waves and Radiation (3)
Prerequisite: Elementary electromagnetics.
Static-boundary value problems, dielectrics, wave equations, propagation in lossless and lossy media, boundary problems, waveguides and resonators, radiation fields, antenna patterns and parameters, arrays, transmit-receive systems, antenna types.

16:332:581. (F) Introduction to Solid-State Electronics (3)
Introduction to quantum mechanics; WKB method; perturbation theory; hydrogen atom; identical particles; chemical bonding; crystal structures; statistical mechanics; free-electron model; quantum theory of electrons in periodic lattices.

16:332:583. (F) Semiconductor Devices I (3)
Charge transport; diffusion and drift current; injection, lifetime, recombination, and generation processes; p-n junction devices; transient behavior; FETs, I-V, and frequency characteristics; MOS devices C-V, C-f, and I-V characteristics; operation of bipolar transistors.

16:332:584. (S) Semiconductor Devices II (3)
Prerequisite: 16:332:583.
Review of microwave devices, O- and M-type devices, microwave diodes, Gunn, IMPATT, TRAPATT, scattering parameters and microwave amplifiers, heterostructures and III-V compound-based BJTs and FETs.

16:332:587. (F) Transistor Circuit Design (3)
Design of discrete transistor circuits; amplifiers for L.F., H.F., tuned, and power applications; biasing; computer-aided design; noise; switching applications; operational amplifiers; linear circuits.

16:332:588. (S) Integrated Transistor Circuit Design (3)
Prerequisite: 16:332:587.
Design of digital integrated circuits based on NMOS, CMOS, bipolar, BiCMOS, and GaAs FETs; fabrication and modeling; analysis of saturating and nonsaturating digital circuits, sequential logic circuits, semiconductor memories, gate arrays, PLA and GaAs LSIs circuits.

16:332:590. (S) Integrated Circuits (3)
Prerequisite: 16:332:583.
Basic processing of ICs, diffusion, and ion implantation; isolation methods; integrated resistors and inductors; junction capacitors; diodes, FET, MOS and bipolar transistors; thermal effects and basic linear integrated circuits.
16:332:591. (F) OPTOELECTRONICS I (3)
Prequisite: 16:332:590, and 581 or 583.
Principles of laser action, efficiency, CW and pulse operation, mode locking, output coupling, equivalent circuits, gaseous and molecular lasers, solid-state lasers, single and double heterojunction lasers, different geometrics, fabrication, degradation, and application to holography, communication, medicine, and fusion.

16:332:592. (S) OPTOELECTRONICS II (3)
Photodetectors, including avalanche, Schottky, p-i-n, and multi-element detectors; display devices, including semiconductor, liquid crystals, electrochromics, electroluminescent panels; optoisolaters, fiber optics communication and optoelectronics in information systems.

16:332:593. (S) ELECTRONICS PACKAGING (3)
Overview of microelectronic packaging. Calculation of resistance, inductance, capacitance, and RF skin effects. Interconnect-transfer functions and signal integrity. Packaging analysis and simulations of power, ground, and cross-talk noise.

16:332:594. (F) SOLAR CELLS (3)
Prequisite: 16:332:583 or equivalent.
Photovoltaic material and devices, efficiency criteria, Schottky barrier, p-n diode, heterojunction and MOS devices, processing technology, concentrator systems, power system designs, and storage.

16:332:596. (S) SEMICONDUCTOR SURFACES (3)
Surface composition and structure of semiconductor, ultrahigh vacuum technology, Auger electron spectroscopy, low-energy electron diffraction, photoemission spectroscopy, secondary ion mass-spectroscopy.

16:332:597. (S) MATERIAL ASPECTS OF SEMICONDUCTORS (3)

16:332:599. ADVANCED TOPICS IN SOLID-STATE ELECTRONICS (3)
Prequisite Permission of instructor.
Topics vary and include semiconductor materials, surfaces, and devices; optoelectronic devices; sensors; photovoltaics; fiber optics; and analog/digital circuit design.

16:332:601,602. SPECIAL PROBLEMS (BA,BA)
Prequisite Permission of instructor.
Investigation in selected areas of electrical engineering.

16:332:618. SEMINAR IN SYSTEMS ENGINEERING (1)
Presentation involving current research given by advanced students and invited speakers. Term papers required.

16:332:638. SEMINAR IN DIGITAL SIGNAL PROCESSING (1)
Presentation involving current research given by advanced students and invited speakers. Term papers required.

16:332:658. SEMINAR IN COMMUNICATIONS ENGINEERING (1)
Presentation involving current research given by advanced students and invited speakers. Term papers required.

16:332:669. COLLOQUIUM IN ELECTRICAL AND COMPUTER ENGINEERING (0)
Eminent figures in electrical and computer engineering invited as guest lecturers on current research topics and major trends. Each full-time M.S. and Ph.D. student must take the colloquium, and each must have 80 percent attendance records. M.S. students must take the colloquium for two terms but get 0 credits. Ph.D. students must take the colloquium for four terms but get 0 credits.

16:332:678. SEMINAR IN COMPUTER ENGINEERING (1)
Presentation involving current research given by advanced students and invited speakers. Term papers required.

16:332:698. SEMINAR IN SOLID-STATE ELECTRONICS (1)
Presentation involving current research given by advanced students and invited speakers. Term papers required.

16:332:701,702. RESEARCH IN ELECTRICAL ENGINEERING (3,3)

ENGINEERING GEOPHYSICS

Program Offered: Certificate in Engineering Geophysics
Director of the Certificate Program: Professor Peter A. Rona, Institute of Marine and Coastal Sciences, Marine Sciences Building, Cook Campus (732/932-6555, ext. 241)
Email: rona@imcs.rutgers.edu

Participating Faculty
David Daut, Electrical and Computer Engineering
Scott Glenn, Oceanography
Nenad Gucurek, Civil and Environmental Engineering
Dale Haidvogel, Oceanography
Ali Maher, Civil and Environmental Engineering
James Miller, Oceanography
Andrew Norris, Mechanical and Aerospace Engineering
Henrik Pedersen, Chemical and Biological Engineering
Peter Rona, Geological Sciences, Oceanography
Robert Sheridan, Geological Sciences
Deborah Silver, Electrical and Computer Engineering
Peter F. Strom, Environmental Sciences
Norman Zabusky, Mechanical and Aerospace Engineering

Certificate Program
Engineering geophysics is a new field that applies geophysics to engineering with reference to a broad spectrum of societal and industrial environmental problems. Students take selected courses from graduate programs in engineering, geological sciences, and oceanography in conjunction with their M.S. and Ph.D. programs. The certificate program offers students in engineering and the geological and oceanographic sciences a chance to broaden and strengthen their backgrounds, with the emphasis on environmental applications.

The program encompasses multidisciplinary field, laboratory, and modeling studies using state-of-the-art geophysical, engineering, and oceanographic practice and theory. A comprehensive suite of research facilities is available for these studies, including geophysical, engineering, and marine field and laboratory instrumentation. For students of engineering, the program provides training in geophysical methods and a geological and marine context for engineering applications. For students of geological and oceanographic sciences, the program provides reciprocal training and training in engineering subjects that enhance their capabilities. This multidisciplinary training can provide a competitive edge in research and in the job market.

Certificate Requirements
Students must fulfill all degree requirements in their major programs of study. M.S. and Ph.D. students in the certificate program will take three courses in the participating graduate programs outside the graduate program of their degree, including at least one course in geophysics. The selection of courses will be determined by each graduate program and tailored to the individual needs and directions of the students.

Research Facilities

Equipment and Laboratories
Geophysical Instrumentation. Shallow seismic system (marine and terrestrial), magnetometer, gravity meter, gamma-ray spectrometer.
Equipment for Field Seismic Testing. Crosshole, seismic cone, spectral analysis of surface waves, and laboratory evaluation of dynamic soil and rock properties (cyclic triaxial, resonant column, torsional shear, model testing in a soil bin).

Laboratory for VISOR (Visualization/Modeling, Center for Advanced Information Processing, Rutgers–New Brunswick)

Rutgers University Marine Field Station, Tuckerton, New Jersey

Long-Term Ecosystem Observatory at 15 meters depth (LEO-15)

Graduate Courses

Chemical and Biochemical Engineering

16:155:582 Fundamentals of Contaminant Mass Transfer (3)

Civil and Environmental Engineering

16:180:574 Groundwater Engineering (3)

16:180:578 Soil Dynamics (3)

16:180:590 Coastal Engineering (3)

Electrical and Computer Engineering

16:332:501 System Analysis (3)

16:332:521 Digital Systems and Filters (3)

16:332:525 Optimum Signal Processing (3)

16:332:532 Image Coding and Processing (3)

16:332:533 Computational Methods for Signal Recovery (3)

16:332:560 Computer Graphics

16:332:561 Machine Vision (3)

16:332:562 Visualization and Advanced Computer Graphics (3)

16:332:570 Robust Computer Vision (3)

Geological Sciences

16:460:505 Sedimentary Geology (3)

16:460:511 Petrology (3)

16:460:525 Marine Sedimentology (3)

16:460:541 Marine Geology (3)

16:460:555 Geophysics I (3)

16:460:556 Geophysics II (3)

Mechanical and Aerospace Engineering

16:650:530 Fluid Mechanics I (3)

16:650:570 Conduction Heat Transfer (3)

16:650:578 Convection Heat Transfer (3)

16:650:630 Fluid Mechanics II (3)

16:650:650 Theory of Elasticity (3)

16:650:662 Stress Waves in Solids (3)

Oceanography

16:712:501 Physical Oceanography (3)

16:712:545 Dynamics of Waves, Currents, and Sediment Transport on the Continental Shelves (2)

16:712:603 Numerical Modeling of the Atmosphere and Ocean (3)

ENGLISH, LITERATURES IN

(English 350, Composition Studies 352)

Degree Programs Offered: Master of Arts, Doctor of Philosophy

Certificate Program Offered: Certificate in the Teaching of Writing

Director of Graduate Program: Professor Myra Jehlen

Director of Certificate Program: Professor Richard E. Miller, Murray Hall, College Avenue Campus (732/932-7674)

Members of the Graduate Faculty

Derek Attridge, Distinguished Visiting Professor of English, FAS-NB; Ph.D., Cambridge

Literary theory; modernism; poetry

Louise K. Barnett, Professor of English, FAS-NB; Ph.D., Bryn Mawr

Nineteenth- and twentieth-century American novel; nineteenth-century American culture; women's studies

Emily Bartels, Associate Professor of English, FAS-NB; Ph.D., Harvard

Renaissance dramatic literature; colonialist discourse

John H. Belton, Professor of English, FAS-NB; Ph.D., Harvard

Cinema studies; cultural studies

Wesley C. Brown, Professor of English, FAS-NB; M.A., CUNY

Nineteenth- and twentieth-century American literature; modern drama

Matthew Buckley, Assistant Professor of English, FAS-NB; Ph.D., Columbia

Eighteenth- and nineteenth-century drama

Abeba P.A. Busia, Associate Professor of English, FAS-NB; D.Phil., Oxford

African-American and African diaspora literature

Elaine Chang, Assistant Professor of English, FAS-NB; Ph.D., Stanford

Twentieth-century Anglophone novel; postcolonial studies; women's studies

Maurice Charney, Professor of English, FAS-NB; Ph.D., Princeton

Renaissance drama; comedy

Christine Chism, Assistant Professor of English, FAS-NB; Ph.D., Duke

Medieval literature; medieval drama; women's studies; cultural studies; historiography

Ed Cohen, Associate Professor of English, FAS-NB; Ph.D., Stanford

Literary and social theory; gay and gender studies; late Victorian culture

Ann Boyesn Coiro, Associate Professor of English, FAS-NB; Ph.D., Maryland

Renaissance and seventeenth-century literature; women's studies

Anne Cotterill, Assistant Professor of English, FAS-NB; Ph.D., Washington

Early modern English literature; Renaissance women writers; poetry

Susan Crane, Professor of English, FAS-NB; Ph.D., California (Berkeley)

Medieval studies; cultural studies; women's studies

Harriet A. Davidsson, Associate Professor of English, FAS-NB; Ph.D., Vanderbilt

Modem and contemporary poetry; critical theory

Marieanne DeKoven, Professor of English, FAS-NB; Ph.D., Stanford

Modernism; women's studies

Elin Diamond, Professor of English, FAS-NB; Ph.D., California (Davis)

Drama and dramatic theory; feminist and literary theory

Richard Dienst, Associate Professor of English, FAS-NB; Ph.D., Duke

Cultural theory; media studies

William C. Dowling, Professor of English, FAS-NB; Ph.D., Harvard

Eighteenth-century literature; colonial-American literature and literature of the early American republic; critical theory

Brent Edwards, Assistant Professor of English, FAS-NB; Ph.D., Columbia

African-American literature; Francophone literature; twentieth-century poetry of the Americas; music and cultural studies

Katharine Ellis, Associate Professor of English, FAS-NB; Ph.D., Columbia

Women's studies; eighteenth-century fiction

David Eng, Assistant Professor of English, FAS-NB; Ph.D., California (Berkeley)

Asian-American literature

Brad Evans, Assistant Professor of English, FAS-NB; Ph.D., Chicago

Nineteenth- and twentieth-century literature; cultural studies

Kate Flint, Professor of English, FAS-NB; Ph.D., Oxford

Nineteenth-century British literature

Sandy Flitterman-Lewis, Associate Professor of English, FAS-NB; Ph.D., California (Berkeley)

Cinema studies; feminist critical analysis

William H. Gilmore, Professor of English, FAS-NB; Ph.D., Brown

Romantic literature; literary theory; media studies

Donald Gibson, Professor of English, FAS-NB; Ph.D., Brown

American and African-American literature

Martin Glisserman, Associate Professor of English, FAS-NB; Ph.D., Indiana

English and American literature; psychoanalytic theory

Daniel Harris, Professor of English, FAS-NB; Ph.D., Yale

Victorian and modern literature; Jewish studies

Marcia Iann, Associate Professor of English, FAS-NB; Ph.D., Virginia

Modern British and American literatures; critical theory; the novel

Virginia Jackson, Assistant Professor of English, FAS-NB; Ph.D., Princeton

Theory and history of lyric; nineteenth-century American poetry and culture; history of literary criticism; feminist theory

Lincoln Kager, Assistant Professor of English, FAS-NB; Ph.D., Michigan

English romantic literature

Myra Jehlen, Board of Governors Professor of Literature and Culture, FAS-NB; Ph.D., California (Berkeley)

American literature; feminist criticism; cultural history

Samira Kawash, Associate Professor of English, FAS-NB; Ph.D., Duke

Nineteenth- and twentieth-century minority and African-American literature; literary and cultural theory; race and ethnicity

Stacey Klein, Associate Professor of English, FAS-NB; Ph.D., Ohio State

Old English and medieval studies; gender and sexuality

Richard Kossowski, Assistant Professor of English, FAS-NB; Ph.D., New York

Early English studies

Jonathan Brody Kramnick, Associate Professor of English, FAS-NB; Ph.D., Johns Hopkins

Seventeenth- and eighteenth-century literature and culture; critical theory

Daphne Lamont, Associate Professor of English, FAS-NB; Ph.D., California (Berkeley)

African-American fiction; Black Atlantic culture and theories of migration; ethnography; folk culture

Romuald Lefraro, Associate Professor of English, FAS-NB; Ph.D., California (Berkeley)

English Renaissance literature and intellectual history
Eight 3-credit courses are required specifically for the M.A. degree, in addition to two 1.5-credit courses (16:350:517 Critical Reading and 16:350:518 Introduction to Advanced Research). Six of the eight courses must be taken to satisfy the M.A. distribution requirements. The remaining two courses are electives. The distribution requirements fall into three general types. First, students must choose at least one course in four of the following five categories: (1) medieval studies, (2) Renaissance studies, (3) Restoration and Enlightenment studies (British) or Puritan and colonial studies (American), (4) nineteenth-century studies, and (5) twentieth-century studies. Second, students must choose at least one course in theory, defined as courses whose central study is of texts in literary and critical theory and philosophy rather than of literary texts. Third, students must choose at least one course whose central study is of a significant body of literature traditionally neglected in academic curricula. This category would include courses in African-American/African Diaspora literature, writing by women, ethnic studies, gay and lesbian writing, popular culture, and working-class literature. In addition, all students are required to take, among their courses at the M.A. level, at least one course in American literature. In all cases, students’ selections of courses are made in close consultation with their advisers.

The Ph.D. requires 48 credits of course work, or at least fourteen courses. The 48-credit minimum includes course work done for the M.A. degree and 6 credits of supervised reading and study carried out in preparation for the qualifying examination. The normal full-time course load is three courses per term, but part-time study is permitted. All students are required to take two 1.5-credit courses: 16:350:517 Critical Reading in their first term and 16:350:518 Introduction to Advanced Research. The latter course may be taken as early as the second term or as late as the sixth term of study. Together, these two 1.5-credit courses equal one of the required fourteen courses of course work. Each 1.5-credit course may be taken in addition to a student’s normal three-course per term schedule.

Graduate courses in the 500 series involve subjects that are important to graduate English literary studies. These courses make knowledge available to sophisticated students who may not have encountered this material in their prior college studies. The 600-level concentration seminars allow more advanced and concentrated work in specialized areas.

The foreign language requirement may be satisfied in either of two ways: students can take the Rutgers University Foreign Language Institute’s examination and pass the exam with a mark of high pass, or they can complete (with a grade of B or better) a 300-level course offered by a language department at Rutgers. Students should select a foreign language that they expect will be relevant to their eventual areas of concentration. They are expected to take the language exam early in their studies and should complete this requirement before they conclude their course work. The Ph.D. qualifying examination consists of two hours of oral questioning in four concentration categories: (1) a chronological period or periods, (2) a form or discursive tradition, (3) a methodological procedure(s) or theoretical framework(s), and (4) an author or authors. The exam probes both a student’s specialized and concentrated study and his or her knowledge of the broader terrain of the four categories. To accomplish the first goal, the examination’s four chosen categories overlap. To achieve the broader aim, the examination tests a student’s knowledge of other productions of the period(s) and the author(s), the larger history of the form or discourse, and the wider implications and applications of the method or theory. Within three months of the Ph.D. qualifying exam, the student submits a dissertation prospectus to the prospective dissertation director. Once a student fulfills the language and course requirements, passes the qualifying examination, and submits a dissertation proposal approved by the student’s dissertation committee, he or she is admitted to candidacy for the Ph.D. degree. After the completed dissertation has been approved by the dissertation committee for submission to defense, the student participates in a one- to two-hour defense with the committee. The committee consists of three members of the program’s faculty and one outside reader.

While working toward a doctorate in the Graduate Program in Literatures in English, students have the option of pursuing a concentrated study of the theory and practice of writing instruction.
Upon completion of this program’s requirements, students will receive a certificate in the teaching of writing from the Graduate School–New Brunswick. The certificate program consists of 9 credits, with 3 of them coming from a graduate seminar, 16:352:501 Teaching Writing: Theory and Practice. The remaining 6 are elective credits to be taken from a list of courses offered by the composition faculty in the Graduate Program in Literatures in English. As no one is permitted to pursue the certificate by itself, anyone seeking the certificate must be accepted into the Graduate Program in Literatures in English. Students who want to pursue a certificate must be accepted first into the Graduate Program in Literatures in English. The Graduate Program in Literatures in English does not admit students for the graduate certificate alone.

All applicants are urged to contact the Graduate Program in Literatures in English for more information, including details about financial assistance. Further details about the program itself are given in the booklet the Graduate Program in Literatures in English. In addition, students may write to the Graduate Program in Literatures in English, Rutgers, The State University of New Jersey, 510 George Street, New Brunswick, NJ 08901-1167. The program can be reached by telephone at 732/932-7674.

Graduate Courses (350)

16:350:501, 502. Independent Study (3, 3)
An independent study course in directed readings available only by special arrangement.

16:350:503. Studies in Narrative Form (3)
Types of narrative (the tale, legend, romance, epic) and their relation to the novel.

16:350:504. Studies in Dramatic Form (3)
Types of drama (comedy, tragedy, history, melodrama) and their relation to theater and performance.

16:350:505. Studies in Poetic Form (3)
Types of poetry (epic, dramatic, lyric) and particular poetic forms, conventions, and movements (sonnet, elegy, epigram, ballad, ode, free verse, imagist poetry, symbolist poetry) and their relation to various expressive conventions and techniques.

16:350:506. Literary Theory I: Beginning through the Eighteenth Century (3)
Conventions and recurrent problems in critical discourse from Aristotle to Kant.

16:350:507. Literary Theory II: Nineteenth Century to the Present (3)
Establishment of the modern aesthetic understanding of literary discourse and efforts to modify or revise it.

16:350:508. Critical Methodologies: Primary Texts (3)
Examination of selected major theoretical texts that inform the practice of literary study.

History and practices of literary theory: Marxist, psychoanalytic, feminist approaches; structuralism, poststructuralism; cultural studies.

16:350:510. Theories of Gender and Sexuality (3)
Key texts, authors, issues, and problems in the history of gender and sexuality in the second half of the twentieth century.

16:350:511. Studies in Colonial/Postcolonial Theory (3)
Theoretical writing, emerging during and after the transition from colonialism to national independence in Asia, Africa, and other areas of the world. Authors who have explored and debated the meaning and the limits of decolonization.

16:350:512. Cultural Studies (3)
Examines fundamental assumptions in the understanding of culture; attempts to give students the interpretative skills to engage critically with contemporary cultural contexts.

Introduction to theoretical perspectives on electronic culture and communication in relation to literary studies; examination of the implications of digital and information technologies for text, representation, subjectivity, embodiment, and community.

16:350:514. Literature and Politics (3)
Study of literary texts directly connected to political debate and of critical theories, especially Marxist criticism, generated by the intersection of politics and literary form.

16:350:515. Myth, Religion, and Literature (3)
Recurrences and transformation of mythic motifs in selected texts.

16:350:517. Critical Reading (1.5)
Various ways of reading texts, with attention to the history and theory of modes of reading from “new criticism” to poststructuralism.

16:350:518. Introduction to Advanced Research (1.5)
Methods and resources for research in literary criticism, textual criticism, and related historical and cultural topics.

16:350:519. History and Criticism of Film (3)
Development of film as an art form: film technique, theoretical and practical criticism.

16:350:520. Studies in Film (3)
Selected topics in film studies, such as women and film, literature and film, or film and society.

16:350:528, 529. Studies in Old English (3, 3)
First term: introduction to Old English grammar, with readings from selected texts. Second term: Beowulf.

16:350:530. Chaucer (3)
Major works of Geoffrey Chaucer, including Troilus and Criseyde and The Canterbury Tales in relation to late medieval culture.

16:350:531. Studies in Medieval Literature (3)
Relations between English medieval literature and other literatures, such as classical and continental; literary relations with other disciplines, such as folklore, history, and anthropology.

16:350:532. Gender and Sexuality in Medieval Literature and Culture (3)
Consideration of sexual difference, virginity, medical practices, and social structures for gender regulation.

16:350:533. Medieval Drama (3)
Medieval drama from the eleventh through the early sixteenth century: investigation of surviving scripts and material production, with attention to recent developments in gender studies, performance theory, and cultural studies.

16:350:536, 537. Studies in Renaissance Literature (3, 3)
Major writers of the sixteenth and early seventeenth centuries approached through modern critical ideas of form, genre, convention, theme, and style.

16:350:538. Forms of Renaissance Literature (3)
Studies in literary forms that gave expression to major themes in the sixteenth and early seventeenth centuries: heroic, pastoral, satirical, tragic, comic.

16:350:539. Renaissance Drama 3)
Readings from selected Tudor and Stuart playwrights.

16:350:540. Shakespeare (3)
General study of Shakespeare’s works.

16:350:541. Milton (3)
Milton’s poetry and selected prose.
Survey of seventeenth-century literature, including Jacobean, Caroline, Civil War, interregnum, and Restoration poetry, prose, and drama. Study of influential literary historical and theoretical narratives written about this century.

Readings from Dryden to Pope.

Readings from Johnson to Preromanticism.

16:350:548. Restoration and Eighteenth-Century Drama (3)
Restoration comedy, tragedy, heroic play, and dramatic criticism; eighteenth-century survivals and transformations.

16:350:549. The Early English Novel (3)
Emergence of prose fiction as a literary genre and its evolution into a complex and self-conscious form. Texts by Defoe, Richardson, Fielding, Sterne, Smollett, Scott, Austen.

The main modes, actions, and styles in eighteenth-century writing.

16:350:551. Gender and Sexuality in Eighteenth-Century Literature and Culture (3)
Readings in Restoration and eighteenth-century literature that illuminate questions of erotics and gender. Texts by Rochester, Behn, Manley, Haywood, Cleland, Wollstonecraft, and others.

16:350:553. Studies in Early American Literature and Culture (3)
A limited number of major American writers of common historical background and intellectual temper.

16:350:554. Colonial Anglo-America (3)
Selected colonial and early nineteenth-century writers, with emphasis on modern scholarship, criticism, and intellectual history.

16:350:555. Early National U.S. Literature (3)
Writings from the Revolution to the 1820s and 1830s. Texts by Paine, Jefferson, Equiano, Wheatley, Rowson, Foster, Brown, Irving, Cooper, and others.

16:350:556. American Antebellum Writing (3)
Study of what is often called the American Renaissance, from the 1830s to the Civil War. Texts by Emerson, Thoreau, Hawthorne, Melville, Poe, Whitman, Stowe, and others.

16:350:559. American Drama and Culture (3)
Historical and contemporary efforts to understand American drama's position, role, and status within local, national, and international culture.

16:350:560. American Cultural Studies (3)
Survey of American cultural studies and exercises in its practice. Texts by Berlant, Brenkman, and others; a range of literary and cultural materials.

16:350:561. The Romantic Century (1750-1850) (3)
Aspects of British writing leading up to, including, and succeeding the Romantic period in England (1785–1835). Study of the evolution of key literary genres in relation to historical developments in culture and society.

16:350:562. Studies in Romanticism (3)
The revolt against tradition and the redefinition of poetry and the poet.

16:350:563. Fiction of the Romantic Period (3)

Study of the major preoccupations and styles of the period in nonfiction, poetry, and the novel. Emphasis on the effects of historical and social developments.

16:350:567. Nineteenth-Century Theater and Culture (3)
Consideration of the genres of nineteenth-century theater, as well as popular forms of performance and spectatorship outside the theater.

16:350:568. The Victorian Fin de Siècle (3)
Study of aesthetic and philosophical developments in Pater, Meredith, Hardy, Conrad, Wells, Beerbohm, and others.

16:350:569. Victorian Cultural Studies (3)
Material and methods of Victorian cultural studies. Consideration of effects of the French revolution; technological innovation; newly consolidating economic systems. Texts by Burke, Schiller, Carlyle, Mill, Arnold, and others.

16:350:570. Gender and Sexuality in Victorian Literature and Culture (3)
Study of the relationships between gender representations in political and literary writing and female experience in Victorian England.

16:350:571. Victorian Poetry (3)
Introduction to English poetry from late 1820s to early 1900s. Works of Tennyson, Robert Browning, Elizabeth Barrett Browning, Hopkins, Yeats, Landon, Hemans, Field, and others.

16:350:572. Victorian Fiction (3)
Readings in selected novels and novelists from about 1800 to 1900, drawing especially on the works of Scott, Dickens, Thackeray, the Brontës, George Eliot, and James.

16:350:573. Transatlantic Nineteenth-Century Studies (3)
The transatlantic formation and contestation of literary forms and cultural politics.

16:350:574. Nineteenth-Century Discourses of Race, Nation, and Empire (3)
Discourse theory and its application in the politically charged domains of race, nation, and empire. Theoretical work of Foucault, Bakhtin, Said, Anderson, and others.

A limited number of major American writers of common historical background and intellectual temper.

Examination of the exchange between public and private verse in nineteenth-century American poetic culture. Texts by Bryant, Holmes, Longfellow, Jackson, Whitman, Dickinson, Dunbar, and others.

16:350:578. Later Nineteenth-Century American Fiction (3)
Writings of the last half of the nineteenth century, with some extension into the twentieth century.

Literary forms that give expression to major themes in nineteenth-century African-American literature: authenticity, authority, literacy, freedom, and nationhood.
16:350:584. Early Modernisms and the Historical Avant-Garde (3)
Modernism and the historical avant-garde as antithetical yet complementary moments in late nineteenth- and early twentieth-century Europe and the United States.

16:350:585. Dramatic Modernisms (3)
Drama and performance as transatlantic modernist forms. Philosophical, social, and political questions in Ibsen, Hurston, Brecht, Stein, and others.

16:350:586. Early Twentieth-Century Poetry (3)
Hardy, Yeats, Pound, Eliot, Stevens, and others.

16:350:587. Early Twentieth-Century Fiction (3)
Hardy, James, Joyce, Woolf, and others.

Works of various black American writers, read in conjunction with other examples of American literature of the twentieth century.

African-American literature in relation to the multiple literary and historical contexts from which it is produced. Course may highlight specific topics (writing by black women) or genres (the essay).

16:350:590. Later Twentieth-Century Fiction (3)
Prose fiction written in English since World War II in relation to questions raised by critical theory, cultural studies, and literary criticism.

16:350:591. Later Twentieth-Century Poetry (3)
Study of continuity and change in the poetry of the mid-twentieth century. Focus on several pivotal figures in their social and political contexts.

16:350:592. Later Twentieth-Century Drama and Performance (3)
Later twentieth-century drama and performance, both in relation to high modernist and postmodern cultures.

16:350:593. Studies in Ethnic American Literatures and Cultures (3)
Central texts of English and American literature from the perspective of minorities and non-Western people.

16:350:594. Twentieth-Century Literature and Culture (3)
Twentieth-century texts and authors in relation to cultural developments: aesthetic pluralization, war, secularization, diaspora, capitalism, and technology.

16:350:595. Postcolonial Literatures and Cultures (3)
Introduction to Anglophone (and some non-Anglophone) literature and to theoretical debates concerned with colonialism and decolonization in Africa, South Asia, and the Caribbean.

16:350:596. Studies in Modernism (3)
Literary modernisms, 1880–1945, including genres, techniques, philosophical questions, historical and cultural contexts, and social and political issues.

Literatures and performances of postmodernism, late 1950s–2000, including genres, techniques, and theories, as well as cultural and political debates and movements.

16:350:598. Contemporary Literature and Culture (3)
Diverse works in fiction, poetry, drama, and film, created over the past fifteen to twenty years, that contribute to our sense of the contemporary moment.

16:350:601,602. Readings in British and American Literature (3,3)
Intensive reading in any period of English and American literature in preparation for the Ph.D. qualifying examination.

16:350:603. Seminar: Genre Theory (3)
Investigation into the nature and utility of the category of genre in literary theory and practice.

16:350:604. Seminar: Theories of Narrative (3)
Narrative forms (biography, case history, ethnography) in relation to the novel as genre and the interdisciplinary narrative.

Intensive investigation of theoretical arguments in second-wave feminism concerning subjectivity, the body, agency, experience, community, and the challenges of postmodern and postcolonial theory.

16:350:606. Seminar: Topics in Cultural Studies (3)
Investigation of texts and materials using the methods of cultural studies to illuminate a question or problem of contemporary interest.

16:350:607. Seminar: Topics in Criticism and Theory (3)
Selected texts in literary and cultural criticism; organized around a key theoretical issue.

16:350:608. Seminar: Topics in Colonial/Postcolonial Theory (3)
Theoretical approaches to literatures and cultures produced within or in response to the experience of colonization.

16:350:611. Seminar: Chaucer (3)
Chaucer’s works and issues for research: history of criticism, theoretical frameworks, relations between Chaucer and his late medieval milieu.

16:350:612. Seminar: Medieval Literature (3)
Works of writers other than Chaucer; topics such as advanced Old English language and literature, the Arthurian tradition, Middle English dialects, women mystics, lyric poetry, medieval literary theory.

16:350:613. Seminar: Medieval Romance (3)
English and continental works, such as Sir Gawain and the Green Knight, Malory’s Le Morte d’Arthur, and the Romance of the Rose considered in generic terms as well as from other perspectives such as historicist, feminist, and poststructuralist.

16:350:616. Seminar: Spenser and His Contemporaries (3)
Study of the poetry and related criticism.

16:350:617. Seminar: Renaissance Drama (3)
Aspects of form in Elizabethan drama, with some attention to Shakespeare. Staging, dramatic structure, conventions of character, the interplay of verbal and nonverbal symbolism.

16:350:618. Seminar: Topics in Shakespeare (3)
Selected poems and plays; readings in related materials.

16:350:619. Seminar: Gender and Sexuality in Renaissance Literature (3)
Exploration of representations of gender and sexuality, constructions of masculinity and femininity, and conditions of writing for women in the Renaissance.

16:350:620,621. Seminar: Topics in Renaissance Literature and Culture (3,3)
Topics of significant contemporary interest in the study of Renaissance literature and culture.
16:350:622. Seminar: Topics in Seventeenth-Century Literature and Culture (3)
Topics of significant contemporary interest in the study of seventeenth-century literature and culture.

Study of motives, conventions, styles, and cultural contexts with emphasis on politics and rhetoric. Texts by Swift, Pope, Johnson, and their contemporaries.

Studies in Defoe, Fielding, Richardson, Sterne, Austen, and their contemporaries.

Studies in Dryden, Pope, Gray, and their contemporaries.

16:350:628. Seminar: Eighteenth-Century Literary Criticism and Theory (3)
Major critical writings of Dryden, Addison, Johnson, and Reynolds; classical and continental backgrounds; the emergence of post-Augustan theories of imagination.

16:350:629. Seminar: Topics in Eighteenth-Century Literature and Culture (3)
Topics of significant contemporary interest in the study of eighteenth-century literature and culture.

16:350:632,633. Seminar: Topics in Romantic Literature and Culture (3,3)
Critical study of two or more romantic poets in the context of the British and continental romantic movement.

Critical study of the major works. Consideration of the relationship of Wordsworth and Coleridge and of their differing critical concepts.

16:350:636. Seminar: Jane Austen in Context (3)
Novels of Jane Austen considered in the contexts of eighteenth-century literature and social history, and of Victorian and modern criticism of fiction.

Study of one or more nineteenth-century prose writers (Carlyle, Mill, Newman, Darwin, Arnold, Ruskin, Pater) in historical and cultural contexts and in relation to current theoretical discussions of prose writing.

Study of one or more Victorian poets (Tennyson, Barrett Browning, Browning, Arnold, Christina Rossetti, the Pre-Raphaelites, Hardy, Hopkins) in relation to genre, form, and cultural situation.

16:350:641. Seminar: Victorian Fiction (3)
Study of one or more major writers (Scott, Dickens, Thackeray, the Brontës, George Eliot, and Hardy) in conjunction with other genres in the period and current theoretical work on narrative.

16:350:642. Seminar: Topics in Nineteenth-Century Literature and Culture (3)
Topics of significant contemporary interest in the study of nineteenth-century literature and culture.

Selected works and related scholarship.

16:350:646. Seminar: Nineteenth-Century American Fiction (3)
Consideration of the American romance; Gothic and Puritan influences in Irving, Cooper, Poe, Hawthorne, Stowe, Melville, Alcott, Twain, Howell, and James.

Major texts of Whitman and Dickinson, Whitman’s influence on modern poets of the “open form”; conflicts of self and culture.

Cather, Glasgow, Wharton, Stein, and others in the context of the literature and social environs in which they worked.

16:350:649. Seminar: Major Authors in American Literature (3)
Significant texts and criticism; social and cultural contexts.

16:350:650. Seminar: Major Authors in Anglophone Literature (3)
Significant texts and criticism; social and cultural contexts.

Topics of significant contemporary interest in the study of twentieth-century literature and culture.

16:350:655. Seminar: Topics in African-American Literature and Culture (3)
Topics of significant contemporary interest in the study of African-American literature and culture.

16:350:656. Seminar: Performance and Postmodern Theater (3)
Performance from DADA through the Situationists, Fluxus, and “performance art.” Performance theory and practice in relation to dramatic texts and critical and social theory since the 1960s.

Major works of selected twentieth-century poets; critical and cultural contexts.

16:350:658. Seminar: Twentieth-Century Fiction (3)
Major works of selected twentieth-century novelists; critical and cultural contexts.

16:350:659. Seminar: Literary Criticism and Social Critique (3)
Literary criticism as a method of social analysis; consideration of the overlap of politics and aesthetics.

16:350:660. Seminar: Topics in Colonial/Postcolonial Literatures and Cultures (3)
Literatures of Africa, Latin America, the Caribbean, and Southeast Asia that emerged in response to European colonization.

16:350:661. Seminar: Topics in Modernism/Postmodernism (3)
Topics that explore the divide/connection between modernism and postmodernism.

16:350:662. Seminar: Topics in Irish Literature and Culture (3)
Yeats, Synge, Joyce, and others in their cultural, social, and artistic contexts.

16:350:663,664. Seminar: Topics in Contemporary Literature and Culture (3,3)
Explores a specific problem, project, or practice in contemporary literature and culture.

16:350:701,702. Research in Literature (BA,BA)
Graduate Courses in Composition (352)

16:352:501. Teaching Writing: Theory and Practice (3)
Introduction to composition theory and pedagogical practice.

16:352:502. Introduction to Composition Studies (3)
Major theorists and central debates.

16:352:503. Introduction to Rhetorical Studies (3)
Major theorists and central debates.

16:352:504. Contemporary Issues in Composition Studies (3)
Assessment, placement, diversity, retention, teacher training, and other topics related to the theory and practice of writing instruction.

16:352:505. Feminism and Composition Studies (3)
Introduction to the major theorists and the central debates in feminism and composition studies.

16:352:601. Seminar: Literacy and Pedagogy (3)
Reading and writing in a variety of historical, cultural, and institutional contexts.

Introduction to writing program administration, including labor and personnel issues, testing, and other common institutional practices.

16:352:603. Seminar: Writing and Technology (3)
Theory and practice of computer-assisted writing instruction, including email, discussion lists, web-page and web-site design, and the paperless classroom.

16:352:604. Seminar: Topics in Composition Studies (3)
In-depth study for experienced teachers and administrators covering issues of assessment, placement, diversity, retention, teacher training, and other topics related to the theory and practice of writing instruction.

ENGLISH AS A SECOND LANGUAGE 356

Director of the English as a Second Language Program: Dr. Kathleen Lynch-Cutchin, 107 Tillett Hall, Livingston Campus (732/445-7422)

Members of the Full-Time Faculty

Gwendolyn Cooper, M.A.
Marian Ebery, M.A.
Kathleen Lynch-Cutchin, Ph.D.
Eva-Maria Morin, M.A.
Virginia Schirripa, M.A.
Paul Sprachman, Ph.D.
Michael Wherrity, Ed.D.

Program

The English as a Second Language program provides instruction in English as a Second Language (ESL) to graduate students who need to improve their English language proficiency. Placement in all courses is by proficiency test or by subsequent assessment. All courses carry institutional credit toward full-time status. These course credits, however, cannot be applied toward degree requirements.

Graduate Courses

16:356:531. ESL Academic Writing I (E3)
Writing course emphasizing the composing and revising process and addressing selected grammatical problems through error analysis.

16:356:532. ESL Academic Writing II (E3)
Advanced writing course culminating in a coherent and cohesive research paper.

16:356:541. ESL Speech Center (EBA)
Weekly listening/speaking tutorial focusing on improving listening, pronunciation, and speaking skills.

16:356:560. ESL International TA Phonology (E3)
Focuses on distinguishing essential sounds, developing appropriate stress and intonation patterns, and improving listening skills.

16:356:561. ESL International TA Language Skills (E3)
Introduces international teaching assistants to teaching methodology, as well as the linguistic, discourse, and cultural components of effective communication; provides practice by teaching to peers.

ENTOMOLOGY 370

Degree Programs Offered: Master of Science, Doctor of Philosophy

Director of Graduate Program: Professor Lena B. Brattsten,
Blake Hall, 93 Lipman Drive, Cook Campus (732/932-9774)

Members of the Graduate Faculty

Lena B. Brattsten, Professor of Entomology, CC; Ph.D., Illinois
Insect biochemistry and toxicology; molecular aspects of insect-plant associations

Timothy M. Casey, Professor of Ecology and Evolution, CC; Ph.D., California (Los Angeles)
Physiological ecology; energetics and thermoregulation

Wayne J. Crans, Professor of Entomology, CC; Ph.D., Rutgers
Mosquito biology; medical and veterinary entomology; epidemiology of disease transmission

Randall Gaugler, Professor of Entomology, CC; Ph.D., Wisconsin
Invertebrate pathology; parasitology; biological control

Gerald M. Ghiu, Extension Entomologist, CC; Ph.D., Iowa State
Vegetable insect pests

Ayodhya P. Gupta, Professor Emeritus of Entomology, CC; Ph.D., Idaho
Hemocytic and humoral immunity; morphology; physiology

George C. Hamilton, Associate Extension Specialist, CC; Ph.D., Rutgers
Integrated pest management; biological control

Karl Kjer, Assistant Professor of Entomology, CC; Ph.D., Minnesota
Taxonomy, insect molecular systematics, molecular phylogenetics, aquatic insects

James H. Lashomb, Extension Specialist, CC; Ph.D., Maryland
Applied insect ecology; parasitic insect population dynamics; plant-herbivore interactions

Karl Marzec, Robert L. Starkey Professor, CC; Ph.D., Columbia
Insect pathology; virology; cell culture

Michael L. May, Professor of Entomology, CC; Ph.D., Florida
Physiological and behavioral ecology of insects

Sridhar Polavarapu, Associate Extension Specialist, CC; Ph.D., New Brunswick (Canada)
Blueberry and cranberry insect management

Associate Member of the Graduate Faculty

Peter W. Shearer, Assistant Extension Specialist, CC; Ph.D., Hawaii
Integrated pest management for tree fruits; insect ecology; natural enemies; and alternative pest management options

Programs

The doctoral program normally requires 30 credits of course work and 42 credits of research. No foreign language is required. Ordinarily, two full research terms in residence are required, but this requirement may be waived by petition to the program faculty. The master’s with thesis degree requires 24 credits of course work and 6 credits of research. Upon recommendation by the student’s
adviser and the advisory committee, the master’s nonthesis degree may be awarded with the substitution of classes and an essay in the place of the thesis. The graduate program in entomology also publishes program guides for graduate studies, which explain requirements and are available upon request.

Graduate Courses

16:370:504. (S) MOSQUITO BIOLOGY (3)
Crans. Lec. 2 hrs, lab. 3 hrs. Prerequisite: Permission of instructor. Biology, physiology, and behavior of mosquitoes on a worldwide basis; emphasis on current techniques used in field and laboratory investigations.

16:370:506. (S) INTEGRATED PEST MANAGEMENT (3)
Lashomb. Prerequisite: Background in entomology or other pest sciences and ecology. Recommended: Statistics. Students who lack background in these areas must obtain permission from the instructor. Systems approach for measuring major ecological processes, such as development, mortality, and dispersal, presented as a means for evaluating pheromones, biocontrol, and cultural and pesticidal strategies in major crops.

16:370:507. (S) BIOLOGICAL CONTROL OF INSECT PESTS (3)
Gaager. Prerequisite General entomology. Concepts and methods involved in the control of harmful insects and mites through the use of parasites, predators, and pathogens.

16:370:511. (F) PRINCIPLES OF SYSTEMATIC ENTOMOLOGY (3)
Kjer. Lec. 2 hrs, lab. 3 hrs. Taxonomy, species concepts, methods of contemporary systematic research, and zoogeographic analysis.

16:370:515,516. (F) INSECT STRUCTURE AND FUNCTION (3,3)
Brattsten. May. Lec. 3 hrs, lab. 3 hrs. Prerequisite: 16:370:381 or equivalent. Required core course. Physiology and functional morphology, including response systems, sensory systems, energy utilization, transport and secretion, and renewal systems.

16:370:517. (S) INSECT-PLANT BIOCHEMICAL INTERACTIONS (3)
Brattsten. See also 16:215:595. Prerequisite: Organic chemistry, biochemistry. Biochemical aspects of interactions between herbivorous insects and their host plants, in particular those that involve adaptations to toxic plant allelochemicals. Biochemical aspects include metabolic and physiological defense mechanisms and mode of action and fate of phytoc hemicals.

16:370:519. (F) INSECT BEHAVIOR (3)
Kjer. Prerequisite: Background in entomology and/or animal behavior. Insect behavior from a functional standpoint: stimuli and responses; adaptive significance and evolutionary context; underlying physiological mechanisms.

16:370:522. (S) TOXICOLOGY OF PESTICIDES (3)
Brattsten. Lec. 2 hrs. Prerequisite Advanced undergraduate biochemistry. Mode of action, metabolism, and side effects of pesticides; their use in IPM, resistance mechanisms, and development; health, registration, and legal aspects.

16:370:524. (S) INSECT TAXONOMY (4)
Kjer. Lec. 2 hrs, lab. 6 hrs. Required core course. Insect systematics, identification, natural history, and evolution. Emphasizes North American insects at the family level.

16:370:525. (S) INSECT ECOLOGY (3)
Lashomb. Prerequisite General entomology. Relationship between insect populations and elements of the physical and biotic environment. Emphasis on principles governing population size, quality, and spatial and temporal variation.

16:370:601,602. SPECIAL TOPICS IN ENTOMOLOGY (BA,BA)
Each term, faculty members arrange a series of topics in specialized fields of entomology.

16:370:603,604. SEMINAR IN ENTOMOLOGY (1,1)
Required core course (2 terms for M.S.; 3 terms for Ph.D.). Discussion and critique of presentations by guest speakers.

16:370:605. INSECT COLLECTION (1)
Kjer. Prerequisite 16:370:524. Students make a properly curated, labeled, and identified insect collection.

16:370:701,702. RESEARCH IN ENTOMOLOGY (BA,BA)

ENVIRONMENTAL CHANGE, HUMAN DIMENSIONS OF 378

Program Offered: Certificate Program in the Human Dimensions of Environmental Change

Director of the Certificate Program in Human Dimensions of Environmental Change: Bonnie McCoy, Human Ecology, Cook Office Building, Cook Campus (732/932-9153, ext. 314)

Participating Faculty
The following members and associate members of the graduate faculty, identified more fully under their respective programs, are among those who participate in the certificate program in human dimensions of environmental change.

A. Adelaia, Agricultural Economics
C. Andrews, Urban Planning and Policy Development
A. Artuso, Agricultural Economics
J. Burger, Ecology and Evolution
C. Chess, Human Ecology
L. Clarke, Sociology
D. Ehrenfeld, Ecology and Evolution
J. Ehrenfeld, Ecology and Evolution/Environmental Sciences
J. Friedmann, Sociology
M. Goehfeld, Ecology and Evolution
W. Goldfarb, Environmental Sciences
M. Greenberg, Geography/Public Health
W. Hallman, Psychology
M. Hamm, Nutritional Sciences
J.M. Hartman, Ecology and Evolution
C. Hatfield, Ecology and Evolution
D. Hodgson, Anthropology
B. Holcomb, Geography
D.M. Hughes, Anthropology
R.D. Keleman, Political Science
R.W. Lake, Geography
R. Lathrop, Ecology and Evolution/Geography/Environmental Sciences
B. McCoy, Anthropology/Ecology/Evolution
J. Miller, Oceanography
J.K. Mitchell, Geography
G.E.B. Morren, Jr., Anthropology/Ecology and Evolution
G. Nieswand, Ecology and Evolution/Environmental Sciences/Geography
K. Nordstrom, Geography
K. O’Neill, Sociology
P. Parks, Agricultural Economics
S. Pickett, Ecology and Evolution
F. Popper, Geography/Urban Planning and Policy Development
C. Pray, Agricultural Economics
N. Psuty, Geography/Geological Sciences
D. Robinson, Geography/Environmental Sciences
T. Rudel, Geography/Sociology
S. Schrepreler, History
R. Schroeder, Geography
L. Small, Agricultural Economics
P.F. Strom, Environmental Sciences
D. Tulloch, Geography
A.P. Vayda, Anthropology/Ecology and Evolution/Geography
N. Weinstein, Psychology
Certificate Program

Students with an interest in human-induced environmental changes may pursue, in addition to their regular program of studies, a special concentration in the human dimensions of environmental change. Two competing foci define research on these human dimensions of environmental change. One strand of research, ecological and institutional in emphasis, addresses questions of changes in natural resources, land cover, and industrial metabolism. A second strand of research, more perceptual and behavioral in emphasis, focuses on risks, hazards, and disasters. In both fields, research accomplishment requires competence in the methods of several different disciplines. Students who fulfill the following requirements will receive a Certificate in the Human Dimensions of Environmental Change, signifying special achievement in the field. To receive the certificate, students must complete, in addition to the requirements in their major disciplines, one course in one of the other participating programs that focuses on the human dimensions of environmental change. Students also must complete a two-term sequence of courses in the human dimensions of environmental change.

Graduate Courses

16378:501. SEMINAR ON THE HUMAN DIMENSIONS OF ENVIRONMENTAL CHANGE (3)

Multidisciplinary survey of the human dimensions of environmental problems and the full range of disciplinary approaches used to study these problems.

16378:502. TOPICS SEMINAR: THE HUMAN DIMENSIONS OF ENVIRONMENTAL CHANGE (3)

Focus on a particular human dimension of environmental problems, such as commons problems/institutions, or on a particular environmental problem.

ENVIRONMENTAL SCIENCES 375

Degree Programs Offered: Master of Science, Doctor of Philosophy

Director of Graduate Program: Professor Peter F. Strom, Environmental Science Building, Cook Campus (732/932-8078)

Members of the Graduate Faculty

Alan Appleby, Professor Emeritus of Radiation Science, CC; Ph.D., Durham Radiation chemistry, radiation interactions at the molecular level

Roy Avisar, Professor of Atmospheric Sciences; Chair, Department of Environmental Science; and Director, Center for Environmental Prediction, CC; Ph.D., Hebrew (Jerusalem)

Ocan-land-atmosphere modeling and observation, turbulence, air and water pollution

Tamar Barkay, Assistant Professor of Biochemistry and Microbiology, CC; Ph.D., Maryland Microbial transformation of metals

Joanna Burger, Professor of Biology, FAS-NB; and of Ecology, Evolution, and Natural Resources, CC; Ph.D., Minnesota Behavioral ecology, ectotoxicology, ecological risk

Marcos Cherry, Assistant Professor of Environmental Science, CC; Ph.D., California (Irvine) Degradation of xenobiotic organic compounds on mineral surfaces and in soils

Keith R. Cooper, Professor of Toxicology, CC; Ph.D., Rhode Island Xenobiotic metabolism and diseases of aquatic animals; animal models

Robert M. Cowan, Adjunct Professor of Environmental Science, CC; Ph.D., SUNY (Buffalo) Environmental engineering: biological treatment; bioremediation; process modeling

Joan G. Ehrenfeld, Professor of Ecology, Evolution, and Natural Resources, CC; Ph.D., CUNY Wetland ecology, soil ecology, ecosystems ecology, pollution impacts on ecosystems

Steven J. Eisenreich, Professor of Environmental Science, CC; Ph.D., Wisconsin (Madison) Environmental organic chemistry of surface atmosphere and lakes/estuaries Fate and transport of organic compounds

Melvin S. Finstein, Professor Emeritus of Environmental Science, CC; Ph.D., California (Berkeley) Pollution microbiology; waste treatment composting as a controlled system

Susan E. Ford, Assistant Research Professor of Oyster Culture, CC; Ph.D., Duke Invertebrate pathology/parasitology; genetics and mechanisms of resistance to pathogens; physiological ecology of estuarine organisms

Jennifer Finocchi, Assistant Research Professor of Marine and Coastal Sciences, CC; Ph.D., Washington Polar meteorology, remote sensing, air-sea-ice energy transfer

Michael A. Gallo, Professor of Environmental and Community Medicine, UMDNJ-RWJMS; Ph.D., Albany Medical College Food additives; phytotoxicology, dermatotoxicology

Emil J. Genetelli, Professor of Environmental Science, CC; Ph.D., Rutgers Biological wastewater treatment processes

Panos Georgopoulos, Associate Professor of Environmental and Community Health, UMDNJ-RWJMS; Ph.D., California Institute of Technology Environmental modeling

Daniel Gilmore, Assistant Professor of Environmental Science, CC; Ph.D., Minnesota Soil structure, water movement and solute transport through soils; soil quality

William Goldfarb, Professor of Environmental Science, CC; Ph.D., Columbia Environmental water resources; hazardous substances law and policy

Fred Grassle, Director, Institute of Marine and Coastal Sciences, CC; Ph.D., Duke Ecology of marine bottom-dwelling organisms

Max M. Haggblom, Associate Professor, Center for Agricultural Molecular Biology, CC; Ph.D., Helsinki Environmental and applied microbiology; biodegradation and bioremediation

Robert P. Harmack, Professor of Meteorology, CC; Ph.D., Maryland Synoptic and climatic aspects of meteorology

Sidney A. Katz, Professor of Chemistry, FAS-C; Ph.D., Pennsylvania Environmental, nutritional, and toxicological aspects of trace elements

Stanley E. Katz, Research Professor of Microbiology, CC; Ph.D., Rutgers Antibiotic residues in foods and soils

Kathleen E. Keating, Professor of Environmental Science, CC; Ph.D., Yale Trace element nutrition, plankton community structure and defined media for zooplankton and phytoplankton culture

Lee Kerfoot, Assistant Professor of Marine and Coastal Sciences, CC; Ph.D., California (San Diego) Marine microbiology and molecular biology; microbial population dynamics

Uta Kroegenmann, Assistant Professor of Environmental Science, CC; Ph.D., Hamburg-Harburg Solid-waste management and engineering, biocides, recycling, waste minimization, anaerobic digestion, composting

Jerome J. Kukor, Assistant Professor of Environmental Science, CC; Ph.D., Michigan Biochemistry of microbial degradation of aromatic and aliphatic compounds

Paul J. Liu, Professor of Environmental and Community Medicine, UMDNJ-RWJMS; Ph.D., Rutgers Human exposure to pollutants; air pollution; industrial hygiene; risk assessment

James R. Miller, Professor of Marine and Coastal Sciences, CC; Ph.D., Maryland Meteorology, atmospheric modeling

George H. Nieswand, Professor of Environmental Systems Engineering, CC; Ph.D., Rutgers Environmental systems analysis

Claire E. Reimers, Professor of Marine and Coastal Sciences, CC; Ph.D., Oregon State Marine carbon cycle; sedimentary geochemistry

John R. Reinfelder, Assistant Professor of Environmental Science, CC; Ph.D., SUNY (Stony Brook) Trace metal biogeochemistry of aquatic systems; phytoplankton ecology

Nathan M. Reiss, Associate Professor Emeritus of Meteorology, CC; Ph.D., New York Air-pollution meteorology, physical meteorology

David A. Robinson, Professor of Geography, FAS-NB; Ph.D., Columbia Climate and climate change

Alan Robock, Professor of Meteorology, CC; Ph.D., Massachusetts Institute of Technology Climate change, climate modeling, soil moisture

Robert M. Sherrell, Associate Professor of Marine and Coastal Sciences, CC; Ph.D., Massachusetts Institute of Technology Marine geochemistry of trace metals and natural radionuclides

Georgiy L. Stenchikov, Research Professor of Environmental Science, CC; Ph.D., Moscow Physical Technical Institute Climate modeling, cloud modeling, air pollution, computational fluid dynamics, radiative transport, numerical methods

Peter F. Strom, Associate Professor of Environmental Science, CC; Ph.D., Rutgers Biological treatment; hazardous wastes

Gary L. Taghon, Associate Professor of Marine and Coastal Sciences, CC; Ph.D., Washington Marine ecology
Robert L. Tate III, Professor of Soils and Crops, CC; Ph.D., Wisconsin
Soil microbiology
Paul E. Thomas, Professor of Chemical Biology and Pharmacognosy, CP; Ph.D.,
Ohio State
Metabolism of drugs and environmental chemicals, cytochrome P-450
Barbara J. Turpin, Associate Professor of Environmental Science, CC; Ph.D.,
Oregon Graduate Institute
Air pollution; the chemistry and physics of atmospheric aerosols
Christopher G. Luchin, Professor of Environmental Science, CC; Ph.D., Michigan
Math modeling of contamination transport in surface and groundwater
Yuhang Wang, Assistant Professor of Environmental Science, CC; Ph.D., Harvard
Atmospheric chemistry
Christopher P. Weaver, Assistant Research Professor of Meteorology, CC;
Ph.D., Scripps
Climate change and feedbacks land-atmosphere interactions clouds and earth’s
radiation budget; numerical modeling
Judith S. Weiss, Professor of Zoology, FAS-N; Ph.D., New York
Effects of environmental factors, including pollutants, on development and growth of
etouarine organisms
Clifford P. Weisel, Assistant Professor of Environmental and Community
Medicine, UMDNJ-RWJMS; Ph.D., Rhode Island
Measurement of environmental constituents to assess human exposure
Lily Y. Young, Professor of Environmental Science, CC; Ph.D., Harvard
Anaerobic microbial metabolism of environmental contaminants microbial ecology
Junfeng Zhang, Assistant Professor of Environmental and Community Medicine,
UMDNJ-RWJMS; Ph.D., Rutgers/University of Medicine and Dentistry of
New Jersey
Air pollution, exposure assessment, atmospheric chemistry and greenhouse gases
Gerben J. Zylstra, Professor of Biochemistry and Microbiology, BCAE;
Ph.D., Michigan
Genetics and physiology of microbial aromatic hydrocarbon degradation

Associate Members of the Graduate Faculty

John W. Baum, Senior Scientist, Brookhaven National Laboratory; Ph.D., Michigan
Radiological physics bioeffects and risks of ionizing and nonionizing radiations
Edward A. Christman, Director of Environmental Health and Safety, Columbia
University; Ph.D., Rutgers
Radiation safety, health physics
Nancy L. Fiedler, Associate Professor of Environmental and Community Medicine,
UMDNJ-RWJMS; Ph.D., Bowling Green State
Neurobehavioral and health effects in human exposure to hazardous substances
Elan J. Caudyman, Director of Health and Safety, Yale University; Ph.D., Tel Aviv
Medical imaging health physics radiation safety, occupational health
Francis J. Haughey, Professor Emeritus of Radiation Science, CC; Ph.D., Rutgers
Radiation safety, health physics
Robert Hordon, Associate Professor of Geography, FAS-NB; Ph.D., Columbia
Surface and groundwater hydrology; water quality
Joseph V. Hunter, Professor Emeritus of Environmental Science, CC;
Ph.D., Rutgers
Source, fate, and detection of water and soil pollutants
Howard Kipen, Assistant Professor of Environmental and Community Medicine,
UMDNJ-RWJMS; M.D., California (San Francisco)
Occupational health
Richard Lathrop, Associate Professor of Environmental Resources, CC; Ph.D.,
Michigan (Madiun)
Remote sensing and spatial modeling of terrestrial aquatic ecosystems
Theodore B. Shelton, Specialist of Agriculture and Resource Management, CC;
Ph.D., Rutgers
Water resources planning and management
K. David Steidley, Chief Physicist, St. Barnabas Medical Center; Ph.D., Rutgers
Medical physics biophysics health physics computers in medicine
Wesley R. Van Pelt, President, Wesley R. Van Pelt Associates Inc; Ph.D.,
New York
Health physics industrial hygiene; radiation dosimetry; environmental
radioactivity
Stephen M. Waldow, Clinical Assistant Professor, UMDNJ, and Director,
Division of Radiation Research, Cooper Hospital; Ph.D., SUNY (Buffalo)
Radiation biology; radiation therapy; models of tumor treatment

Adjunct Members of the Graduate Faculty

Brian Buckley, Administrative Director of Laboratories, EDHS; Ph.D.,
North Carolina State
Analytical chemistry of environmental samples
Natalie Freeman, Adjunct Assistant Professor of Environmental and Community
Medicine, UMDNJ-RWJMS; Ph.D., Rutgers
Exposure to occupational exposure of adult children; questionnaire development
Norberto J. Pallaroni, Research Professor of Agricultural Molecular Biology,
CC/BCAE; Ph.D., Buenos Aires
Taxonomic and phylogenetic studies of environmentally important bacteria
Mark Robinson, Clinical Assistant Professor of Community Medicine, UMDNJ-
RWJMS; Ph.D., Rutgers
Public health; risk assessment; exposure to pesticides
Alan Stern, Research Scientist, New Jersey Department of Environmental
Protection and Energy; Ph.D., Columbia
Population exposures to metals in the environment
Arthur C. Upton, Professor of Environmental and Community Medicine,
UMDNJ-RWJMS; Ph.D., Michigan
Biological effects and risks of ionizing radiation

Programs

The M.S. and Ph.D. degree programs offer concentrations in pollution prevention and control; fate and effects of pollutants;
ecological science; exposure assessment (Ph.D. only); and environmental toxicology (Ph.D. only). The Ph.D. option in exposure
assessment is offered jointly with the graduate program in public health and in conjunction with the Department of Environmental
and Community Medicine at UMDNJ-RWJMS. Within these options, the following areas of specialization are offered: air pollution
and resources; aquatic biology; aquatic chemistry; aquatic toxicology; assessment; chemistry and physics of aerosol and
hydrosol systems; climate change; environmental chemistry; environmental microbiology; environmental prediction; surface and
groundwater pollution modeling; human exposure; industrial hygiene; occupational health; pesticide residue chemistry; soil
chemistry; soil microbiology; soil physics; solid and hazardous wastes; water and wastewater treatment; and water resources.
The backgrounds of successful applicants vary greatly. All are expected to have earned an undergraduate degree in a science or
an engineering discipline with appropriate background in biology, chemistry, mathematics, and physics. Accepted applicants
who lack any of the above requirements may be required to correct this deficiency.
The M.S. program offers two plans: (1) 24 credits of course work, 6 credits of research, and a comprehensive oral examination that includes defense of a thesis; or (2) 30 credits of course work, submission of an acceptable critical essay, and a comprehensive
oral examination. All M.S. students must complete the two core courses: 16:375:513,514 Fundamental Concepts of Environmental
Science I,II. In addition, they must take a 1-credit seminar.
The Ph.D. degree requires a minimum of 72 credits beyond the bachelor’s degree, with 36 of those credits taken in course work and
24 as research credits. The remaining 12 credits may be in either courses or research. In addition, candidates must complete successfully and defend a research dissertation.
The qualifying exam includes both written and oral parts. Following admission to candidacy, students must submit a formal research proposal to their dissertation committee. One year’s residence, defined as full-time status for one academic year consisting of two consecutive terms, normally is required. There is no foreign language requirement. All Ph.D. students must complete the two core courses 16:375:513,514 Fundamental Concepts of Environmental
Science I,II, as well as 2 credits in seminars.

Graduate Courses

16:375:501. (F) ENVIRONMENTAL SCIENCE ANALYSIS (3)
Practical chemical, and biochemical processes utilized to treat municipal wastewaters. Process mechanisms, treatment efficiencies,
and their relationship to wastewater quality; techniques utilized to obtain maximum efficiency.

16:375:502. (S) STREAM SANITATION (3)
General
Principles of biological stabilization of pollution materials in streams; factors influencing atmospheric reaeration; changes in
biological populations in polluted waters.

16:375:503. (F) ANALYTICAL TECHNIQUES IN ENVIRONMENTAL CHEMISTRY (3)
Prerequisites: 11:375:405 or permission of instructor.
Theory and techniques of analytical procedures applicable to research in environmental science.
16:375:504. (S) Waste Treatment II: Water Treatment (3)
Chemical, physical, and biological factors affecting development of water supplies; water quality; municipal and industrial water treatment processes consisting of removal of particulate matter, softening, disinfection, corrosion control, iron and manganese removal, aeration, deaeration, and taste and odor removal.

16:375:505. (S) Waste Treatment II: Water Treatment Laboratory (1)
Lab. 3 hrs Corequisite 16:375:504. Experiments demonstrating water treatment processes.

16:375:506. (S) Waste Treatment III: Industrial Wastes (2)
Prerequisite 16:375:501. Industrial wastes; industrial processes and sources of wastes; composition, characteristics, and effects; methods of treatment, disposal, and recovery.

16:375:507. (F) Environmental Chemistry (3)
Equilibria: acid-base, dissolution and precipitation, multi-phase; oxidation-reduction in aquatic systems; elements of chemical thermodynamics.

16:375:509. (F) Groundwater Pollution (3)

16:375:510. (S) Environmental and Pollution Microbiology (3)
Kukor. Young Prerequisite Introductory course in microbiology or permission of instructor. Microorganisms in carbon, nitrogen, sulfur cycling, biogeochemical processes, and water and wastewater treatment systems; biodegradation strategies and pathways; and bioremediation of toxic contaminants in the environment.

16:375:512. (F) Pollution Microbiology Laboratory (2)

16:375:513. (F) Fundamental Concepts of Environmental Science I (3)
Ström. Definition of environmental science emphasizing its interdisciplinary and systems aspects: matter and energy, biosphere, atmosphere, hydrosphere, lithosphere; mathematical, physical, chemical, and biological principles.

16:375:514. (S) Fundamental Concepts of Environmental Science II (3)
Ström. Environmental contamination: how discharges into one “sphere” affect other “spheres.” Topics include environmental management, wastes, air and water pollution, soil management, physical “pollution,” risk, human health, policy, regulation, analysis, modeling.

16:375:516. (S) Ultimate Disposal and Resource Recovery of Sludges and Solid Waste (3)
Description and application of advanced technology for treatment, resource recovery, and ultimate disposal of sludges and solid wastes from municipal, industrial, and agricultural sources; techniques of theory of operation, process design, application, and performance; environmental and socioeconomic implications.

16:375:517. Applications of Aquatic Chemistry (3)
Rabinov. Thermodynamics and kinetics of the chemical and biological processes that control the composition of natural and engineered waters, including gas and solid dissolution, chemical complexation, oxidation-reduction, adsorption, photosynthesis, aerobic and anaerobic respiration, biominalization, and bioaccumulation. The component-table approach used to solve equilibrium problems and the computer program MINEQL to study complex aquatic systems.

16:375:518. (S) Principles of Environmental Science (3)
Principles and interaction associated with air environment, water environment, and environmental health, including air resources management, water resources management, and their impact on man. Related fundamentals of environmental chemistry, biology, and physics.

16:375:519. (F) Wetland Ecology (3)
Ehrenfeld. Prerequisites 11:704:351 or equivalent, and permission of instructor. Survey of the ecology, management, and utilization of wetlands. Topics include the hydrology, soils, biogeochemistry, flora, fauna, and ecosystem dynamics of the major types of wetlands. Waste-water application, wetland creation, wildlife management, wetland assessment and delineation, and conservation also discussed.

16:375:520. (S) Techniques for Biomonitoring in Aquatic Ecosystems (3)
Prerequisite 16:375:519 or permission of instructor. Discussion of techniques used to monitor for the presence of trace contaminants in aquatic ecosystems and to assess the effects of contaminants on the structure and function of these ecosystems.

16:375:522. (S) Environmental Organic Chemistry (3)
Eisenreich. Prerequisite Graduate standing or permission of instructor. Transport and transformations of anthropogenic organic chemicals in the environment; chemical-physical properties of organic chemicals, air-water and air-land exchange, atmospheric processes and deposition, sorption processes, bioaccumulation, chemical transformation, photochemical transformations, modeling concepts, case studies.

16:375:523. (F) Environmental Fate and Transport (3)
Eisenreich, Uchtin. Corequisites 11:375:444 or 451 or equivalent; CALC1, CALC2. Fate and transport of chemicals, chemical exposures in aquatic systems, and prediction of future conditions. Water quality problems introduced by addition of nutrients and oxygen-demanding material, metals, and toxic organic chemicals to water, soil, and air. Models to assess environmental mobility and predict scenarios. New paradigm of “environmental indicators” to assess environmental quality emphasized.

16:375:524. (F) Source Control of Atmospheric Pollution (3)
Turpin. Prerequisite Permission of instructor. Principles, operation, performance, and application of methods and devices to control aerosol and gaseous emissions.

16:375:525. (F) Principles of Solid-Waste Management and Treatment (3)
Prerequisite Permission of instructor. Solid-waste problems in the municipal, industrial, and agricultural areas. Interrelationships with other environmental problems; socioeconomic aspects; present state-of-the-art techniques. Quality and quantity variations, treatment and management systems; recycling, source control.

16:375:526. (S) Limnology of Urban and Suburban Waters (3)
Keating. Prerequisite Permission of instructor. Study of waters stressed by population, development, wastes; emphasis on biological characterization of urban and suburban waters.
16:375:529. (F) BIODEGRADATION AND BIOREMEDIATION (3)
Basic principles of biodegradation science and bioremediation technology; microbiological, chemical, environmental, engineering, and technological aspects; fate and persistence of contaminants in complex environmental matrices; and microbial transformation and destruction of pollutants.

16:375:530. (S) HAZARDOUS WASTE MANAGEMENT (3)
Strom. Prerequisite: 16:375:529 or permission of instructor. Overview of hazardous waste management. Case histories; legislation and regulations; treatment, disposal, and cleanup technologies; sampling and analysis methodologies; persistence and fate in the environment; emergency response procedures.

16:375:531. (F) BIOLOGICAL WASTE TREATMENT (3)
Strom. Prerequisites: 16:375:501 and 510, or permission of instructor. Advanced topics in biological waste treatment, particularly activated sludge, focusing on microbial ecosystems.

16:375:533. (F) WATER LAW (3)
Examination of the water law doctrines and institutions that affect water resources management. Topics include water rights, water resources development, instream uses, and water pollution control.

16:375:535. (F) ENVIRONMENTAL LAW AND POLICY (3)
Legal and political interactions and intermediate institutional structures between environmental law and policy, with a focus on pollution-control law.

16:375:537. (F) LARGE-SCALE WEATHER SYSTEMS (3)
Harnack. Prerequisites: 11:670:201,202; 11:670:323,324 or equivalent. Applied dynamics of the atmosphere, including the theory and observations of cyclone development, vertical motion, jet streams, fronts, and synoptic-scale circulation systems.

16:375:538. (S) MESOSCALE WEATHER SYSTEMS (3)
Harnack. Prerequisites: 11:670:323,324 or equivalent. Description, dynamics, and prediction of moist convective weather systems, such as supercells, mesoscale convective complexes, squall lines, and other multicellular storms.

16:375:540. (S) ATMOSPHERIC CHEMISTRY (3)
Zhang. Prerequisite: 11:375:421 or permission of instructor. Air pollutants, trace gases, and aerosols discussed in terms of their observed distribution in time and space; sources and sinks in the atmosphere and its boundaries; budgets and cycles. Emphasis on tropospheric chemical reactions.

16:375:541. (S) ENVIRONMENTAL MODELS (3)
Uhrin. Development and applications of environmental models discussed in terms of their ability to simulate and predict the workings of environmental systems and to communicate information and trade-offs between economic and conservation goals.

16:375:542. (S) AEROSOL SCIENCES (3)
Lioy. Prerequisite: Calculus recommended: Differential equations. Topics include the dynamics, kinematics, and size characteristics of aerosols; methods for analysis of distribution and morphology; chemistry and physics of the formation of aerosols.

16:375:543. (S) MICROMETEOROLOGY (3)
Avissar. Prerequisite: 11:670:324 or equivalent. Theory of energy fluxes near and on both sides of the earth’s surface, including sensible and latent heat transfer in the atmospheric boundary layer and soil-heat transfer; temperature, wind, and humidity structure of the boundary layer and the temperature structure of soil; experimental methods and equipment in micrometeorology.

16:375:544. (S) MODELING OF CLIMATIC CHANGE (3)
Robock. Stenchikov. Prerequisites: At least one graduate course in meteorology, oceanography, or physical geography. Knowledge of a high-level programming language, such as FORTRAN or C. Climate models, including energy-balance, radiative-convective, and general circulation models. Actual practice running climate models and analyzing output.

16:375:545. (F) PHYSICAL CLIMATOLOGY (3)
Robock. Prerequisite: A basic course in meteorology or climatology. The climate system, surface-energy balance, past climate variations, climate-feedback mechanisms, climate modeling, causes of climate change, detection and attribution of anthropogenic climate change.

16:375:546. (S) AIR POLLUTION METEOROLOGY (3)
Prerequisites: 11:670:323,324, or equivalent. Theory and applications of air pollution dispersion modeling. Meteorological effects on and by cooling towers. Effects of pollutants on meteorological parameters.

16:375:547. (F) ATMOSPHERIC BOUNDARY LAYER DYNAMICS (3)
Avissar. Prerequisite: 11:670:324 or equivalent. Basic governing equations in the atmospheric boundary layer and their application to turbulent flow, including turbulent kinetic energy, turbulence closure techniques, forcing, and stability.

16:375:548. (S) ATMOSPHERIC NUMERICAL MODELING (3)
Avissar. Prerequisite: 16:375:547 or equivalent. Basic governing equations in the atmosphere, simplification, and scaling; parameterization of turbulence, radiation, and clouds; numerical methods for the solution of the mathematical system; boundary and initial conditions; evaluations of atmospheric models.

16:375:549. (F) APPLIED CLIMATOLOGY (3)
Prerequisites: 11:670:323,324 or equivalent. Critical use of statistics as applied to climatology; analysis of meteorological time series. Application of various statistical distributions to regional climate diagnostics. Dynamic air mass analysis.

16:375:550. (S) LARGE-SCALE CLIMATE DIAGNOSTICS (3)
Harnack. Prerequisite: 16:375:549. Observed characteristics of the general circulation of the atmosphere and surface layer of the oceans; atmospheric energetics; empirical studies of large-scale, air-sea interactions, tropical-midlatitude interactions, and recent climatic fluctuations; empirical methods of short-range climate prediction.

16:375:551. (S) REMOTE SENSING OF THE OCEAN AND ATMOSPHERE (3)
Miller. Prerequisite 11:670:323 or equivalent. Theoretical basis of remote sensing. Methods, instruments, and their application to observations of ocean and atmosphere. Remote sensing of oceanic parameters such as temperature, salinity, currents, sea state, turbidity and pollutants, and atmospheric parameters such as temperature, water vapor, cloud cover, wind speeds, and pollutants.

16:375:552. (F) SOIL GENESIS AND MORPHOLOGY (3)
Gimenez. Lecture: 3 hrs. Prerequisite: Permission of instructor. Study of transport processes of energy and matter through soils. Relationships between the movement of water, the transport of heat, gas, and solute, and the physical properties of soils.
16:375:559. (S) SOIL MANAGEMENT AND CROP PRODUCTION (3)
Influence of land management systems and cultural practices on soil productivity and environmental quality.

16:375:561. (F) SOIL CHEMISTRY (3)
LeC. 2 hrs, Lab. 3 hrs
Structural chemistry, formation mechanisms, chemical properties, weathering, and surface reactions of major soil components: silicates, aluminum hydroxides, and iron oxides.

16:375:566. (S) TOPICS IN SOIL CHEMISTRY (3)
Chemistry of phosphate, potassium, and carbonate in soils; soil acidity and amendments; oxidation-reduction; ion exchange equilibria; pollution of the soils environment.

16:375:573. (S) TOPICS IN SOIL ORGANIC MATTER (3)
Role of organic matter in soil, extraction and analysis of soil organic matter, biodegradation and synthesis of humic and fulvic acids; biological and ecological aspects.

16:375:584. (S) TOPICS IN RADIATION BIOLOGY (3)
Current literature of radiation biology.

16:375:589,590. SEMINAR IN RADIATION SCIENCE (1,1)
Topics of current interest.

16:375:598. (S) SPECIAL TOPICS IN RADIOLOGICAL HEALTH (3)
Prerequisite 16:375:591.
Advanced topics of current interest, background radiation levels, radiation exposure standards, external and internal radiation exposure limits, medical radiation exposure and protection, space radiation problems, environmental radioactivity.

16:375:601. EXPERIMENTAL PROBLEMS IN RADIOLOGICAL HEALTH (2)
Prerequisite Completion of all other courses in the radiological health or health physics program. Offered in summer session only. Series of problems requiring literature search, field and laboratory exercises, and written reports. Typical problems: reactor radiation survey, X-ray installation survey, environmental sample analysis. Laboratory and fieldwork.

16:375:603,604. INDEPENDENT STUDY IN METEOROLOGY (BA, BA)
Prerequisite Permission of instructor.
The student conducts an independent comprehensive literature review and investigation of meteorological areas of interest other than the thesis topic. Regular reports of progress made in conference.

16:375:605,606. SPECIAL TOPICS IN METEOROLOGY (3,3)
Prerequisite Permission of instructor.
Selected topics in meteorology. Current literature and recent advances.

16:375:612,613. SEMINAR IN ENVIRONMENTAL SCIENCE (0,0)

16:375:625,626. ADVANCED SPECIAL PROBLEMS (BA, BA)

16:375:635. EXPERIMENTAL PROBLEMS IN ENVIRONMENTAL SCIENCE (BA)

16:375:651,652. SEMINAR IN SOIL SCIENCE (1,1)

16:375:671,672. SEMINAR IN METEOROLOGY (1,1)
Prerequisites: 11:670:323,324, or equivalent.
Review of recent advances in meteorology.

16:375:701,702. RESEARCH IN ENVIRONMENTAL SCIENCE (BA, BA)
Research in water pollution, water and wastewater treatment, air pollution, and aquatic microbiology.

FOOD SCIENCE 400

Degree Programs Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Richard D. Ludeschker, 107 Food Science Building, Cook Campus (732/932-9611, ext. 215)

Members of the Graduate Faculty
George M. Carman, Professor of Food Science, CC; Ph.D., Massachusetts Institute of Technology
Biodiagnosis, membranes, phospholipids, and enzymes

Suzue Chen, Associate Professor of Chemical Biology, CP; Ph.D., Albert Einstein College of Medicine
Mechanisms of cell differentiation and carcinogenesis

Henryk Daum, Professor of Food Science, CC; Ph.D., Politechnika Gdanska
Chemistry of food colors; thermal degradation of foods

Chaim Frenkel, Professor of Horticulture, CC; Ph.D., Washington State University
Postharvest biology; senescence science; fruit ripening and stress

Michael Gallio, Professor of Environmental and Community Medicine, UMDNJ-RWJMS; Ph.D., Albany Medical College
Food additives; photosensitizers; dermatotoxicology

Thomas G. Hartman, Adjunct Research Professor of Food Science and Mass Spectrometry Lab Manager, CAFT; CC; Ph.D., Rutgers University
Advanced instrumental analytical techniques as applied to food chemistry, mass spectrometry, chromatography, infrared spectroscopy, toxicology

Chi-Tang Hao, Professor of Food Science, CC; Ph.D., Washington State University
Flavor and lipids chemistry

Mukund V. Karwe, Associate Professor of Food Science, CC; Ph.D., Rutgers University
Numerical simulation of thermal transport in extrusion processes; instrumentation of extruders, laser Doppler anemometry

Jozef Kuklin, Professor of Food Science, CC; Ph.D., Carnegie Mellon University
Food rheology; biophysical properties, extrusion

Paul A. Lachance, Professor of Food Science, CC; Ph.D., Ottawa University
Nutrition; nutritional aspects of food processing

Tung-Ching Lee, Professor of Food Science, CC; Ph.D., California Institute of Technology
Food chemistry and biochemistry; biotechnological applications in food processing

Thomas Leustek, Associate Professor of Biochemistry and Microbiology, CC; Ph.D., Rutgers University
Nutritional value of plant crops, sulfur metabolism; molecular genetics and biochemistry

Richard D. Ludeschker, Associate Professor of Food Science, CC; Ph.D., Oregon State University
Food biophysics; protein chemistry; optical luminescence

Kari Matthews, Assistant Professor of Food Science, CC; Ph.D., Kentucky University
Pathogens and reservoirs of foodborne pathogens

Thomas J. Montville, Professor of Food Science, CC; Ph.D., Massachusetts Institute of Technology
Microbial food safety; fermentations; biotechnology

Joseph D. Rosen, Professor of Food Science, CC; Ph.D., Rutgers University
Food chemistry; toxicology; mass spectrometry

Robert T. Rosen, Adjunct Research Professor of Food Science and Associate Director, CAFT; CC; Ph.D., Rutgers University
Analytical and food chemistry; mass spectrometry; instrumental analysis; natural products; chromatography

Donald W. Schaffner, Associate Extension Specialist in Food Science, CC; Ph.D., Georgia Institute of Technology
Predective food microbiology; modeling microbial growth; applied food microbiology

Karen M. Schaalb, Associate Professor of Food Science, CC; Sc.D., Massachusetts Institute of Technology
EPR studies of free radicals; lipid oxidation; co-oxidation of macromolecules; chemistry of antioxidants

Mikhail Telikinkin, Assistant Professor of Food Science, CC; Ph.D., Institute of Biophysics, Moscow
Microbiology; genetics; biotechnology; antimicrobial peptides

Beverly J. Tepper, Associate Professor of Food Science, CC; Ph.D., Tufts University
Nutrition; food intake regulation; sensory evaluation; taste in disease

Shaw S. Wang, Professor of Chemical and Biochemical Engineering, SE; Ph.D., Rutgers University
Biochemical engineering; food science and technology

Kit L. Yam, Associate Professor of Food Science, CC; Ph.D., Michigan State University
Food packaging engineering; polymeric and bioactive materials

Chung S. Yang, Professor of Pharmacognosy, CP; Ph.D., Cornell University
Cancer prevention by dietary constituents; molecular and cellular mechanisms of carcinogenesis

Adjunct Members of the Graduate Faculty
Gail V. Civille, President, Sensory Spectrum, Inc.; B.S., College of Mount Saint Vincent
Sensory evaluation of foods; methodology

Dennis R. Heldman, Visiting Professor of Food Engineering, Ph.D., Michigan State University
Mathematical models for prediction of thermophysical properties of foods based on composition; process design
Programs

The following areas of specialization are offered: basic studies in physical, chemical, or biological changes in foods; chemistry of fats and oils; flavor chemistry, including isolation and identification of food flavors; chemistry of food proteins; nutritional aspects of food products; food enzymology and biochemistry; food microbiology; food toxicology; heat and mass transfer in foods, energy conservation in processing; food packaging, theoretical aspects, functionality, and properties; food colors; food emulsions; sensory attributes of foods; and biotechnology. The program is suitable for part-time study.

Applicants are expected to have completed one year each of calculus, physics, and organic chemistry; and to have some foundation in the biological sciences. Biochemistry, microbiology, and/or nutrition are recommended, as is statistics. Some undergraduate food science courses may be taken for graduate credit. The Graduate Record Examination must be taken.

Food science offers a Master of Science degree with options for a thesis or non-thesis program. In the thesis option, the student must take an average grade of B or better in 16:400:506, 507, 508, and 509. The student must also take a minimum of 6 research credits and 24 course credits, and must carry out a research problem and write a thesis. For the non-thesis option, the student must have at least 30 course credits and must present an essay. A non-thesis M.S. normally is considered a terminal degree. However, the student with the support of his or her major adviser may petition the faculty to continue with the Ph.D. program.

The student should demonstrate proficiency in food science by the satisfactory completion of course work in the following areas: food science fundamentals, food science seminar (1 credit), food biochemistry, food engineering, nutrition, food analysis or quantitative analysis, and food microbiology. Any of the above requirements may be waived, except seminars, if the student has had courses that satisfy the core requirements.

Students must demonstrate proficiency in food biology, food chemistry, and food engineering early in their academic careers. They are required to complete with an average grade of B+ or better in 16:400:506, 507, 508, and 509 Food Engineering Fundamentals and Processes and 16:400:513, 514 Food Service Fundamentals I, II.

The Ph.D. requires a minimum of 72 credits beyond the bachelor’s degree, of which 45 must be course credits. Candidates who have any deficiencies upon admission are required to make up these deficiencies before receiving the degree.

Qualifying examinations for the doctorate include both written and oral examinations. A student must take a written qualifying examination in one of the following areas: food biology, food chemistry, or food physics/engineering. After passing the written qualifying examination, the student takes the oral qualifying examination, which normally includes approval of the research proposal for the dissertation. A student who fails all or part of the written qualifying examination may, with the concurrence of the faculty and his or her major adviser, retake one time those portions of the examination that he or she failed. Likewise, a student who does not pass the oral qualifying examination may retake the examination once, with the dissertation committee’s concurrence. After passing both the written and oral components of the qualifying examination, the student is recommended as a candidate for the Ph.D. degree.

The Master of Philosophy degree is an option for doctoral candidates. Graduate assistantships, teaching assistantships, and fellowships are available to qualified students.

Academic and research training in packaging science and engineering as applicable to food is possible in this program. For further information concerning this option, refer to the listing under Packaging Science and Engineering in this chapter.

Graduate Courses

16:400:501. (F) FLAVOR CHEMISTRY (3)

Ho. Prerequisite: One year of organic chemistry or equivalent.
Isolation, fractionation, and identification of the desirable and objectionable flavor constituents in food; chemical mechanisms for the formation of flavor components in food; methods for measuring flavor and flavor stability of food and food components; manufacture of food flavors.

16:400:502. (F) FOOD SCIENCE INSTRUMENTATION (3)

Hartman, R. Rosen. Prerequisite: Organic chemistry.
Theory, methodology, and application of chromatographic methods, including high-performance liquid, thin-layer, and gas chromatography. Theory, methodology, and application of spectrometry, including visible color, ultraviolet, infrared, NMR, and mass spectrometry.

16:400:503. (F) FOOD SCIENCE INSTRUMENTATION LABORATORY (1)

Ho. Prerequisite: 16:400:502 and permission of instructor.
Investigation of the macromolecular and trace components in food systems. Topics include separation techniques (gas chromatography, TLC, HPLC), spectroscopic techniques (UV/Vis, IR), and investigation of research problems in food chemistry.

16:400:504. (F) CARBOHYDRATES IN FOODS (3)

Prerequisite: Organic chemistry.
Basic chemistry and technology of carbohydrates in food products. Functional properties of carbohydrates related to their use in food systems.

16:400:505. (S) LIPID CHEMISTRY (3)

Schauf. Prerequisite: 16:400:513 or permission of instructor.
Structure and composition of lipids and their chemical and physical properties; processing of fats and oils and their application in foods; fractionation, purification, and analysis of lipids; chemistry of autoxidation, antioxidants, and emulsifiers; emulsions; membranes; and health effects of lipids.

16:400:506. (S) CHEMISTRY OF FOOD PROTEINS (3)

Ludescher. Prerequisite: 16:400:513.
Study of the molecular structure, physical chemical properties, and functions of proteins and their constituents. Special emphasis on the relationship between molecular structure and function in food proteins.

16:400:507. (S) FOOD ENGINEERING FUNDAMENTALS AND PROCESSES (4)

Karwe. Prerequisites: Physics, calculus.
Principles of material and energy balance, thermodynamics, fluid flow, and heat and mass transfer. Review of unit operations: thermal processing, refrigeration, freezing, evaporation, dehydro, and extraction. Filtration and membrane processes.

16:400:509. (F) NUTRITIONAL ASPECTS OF FOOD PRODUCT DEVELOPMENT (3)

Lachance. Prerequisites: Food science fundamentals; general biochemistry; nutrition.
Study of the application of basic and applied principles of nutrition to the formulation, fabrication, processing, and marketing of food products.

16:400:510. (S) FOOD RHEOLOGY (3)

Kokini. Prerequisites: Advanced math for engineers and permission of instructor.
Concepts of flow and deformation behavior and their application in food materials. Rheological properties for liquid and solid materials. Methods of measurement of rheological properties in food systems. Rheology stability and rheology texture relationships used to illustrate applications of rheology in product quality. Basic equations of fluid flow and their application in selected flow processes such as extrusion and spinning.

16:400:511. (S) FOOD ENZYMIOLOGY (3)

Carman. Prerequisite: General biochemistry.
Study of enzymes important to food systems, including methods of isolation and characterization. Regulation of enzyme synthesis and enzyme activity. Traditional and emerging applications of enzyme technology in food processing and ingredient production with focus on selected topics such as thermostability, immobilization, catalysis under extreme conditions, enzyme mimics, and control of endogenous enzyme activities.
16400:512. (F) BIOREGULATION AND BIOTECHNOLOGY IN FOOD FERMENTATION (3)
Mantell Prerequisite: 16:115:503,504 and 16:680:501, or equivalent.
Utilization and physiology of microorganisms in the food industry.
Metabolic regulation of fermentation products. Fermentors as laboratory tools, new microbial technologies, and approaches to the use of microorganisms in foods.

16400:513. FOOD SCIENCE FUNDAMENTALS I (3)
Lee et al. Prerequisite: Organic chemistry.
Basic chemistry of carbohydrates, proteins, lipids, vitamins, and water independent of and in relation to interaction during processing.

16400:514. FOOD SCIENCE FUNDAMENTALS II (3)
Matthews Prerequisite: General microbiology or biochemistry.
Mechanistic examinations of foodborne microbes, enzymology, biotechnology, postharvest physiology, nutrition, and current concepts in food safety as related to food composition and processing.

16400:515,516. PRINCIPLES OF FOOD PROCESS ENGINEERING I,II (3,3)
Staff. Prerequisites: 11:400:401,402 and a year of calculus, or equivalent.
Applications of kinetic models to microbial growth and inactivation, as well as quality attributes in foods. Influence of temperature, water activity, and phase change on reaction rates. Use of transient-state heat and mass transfer to describe temperature and water activity distribution histories within foods during typical preservation processes. Integration of kinetic models and temperature/water activity distributions into models for prediction of microbial safety and product quality as function of process conditions and/or storage environment.

16400:519. (S) FOOD SAFETY (3)
J. Rosen. Prerequisite: Organic chemistry.
Chemistry and toxicology of food additives, pesticides, mycotoxins, and materials naturally present in food. Chemical carcinogenesis. Role of diet in both cancer microbiology and cancer inhibition.

16400:521. (F) CHEMISTRY OF FOOD COLORS (3)
Daun. Prerequisite: Organic chemistry, physics.
Occurrence, structure, and physical and chemical properties of synthetic and natural food colors. Interactions between color substances and other food components during processing and storage. Analytical aspects of food colors.

16400:523,524. TECHNOLOGY OF PACKAGING I,II (3,3)
Yam. Prerequisite: Organic chemistry.
Formulation of materials, basic uses of packaging materials and packaging design; limitations of various materials.

16400:526. (S) PREDICTING SHELF LIFE OF FOODS (3)
Yam Deteriorative kinetics of foods. Relationships between transport properties of packaging material and storage life of the packaged food. Techniques for measuring transport properties; computer simulations of shelf life.

16400:530. (S) ADVANCED FOOD SENSORY SCIENCE (3)
Tepper. Prerequisites: 01:960:401 or equivalent; basic physiology, nutrition. In-depth study of the principles of sensory physiology, taste psychophysics, and sensory evaluation with emphasis on food and food constituents and the various methods of product testing. Includes laboratory exercises.

16400:601,602. SEMINAR IN FOOD SCIENCE (1,1)
Required of all students.
Student and guest speakers. Topics presented contribute to some facet of food science. Student participation is focused on providing experience in preparing, presenting, and defending scholarly research.

16400:603. SPECIAL TOPICS IN FOOD SCIENCE (BA)
Conference 3 hrs.
Designed to permit a student to work on a relatively short-term library or laboratory project and prepare a final annotated paper, or to elect a specially arranged course of a visiting investigator.

16400:701,702. RESEARCH IN FOOD SCIENCE (BA,BA)

FRENCH 420

Degree Programs Offered: Master of Arts, Master of Arts for Teachers, Doctor of Philosophy

Director of Graduate Program: Professor François Cornilliat,
103 Ruth Adams Building, Douglass Campus
(732/932-8223/3750)
Web Site: http://french.rutgers.edu

Members of the Graduate Faculty

Carole Allamand, Assistant Professor of French, FAS–NB; Ph.D., Cornell
Twentieth-century literature

Marie-Denise Boros-Azzi, Professor of French, FAS–NB; Ph.D., California (Los Angeles)
Twentieth-century literature

François Cornilliat, Professor of French, FAS–NB; Docteur d’Etat, Paris VIII
Sixteenth-century literature; rhetoric and poetics

Viviane M. Deprez, Associate Professor of French and Linguistics, FAS–NB; Ph.D., Massachusetts Institute of Technology
Linguistics phonics

M. Josephine Diamond, Professor of French, FAS–NB; Ph.D., Cornell
Nineteenth- and twentieth-century literature; critical theory

Uri A. Eisenzwieg, Professor of French, FAS–NB; Docteur Habilitation, Paris VIII
Nineteenth- and twentieth-century literature; critical theory

Jerry Aline Flieger, Professor of French, FAS–NB; Ph.D., California (Berkeley)
Twentieth-century literature; critical theory; women’s studies and feminist theory

Josephine Grieder, Professor of French, FAS–N; Ph.D., New York
Eighteenth-century literature; social history

Louise K. Horowitz, Professor of French, FAS–C; Ph.D., CUNY
Eighteenth-century literature

Renée B. Larrier, Associate Professor of French, FAS–NB; Ph.D., Columbia
Afghan and Caribbean literature in French

Francis L. Lawrence, Professor of French, FAS–NB; President of the University
Ph.D., Tulane

Richard Serrano, Assistant Professor of French, FAS–NB; Ph.D., Johns Hopkins
Eighteenth-century literature

Richard Lockwood, Chairperson and Associate Professor of French, FAS–NB; Ph.D., Johns Hopkins
Eighteenth-century literature; rhetoric; critical theory

Lorraine Pireaux, Assistant Professor of French, FAS–NB; Ph.D., Northwestern
Late medieval literature

Ana Painet, Assistant Professor of French, FAS–NB; Ph.D., Pennsylvania
Eighteenth-century literature

Derek Schilling, Assistant Professor of French, FAS–NB; Ph.D., Pennsylvania;
Docteur, Paris VIII
Twentieth-century literature; cultural poetics, urbanism

Mary Lewis Shaw, Associate Professor of French, FAS–NB; Ph.D., Columbia
Nineteenth- and twentieth-century literature; performance arts

Mary B. Speer, Professor of French, FAS–NB; Ph.D., Princeton
Medieval language and literature; theory and practice of editing

James Svensson, Associate Professor of French, FAS–NB; Ph.D., Yale
Eighteenth-century literature; critical theory

Alan L. Williams, Professor of French, FAS–NB; Ph.D., SUNY (Buffalo)
Film history; film theory; literary theory; contemporary French literature

Associate Members of the Graduate Faculty

Geneviève Fraisse, Research Director, Centre National de la Recherche Scientifique; Docteur d’Etat, Ecole des Hautes Etudes en Sciences Sociales

History of ideas; history and theory of feminism

Claude Mouchar, Professor of French Literature, Paris VIII

History of ideas; history and theory of feminism

André Renard, Professor of French, FAS–NB; Doctorat Habilitation, Paris VIII

African and Caribbean literature in French

Professor of Philosophy, Paris VIII; Docteur d’Etat, Paris I

Aesthetics; poetics and politics

Chairperson and Associate Professor of French, FAS–NB;
Ph.D., Johns Hopkins

Professor of French, FAS–NB; Ph.D., California (Berkeley)

Professor of French, FAS–NB; Doctorat Habilitation, Paris VIII

Professor of French Literature, Paris VIII; Habilitation, Paris VIII

Professor of French, FAS–NB; Ph.D., SUNY (Buffalo)

Professor of French, FAS–NB; Ph.D., New York

Professor of French, FAS–NB; Ph.D., California (Berkeley)

Professor of French and Linguistics, FAS–NB; Ph.D., Cornell

Professor of Philosophy, Paris VIII; Docteur d’Etat, Paris I

Associate Professor of French, FAS–NB; Ph.D., Johns Hopkins

Member of the Graduate Faculty

http://french.rutgers.edu

Professor François Cornilliat,
Director of Graduate Program:
Master of Arts, Master of Arts for Teachers, Doctor of Philosophy

16:400:701,702. RESEARCH IN FOOD SCIENCE (BA,BA)
Programs

The M.A. and Ph.D. programs deal with all important aspects of French literature and some related fields through a variety of critical approaches. These programs are open to candidates whose academic records and Graduate Record Examinations give evidence of distinguished accomplishment and promise of successful graduate work. The M.A.T. program in French studies is designed primarily for persons already involved in teaching French or using their knowledge of French and French civilization in some professional capacity (persons seeking to complement and refresh their awareness of current literary, cultural, and linguistic trends). Candidates for the M.A.T. are admitted on the basis of formal background and professional activity and need not submit Graduate Record Examination scores. Nonmatriculated students may take these courses. For all three programs, applications for September admission should be submitted by February 1 in order to receive full consideration for financial aid.

Candidates for the M.A. must satisfactorily complete 30 credits of course work (6 of which may be devoted to a research problem if the candidate elects to write a thesis). In addition, they must pass an examination based on course work and a reading list. Those who wish to continue toward the Ph.D. are screened for that program at the time of the M.A. examination. Candidates for the M.A.T. also take ten term courses, chosen from among offerings in French and Francophone civilization, language, literature, and film. Students may take 6 credits of work in French. The degree is awarded after the student has taken a final written and oral examination based on course work.

Doctoral candidates are required to complete 48 credits of course work beyond the bachelor’s degree (54 credits for transliteratures fellowship students, who are required to take an extra two courses in another language). Credit for graduate work taken at other institutions may be accepted in partial fulfillment of the course requirement, but in no case will the doctoral candidate do less than one full year of course work (24 credits) at Rutgers.

Prospective candidates for the Ph.D. degree fulfill the residence requirement through full-time commitment to course work and/or research during two consecutive terms, excluding Summer Session. Doctoral candidates must demonstrate by examination a reading knowledge of two foreign languages in addition to French. These languages usually include a Romance language and either German or Latin, but substitution of a different language on the basis of relevance to projected research is possible. Greater proficiency in one language, proven by the successful completion of 6 credits of graduate course work in the literature of that language, may replace the second language requirement. Any of the above substitutions may be made only after receiving the approval of the graduate director. The language requirement must be satisfied before the candidate is admitted to the qualifying examination in a field of concentration. This examination is based on a reading list reflecting the research interests of the candidate. Once a student fulfills the course and language requirements and passes the qualifying examination, the student is admitted to candidacy for the Ph.D. degree and may then proceed with the preparation of the dissertation.

Reading lists upon which the examinations are based, as well as the Guide for Graduate Students in French, are available in the department office, or on the department’s web site.

Graduate Courses

16:420:500. INTRODUCTION TO RHETORICAL AND STYLISTIC ANALYSIS (3)
Cornilliat, Eisenweise
Techniques of literary interpretation of prose fiction, theater, and poetry. Critical readings and analyses of selected texts.

16:420:501. INTRODUCTION TO THE THEORY OF LITERATURE (3)
Eisenweise, Fieger
Structure and range of such literary value judgments and critical analyses as the historical, thematic, phenomenological, Marxist, psychoanalytic, structuralist, poststructuralist, and gender-related approaches to literature.
16:420:624. Poetry of the French Renaissance (3)
Cornilliat
Jean Lemaître, Clément Marot; the School of Lyons; the Pléiade; scientific and satirical poets of the century’s end.

16:420:625. Montaigne (3)
Cornilliat
Critical reading of the Essais with attention to the dynamics of form and meaning.

Hatrizz, Lockwood
Against the background of the age, a study of the main literary currents and an analysis of some of the significant works of the major writers.

16:420:633. The Classical Theater (3)
Hatrizz, Lockwood
Intensive study of the forms, rhetoric, and meaning of the plays of Corneille, Racine, and Molière.

16:420:634. La Fontaine and the Moralistes (3)
Hatrizz, Lockwood
Study of La Rochefoucauld, La Fontaine, Pascal, Sévigné, LaFayette, Boileau, Perrault, or other selected writers whose work addresses moral, social, or political issues, with particular attention to rhetoric and subjectivity.

16:420:636. Pascal (3)
Lockwood
Intensive study of problems in Pascal and Pascal criticism.

Hatrizz, Lockwood
Intensive study of a major figure, theme, movement, or single work.

16:420:641,642. French Literature of the Eighteenth Century (3,3)
Griadar, Piroux, Sweman
The rise and development of new literary forms and their relationship to intellectual and social changes of the Enlightenment.

Griadar, Piroux, Sweman
Intensive study of a theme, period concept (rococo, “bourgeois” sentimentality, neoclassicism), stylistic practice, or major figure (Marivaux, Voltaire, Diderot, Drouet, Rousseau).

16:420:651,652. French Literature of the Nineteenth Century (3,3)
Diamond, Eisenzwieg, Shaw
Study of the romantic movement in France with emphasis on the evolution of cultural history and art forms.

16:420:655. Flaubert (3)
Diamond
Development of the technique; his views on art, society, and man; his place in the history of the modern novel.

Diamond, Shaw
Ideologies and aesthetics of the romantic, Parnassian, or symbolist schools; or close examination of one major figure: Hugo, Baudelaire, Rimbaud, Mallarmé.

16:420:659. The Writer and Society (3)
Eisenweg, Schilling
Interaction of historical, sociological, and political forces with writers and their aesthetics. Special attention to methodology.

16:420:661,662. French Literature of the Twentieth Century (3,3)
Allamand, BorisAzzi, Eisenzwieg, Flieger, Schilling, Shaw
Major contemporary French authors from surrealism to the anti-roman and the theater of the absurd, with special attention to the evolution of each genre.

16:420:663. French Theater of the Twentieth Century (3)
Allamand, BorisAzzi, Flieger, Schilling, Shaw
Study of the modern theater from Claudel to Genêt.

16:420:664. Sartre and Existentialism (3)
BorisAzzi
Ideas and literary achievements of Sartre and Simone de Beauvoir; Camus’s relation to the group.

16:420:667,668. Studies in French Literature of the Twentieth Century (3,3)
Allamand, BorisAzzi, Flieger, Larrier, Schilling, Serrano, Shaw
Intensive study of a major figure, movement, or theme.

16:420:671. Studies in Francophone Literature (3)
Allamand, Larrier, Serrano
Intensive study of major works of African, Caribbean, or Canadian literature in French. Emphasis on selected authors, genres, themes, or literary movements.

16:420:673,674. The Novel in France (3,3)
Allamand, Diamond, Eisenzwieg, Schilling
Forms of the French novel from L’Astrée to the “nouveau roman.” The relationship of rhetoric to meaning; contemporary approaches. LaFayette, Diderot, Laclos, Sade, Stendhal, Galtier, Balzac, Flaubert, Gide, Colette, Proust, Sartre, Robbe-Grillet, Sarraute.

16:420:675. (F) Studies in Film and Film Theory (3)
Dow, Mathews
History of French cinema from Lumière and Méliès to the New Wave. Examination of contemporary critics and critical approaches.

16:420:681. French Rhetoric and Poetics (3)
Cornilliat, Lockwood
Evolution of rhetoric and poetics and their application to literature from the Renaissance to modern times.

16:420:682. Perspectives of Contemporary Criticism (3)
Diamond, Eisenzwieg, Flieger, Sweman
The New French Criticism: theory and models of the phenomenological, structuralist, generative, or poststructural enterprise.

16:420:687. Topics in French Literature (3)
Allamand, Larrier, Serrano
Analysis of special problems, such as “Ideas and Ideologies 1930–1980.”

16:420:691,692,693,694. Half-Term Projects (1.5,1.5,1.5,1.5)
Half-term courses devoted to an aspect of critical theory, a single literary work, a scholarly or textual problem, or a theme spanning more than one literary period.

16:420:701,702. Research in French (BA,BA)
Interdisciplinary Graduate Course

15:617:510. Introduction to Literary Theory (3)
Davidson, Edmund, Eisenzwieg, Flieger, Gulpin, Lockwood, Marsh, Persin, Sweman, et al. Prerequisite: Open to second-term graduate students; priority given to students from programs participating in the Council of Languages and Literature.
Introduction to contemporary literary theory, including formalism, structuralism, poststructuralism, feminism, psychoanalysis, cultural studies, and other approaches. Readings of theoretical texts and applications to short literary texts from a variety of literatures.
GEOGRAPHY 450

Degree Programs Offered: Master of Arts, Master of Science, Doctor of Philosophy

Director of Graduate Program: Professor Briavel Holcomb, Lucy Stone Hall, Livingston Campus (732/445-4107) Web Site: http://geography.rutgers.edu

Members of the Graduate Faculty

Gail M. Ashley, Professor of Geographical Sciences, FAS–NB; Ph.D., Columbia
Sedimentology; glacial geomorphology; quaternary studies; modern processes
Michael R. Greenberg, Professor of Urban Studies and Public Health, EJBSPPP; Ph.D., Columbia
Urban revitalization; gender; tourism
Robert M. Horvath, Associate Professor of Geography, FAS–NB; Ph.D., Columbia
Water resources; physical geography
David M. Hughes, Assistant Professor of Geography and Human Ecology, FAS–NB; Ph.D., California (Berkeley)
Environmental and health; mathematical models
Briavel Holcomb, Professor of Urban Studies, EJBSPPP; Ph.D., Colorado
Urban revitalization; gender; tourism
Robert W. Lake, Professor of Urban Planning and Policy Development, CU/PR; Ph.D., Chicago
Urban restructuring and social and environmental policy analysis political
Richard G. Lathrop, Jr., Associate Professor of Environmental Resources, CC; Ph.D., Wisconsin (Madison)
Remote sensing and spatial modeling of terrestrial/aquatic ecosystems GIS
Robin Leichenko, Assistant Professor of Geography, FAS–NB/CUPR; Ph.D., Pennsylvania State
Economic geography; urban and regional development; international trade
Michael J. Medler, Assistant Professor of Geography, FAS–NB; Ph.D., Arizona Biogeography; remote sensing GIS; natural resource and wilderness policy
J. Kenneth Mitchell, Professor of Geography, FAS–NB; Ph.D., Chicago
Environmental hazards; human-environment theory; environment and public policy; global environmental change
Karl F. Nordstrom, Professor of Geography and Marine and Coastal Sciences, CC/IMCS; Ph.D., Rutgers
Coastal geomorphology and management; environmental restoration
Frank Popper, Professor of Urban Studies, EJBSPPP; Ph.D., Harvard
Land use; environmental and regional policy; natural resources management
Norbert P. Ploshy, Professor of Geography, Marine and Coastal Sciences and Geological Sciences; Associate Director of the Institute for Marine and Coastal Studies, IM CSCC; Ph.D., Louisiana State
Coastal geomorphology; process-response models; sea-level rise; coastal management
Jasbir K. Pua, Assistant Professor of Geography and Women’s and Gender Studies, FAS–NB; Ph.D., California (Berkeley)
Feminist and queer geography; globalization; tourism; South Asian diaspora
Joanna M.Regulski, Professor of Geography and Women’s Studies, FAS–NB; Ph.D., Colorado
Urban policy; Central and Eastern European restructuring; gender and politics; European union
David A. Robinson, Professor of Geography, FAS–NB; Ph.D., Columbia
Climatology; cryospheric regional climates, physical geography
Thomas Rudel, Professor of Sociology, CC; Ph.D., Yale
Latin America; environment; development
Diana Schneider, Associate Professor of Urban Studies and Community Health, EJBSPPP; Ph.D., Rutgers
Medical geography; epidemiology; minority health
Richard Schroeder, Associate Professor of Geography, FAS–NB; Ph.D., California (Berkeley)
Development; gender; Africa; political ecology
Kevin St. Martin, Assistant Professor of Geography, FAS–NB/CUPR; Ph.D., Clark
Economic geography; cartography and GIS; resource geography
David Tollefson, Assistant Professor of Landscape Architecture, CC; Ph.D., Wisconsin
Geospatial technologies; environmental and land-use planning
Andrew P. Vayda, Professor of Anthropology and Ecology, CC; Ph.D., Columbia
Human ecology; methodology and explanation; human impact in tropical areas forest fires; agro-ecological knowledge transmission and use
Peter O. Wacker, Professor of Geography, FAS–NB; Ph.D., Louisiana State
Historical; cultural
Lynn Wiegens, Associate Professor of Urban Planning and Policy Development, EJBSPPP; Ph.D., California (Berkeley)
Geographic information science; computer applications in planning
Elvin K. Wyly, Assistant Professor of Geography, FAS–NB/CUPR; Ph.D., Minnesota
Urban policy; gentrification; labor markets; gender; housing finance

Associate Member of the Graduate Faculty

Michelle Goman, Lecturer in Geography and Geological Sciences; Ph.D., California (Berkeley)
Biogeography; paleoecology; geomorphology; coastal systems

Programs

The graduate program provides students with an understanding of the theory, principles, and research skills needed for geographical inquiry. Students seeking a Ph.D. degree take courses and write a dissertation that is based on original research in a subfield of geography. The program’s strengths lie in urban geography and social theory, environmental geography, and physical geography.

Candidates for the master’s degree must complete course work, write a thesis worth 6 credits, and complete successfully a comprehensive written and oral examination. As an alternative, students may write a shorter research paper, take an additional 6 credits of course work, and successfully complete a written and oral examination.

The program faculty has specialties in a broad range of disciplinary subfields. Current research efforts, which include several collaborative projects, range from local to international issues. Following are specific topics:

Urban Geography. Political economy of urban development; comparative urbanization; women and the urban environment; urban restructuring; housing and spatial segregation; gentrification; eastern European urban policy; regional development and decline; uneven global development; cultural historical geography of New Jersey; political geography; space and social theory; and history of geography.

Environmental Geography. Global environmental change, perception of and policy responses to natural and technological hazards, geography of technological hazards, environmental health risks and planning, medical geography, toxic-waste siting, remote sensing of resources and hazards, GIS applications, resource management, land use, political economy of nature, gender and environment, and development and land use.

Physical Geography. Glacial and periglacial geomorphology, permafrost, sedimentology, quaternary studies, global and regional climate change, cryospheric dynamics, surface radiative dynamics, coastal geomorphology, coastal process-response modeling, coastal management, ground water and water supply, and urban hydrology.

The geography department is linked with various research institutes, programs, and other departments at the university. In addition to core course work in geography, graduate students are encouraged to enroll in courses relevant to their research interests in other units of the university.

For the Ph.D., a minimum of 72 credits is required. Of the total credit load, 48 credits should be in nondissertation course work beyond the bachelor’s degree and at least 24 credits should be in dissertation research. In consultation with their advisers, students select a faculty committee. Upon completion of course work, they submit a dissertation proposal and take the qualifying examination.

The master’s degree program requires 30 credits beyond a bachelor’s degree, with a minimum of 24 of those credits taken in course work. The M.A. degree is awarded to people specializing in human geography, and the M.S. degree to those who focus on physical geography. The Research Proseminar (16:450:603) is required for all new graduate students pursuing a degree through the graduate program in geography.

Applicants for the graduate program in geography should hold an appropriate, accredited undergraduate degree, although this need not be in geography. Four criteria guide the admissions process: (1) a cumulative grade-point average of 3.25 or better (or equivalent for international students); (2) competitive Graduate Record Examination general test scores; (3) strong letters of recommendation from at least three references; and (4) a persuasive and well-focused personal statement describing academic goals and research interests. Financial support through teaching assistantships, graduate assistantships, and university fellowships is
available on a competitive basis to students with excellent qualifications. Applicants seeking financial aid should submit applications by February 1.

Further information can be obtained from the current edition of the booklet Graduate Study in Geography at Rutgers University, available from the department office or by visiting the department's worldwide web site.

Graduate Courses

16:450:501. (F) **INTRODUCTION TO NATURAL RESOURCES MANAGEMENT (3)**
Review of recent literature on natural resources management, with emphasis on identifying and analyzing research themes and methodologies employed by contemporary geographers.

16:450:502. (S) **RESOURCE MANAGEMENT DECISION MAKING (3)**
Prerequisite: 16:450:501 or equivalent. Individual and collective behavior theories applied to the analysis of private decisions and public natural resource policy, from a human ecological perspective.

16:450:503. (S) **ENVIRONMENTAL MANAGEMENT (3)**
Prerequisite: 16:450:502 or equivalent. Contemporary resource management issues in the United States, including resource evaluation, environmental-impact assessment, and planning procedures. Emphasis on conflict resolution, public participation, and the role of science in decision making.

16:450:504. (F) **COASTAL GEOMORPHOLOGY (3)**
Prerequisite: 01:450:403 or 404 or equivalent. Erosional and depositional processes in the coastal environment. Process-response models and problem-solving methods in coastal research.

16:450:505. (F) **ADVANCED PHYSICAL GEOGRAPHY (3)**
Prerequisite: 01:450:403 or 404 or equivalent. Selected topics within the general field of earth science.

16:450:507. (S) **APPLIED GEOMORPHOLOGY (3)**
Prerequisite: 01:450:403 or 404 or equivalent. Applications of modern geomorphological research to environmental management, including geomorphological constraints to human activity and human effects on landform processes.

16:450:508. (S) **ENVIRONMENTAL PROBLEMS IN DEVELOPING COUNTRIES (3)**
Similarities and differences among developing countries in their environmental problems, their definitions of them, and their policies about them. The role of economic development in either solving or causing environmental problems. Environmental considerations in development planning.

16:450:509. (F) **HUMAN GEOGRAPHICAL PROBLEMS OF DEVELOPING COUNTRIES (3)**
Human underpinnings to problems of development as seen from the perspectives of historical, political, demographic, economic, and social geography. Case studies and examples from the third world.

16:450:510. (S) **WATER RESOURCES MANAGEMENT (3)**
Problems in the management of water use in metropolitan environments. The effects of urbanization on the hydrologic regime. The influence of geohydrologic factors on water use decisions.

16:450:511. (S) **LAND USE SYSTEMS (3)**
Environmental factors in land-use planning. Land-use data systems including storage and retrieval, “third-dimension” planning; water and ground below the surface soil. Multivariate analysis of land variables. Land use and water quality.

16:450:513. (S) **SETTLEMENT GEOGRAPHY (3)**
Field trips required. Evolution and morphology of selected rural settlement landscapes interpreted in terms of natural conditions, institutional factors, and economic functions.

16:450:514. **ENVIRONMENT AND CULTURE (3)**
Interrelations of the environment and cultural practices, knowledge, and ideals. Concepts and methods for studying these interrelations.

16:450:515. (S) **POPULATION MIGRATION AND MOBILITY (3)**
Analysis of population mobility at the international (immigration, guest workers, refugees), interregional, and intraurban levels through examination of spatial patterns of migration, locational decisions, impact of migrants in places, and population redistribution policies.

16:450:516. (S) **URBAN GEOGRAPHY (3)**
Geographic aspects of urbanization, theories of contemporary urban geography, and their application to existing urban patterns.

16:450:517,518. **DIRECTED STUDY IN GEOGRAPHY (3,3)**
Prerequisite Permission of graduate director. Directed readings and individual study supplementary to formal courses.

16:450:519. (F) **PROBLEMS IN POLITICAL GEOGRAPHY (3)**
Geographic implications of state theory, locational conflict, public policy, and national and local government relations.

16:450:520. **WOMEN IN THE URBAN ENVIRONMENT (3)**
Documentation of the spatial constraints faced by women in the urban environment; examination of women’s roots in the context of the interrelation between the activities of production and reproduction.

16:450:521. **REGIONAL HYDROLOGY AND LANDFORMS (3)**
Relationships between physiographic regions and hydrologic systems. Field trips to regional watersheds in varying landform areas. Land use and water quality.

16:450:522. **TOURISM GEOGRAPHY (3)**
Geographical aspects of world’s leading industry by value. Economic, environmental, cultural, and social impacts of tourism domestically and internationally.

16:450:523. **THE CLIMATE SYSTEM AND GLOBAL CLIMATE CHANGE (3)**
The earth’s energy balance, hydrologic cycle, and atmospheric circulation at a variety of spatial and temporal scales. Present climate events and aspects of climate change.

16:450:525. **RESTRUCTURING OF CENTRAL AND EASTERN EUROPE AFTER 1989 (3)**
Examination of the roots of the collapse of totalitarian regimes in central and eastern Europe. Analyzes spatial implications of the transition for urban development, gender relations, economic restructuring, and environmental change.

16:450:530. **DATA STRUCTURES AND ALGORITHMS FOR SPATIAL PROBLEMS (3)**
Prerequisites 01:450:321 or 420 or 11:372:415. Discussion and hands-on programming of data structures and algorithms used in geographic information systems.

16:450:601,602. **FIELD AND RESEARCH METHODS IN GEOGRAPHY (3,3)**
Research procedures and methods, survey of past and current literature, data collection and analysis, and preparation of reports, papers, and theses; colloquia on analytical problems.

16:450:603. (F) **RESEARCH PROSEMINAR (3)**
Required for graduate degree. Evolution and status of main disciplinary subfields, contemporary paradigms, transdisciplinary relationships, professional employment trends, introduction to geographical bibliography, and basic research skills.
16:450:605,606. Geography Seminar (3,3)
Lectures and special problems in current issues. Course content varies according to student and faculty interest.

16:450:607. (S) Seminar in Historical Cultural Geography (3)
Origins and diffusions of selected material and nonmaterial culture traits in North America from the seventeenth through the nineteenth centuries.

16:450:612. Natural Hazards Management (3)
Analysis of human and environmental contributions to the generation and management of natural hazards, including, among others, earthquakes, hurricanes, floods, and droughts. Contemporary public policy issues at national and international levels of government. Theoretical emphasis on decision making in the face of uncertainty.

16:450:613. (F) Seminar in Coastal Resources Geography (3)
Analysis of contemporary maritime management issues, including ecosystem preservation, siting of energy facilities, ocean dumping, storm-disaster mitigation, port development, waterfront revitalization, and beach recreation. Focus on U.S. and international public policy.

16:450:614. (F) Seminar in Medical Geography (3)
Advanced topics of medical geography. Student research and analysis of specific problems.

16:450:615. (S) Seminar in Remote Sensing (3)
Remote sensors and their research capabilities. Research design for remote-sensing studies.

16:450:616. Seminar in Technological Hazards (3)

Lathrop. Prerequisites: 16:450:615 or equivalent or permission of instructor. Application of satellite remote-sensing and geographic information-system technology to monitor and model the earth’s biosphere, including terrestrial/aquatic primary production, biogeochemical cycling, and climate dynamics.

16:450:625. Seminar in Geographic Information Systems (3)
Prerequisites 01:450:420 or 11:372:415.
Advanced topics in geographic information systems: raster/vector data structures, GIS modeling. Requires literature review and hands-on computer analysis.

16:450:632. (S) Seminar in Regional Geography (3)
Selected world regional and interregional problems associated with environmental constraints, natural resource use, and other public policy issues. Varying foreign area focus.

16:450:650,651. Master’s Paper in Geography (3,3)

16:450:701,702. Research in Geography (BA,BA)

Geological Sciences 460
Degree Programs Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Professor Kenneth G. Miller,
Wright-Riemann Laboratories, Busch Campus (732/445-3622)

Members of the Graduate Faculty
Gail M. Ashley, Professor of Geological Sciences, FAS–NB; Ph.D., British Columbia
Sedimentology; geomorphology; quaternary geology; modern processes

Marie-Pierre Aubry, Research Professor of Geological Sciences, FAS–NB; D.Sc., Université Pierre et Marie Curie
Biostratigraphy; calcareous nanoplankton evolution; geological time and the stratigraphic record

Michael J. Carr, Professor of Geological Sciences, FAS–NB; Ph.D., Dartmouth
Convergent plate margins; volcanology; tectonics; igneous petrology

Jeremy S. Delaney, Research Scientist, Geological Sciences, FAS–NB; Ph.D., Queens (Belfast)
Microwave analysis of terrestrial and extraterrestrial materials

Paul G. Falkowski, Professor of Geological Sciences and Marine and Coastal Sciences, FAS–NB; Ph.D., British Columbia
Biogeochemical cycles; evolution; astrobiology

Craig S. Feibel, Assistant Professor of Anthropology and Geological Sciences, FAS–NB; Ph.D., Utah
Geomorphology; paleoenvironments; paleoecology; micromammals; geochronology

Mark D. Feigenson, Professor of Geological Sciences, FAS–NB; Ph.D., Princeton
Geochronometry of igneous rocks and other geologic samples

Claude T. Herzberg, Professor of Geological Sciences, FAS–NB; Ph.D., Edinburgh
Solid and liquid silicate solutions; applications to planetary interiors

Gregory F. Herzog, Professor of Chemistry, FAS–NB; Ph.D., Columbia
Meteoritics: radiometric dating and cosmic ray exposure; trace elements

Roger H. Hewins, Professor of Geological Sciences, FAS–NB; Ph.D., Toronto
Petrology of meteorites, mantle and ultramafic rocks; mineral chemistry

Dennis V. Kent, Professor of Geological Sciences, FAS–NB; Ph.D., Columbia
Paleomagnetism; paleogeography; stratigraphy

Richard A. Lutz, Professor of Marine and Coastal Sciences, IMCS; Ph.D., Maine
Marine ecology and paleoecology; malacology; invertebrate paleontology; ecology of deep-sea hydrothermal vents

George R. McClellan, Professor of Geological Sciences, FAS–NB; Ph.D., Rochester
Evolutionary theory; mass extinction; community paleoecology and evolution; functional and theoretical morphology; Paleozoic stratigraphy

Kenneth C. Miller, Sr., Chair and Professor of Geological Sciences, FAS–NB; Ph.D., Massachusetts Institute of Technology/Woods Hole Oceanographic Institution Joint Program in Oceanography
Cenozoic sea-level and paleoceanographic changes; integration of isotopic, bio-, magneto-, and seismic stratigraphy

Richard K. Ollson, Professor Emeritus of Geological Sciences, FAS–NB; Ph.D., Princeton
Micropaleontology; stratigraphy; paleoecology; paleobathymetry of Cretaceous and Cenozoic foraminifera

Northrop F. Pauty, Professor of Geography and Geology and Associate Director of the Institute for Marine and Coastal Studies, IMCS/CC; Ph.D., Louisiana State University
Beach morphodynamics; coastal dunes; general coastal geomorphology and sedimentology

David A. Robinson, Professor of Geography, FAS–NB; Ph.D., Columbia
Climatology; cryosphere; solar radiation; physical geography

Peter A. Roma, Professor of Geological Sciences and Marine and Coastal Sciences, FAS–NB/IMCS; Ph.D., Yale
Organic ridge crest processes; sea floor hydrothermal processes; marine geology and geophysics

Yair Rosenthal, Assistant Professor of Geological Sciences, FAS–NB; Ph.D., Massachusetts Institute of Technology/Woods Hole Oceanographic Institution
Geochemistry; paleoceanography; trace metal biogeochemistry; metal cycling in estuarine and coastal sediments

Roy W. Schlische, Associate Professor of Geological Sciences, FAS–NB; Ph.D., Columbia
Geochemistry; structural and stratigraphic development of rift basins; growth of faults

Robert E. Shererd, Professor of Geological Sciences, FAS–NB; Ph.D., Columbia
Sedimentology; refraction; seismic stratigraphy; general geophysics; geology of the Atlantic continental margin

Robert M. Sherrell, Associate Professor of Geological Sciences and Marine and Coastal Sciences, FAS–NB/IMCS; Ph.D., Massachusetts Institute of Technology/Woods Hole Oceanographic Institution
Geochemistry of marine and fresh waters; paleoceanographic records in ice cores

Carl Swisher III, Associate Professor of Geological Sciences, FAS–NB; Ph.D., California (Berkeley)
Geochronology; vertebrate paleontology; human origins

Martha O. Withjack, Research Scientist, Geological Sciences, FAS–NB; Ph.D., Brown University
Experimental structural geology; seismic stratigraphy

James D. Wright, Assistant Professor of Geological Sciences, FAS–NB; Ph.D., Columbia
Geochemistry of marine and fresh waters; paleomagnetic records in ice cores

Associate Members of the Graduate Faculty
Lloyd Burckle, Adjunct Professor of Geological Sciences, FAS–NB; Ph.D., New York
Micropaleontology (diatoms), paleoceanography, ice volume history

Alexander E. Caven, Associate Professor of Geology, FAS–N; Ph.D., Virginia Polytechnic Institute and State University
Tectonics; structural geology; deformational-chemical interactions in organic soils

Michelle Coman, Lecturer in Geological Sciences and Geography, FAS–NB; Ph.D., California (Berkeley)
Coastal geomorphology; geochronology; paleoecology
Michael J. Kennish, Research Marine Scientist, IMCS; Ph.D., Rutgers
Biology and geology of deep-sea hydrothermal vents: anthropogenic impacts on coastal and estuarine waters

Ying-Fan Reinfelder, Lecturer in Geological Sciences, FAS-NB; Ph.D., Utah State
Mathematical modeling of groundwater flow and its relationships to rocks and sediments: weathering and erosional/depositional processes

Kathleen M. Scott, Associate Professor of Biological Sciences, FAS-NB; Ph.D., Yale
Functional morphology, palaeoecology of ungulates; mammalian evolution

Adjunct Members of the Graduate Faculty

William A. Berggren, Distinguished Visiting Professor, FAS-NB; Ph.D., Stockholm
Taxonomy, biostatigraphy, paleobiography of Mesozoic and Cenozoic planktonic and benthic foraminifera; global marine-continental stratigraphic correlations and time scales; paleoceanography

Peter Sugarman, Supervising Geologist, New Jersey Geological Survey; Ph.D., Rutgers
Sequence stratigraphy, hydrogeology

Brigitte M. Zanda, Maître de Conférences des Universités II, Muséum National d'Histoire Naturelle, Paris Ph.D., Paris
Meteoritics, chondrule formation, evolution and metamorphism; cosmic ray exposure

Programs

Research activities of the program involve stratigraphy, sedimentology, paleoceanography, paleomagnetics, paleontology, paleoecology, biostatigraphy, structural geology, tectonics, geochemistry, geophysics, volcanology, igneous petrology, and quaternary geology. A broad background in chemistry, physics, mathematics, and geology is stressed. The graduate committee sets a course of study for each new student and encourages each one to outline a research program in consultation with a faculty member. That faculty member becomes the student’s adviser.

A written thesis, 24 credits of course work, and 6 credits of research are required for the master’s degree. A minimum of 36 credits of course work out of a total 72 credits is required for the doctorate. A candidate for the Ph.D. must demonstrate satisfactory capability in computers. In addition, he or she must pass a qualifying examination that includes a comprehensive written examination and an oral defense of the proposed dissertation research. One year of full-time graduate work satisfies the residency requirement. The Master of Philosophy degree is available to doctoral candidates.

All applicants should submit three letters of recommendation and their Graduate Record Examination results. Part-time students are encouraged to apply.

Graduate Courses

16:460:501. (S) ECONOMIC GEOLOGY (3)
Feigenson. Prerequisite: 01:460:401 or 402 or equivalent.
Geochemistry of hydrothermal ore deposits, including studies of alteration, ore mineral solubility, fluid inclusions, mass transfer, and stable and radiogenic isotopes.

16:460:503. (F) STUDIES IN PALEONTOLOGY (3)
Prerequisite: 01:460:303 or equivalent.
Topics include methods and case studies in systematics, evolution and extinction, paleoecography, paleoclimates, and other topics of current interest. Emphasis on the relationship between geological and biological processes.

16:460:505. (F) SEDIMENTARY GEOLOGY (3)
Prerequisite: 01:460:301.
Topics of current interdisciplinary research in sedimentary geology. Sequence stratigraphy, facies models, sea-level change, unconformities/ hiatuses, tectonics, climate change, cyclicity, evolution, mass extinctions.

16:460:506. (S) STRUCTURE AND FORMATION OF THE EARTH (3)
Feigenson, Herberg, Hewins. Prerequisites: 01:460:302, 307, 401, or permission of instructor.
Topics of current research on the internal structure of the earth. Mantle structure, phase changes, seismic discontinuities, trace-element/isotopic properties, mineral physics, core formation, meteorites, moons, asteroids.

16:460:507. (S) GEODYNAMICS (3)
Prerequisite: 01:460:301, 512.
Topics of current research in structural geology, geophysics, and tectonics. Deformation of the crust and mantle; convection in the mantle and core; the gravity and magnetic field of the earth; plate tectonics and the origin of earthquakes and volcanoes.

16:460:508. (F) MINERAL PHASE RELATIONS (3)
Hawins. Prerequisite: 01:460:308.
Free-energy diagrams and phase diagrams, equilibrium and kinetics, nucleation theory, undercooling, diffusion. Major groups of rock-forming minerals; comparison of laboratory data and theoretical models with assemblages, compositions, and morphologies actually observed in slowly cooled and rapidly cooled rocks.

16:460:509. (F) METEORITES (3)
Hawins. Prerequisite: 01:460:302.
Petrology and geochemistry of meteorites, origin of solar system, thermal history of asteroids.

16:460:511. (S) PETROLOGY (3)
Herberg. Prerequisite: 01:460:301,302 or equivalent.
Basic principles of thermodynamics applied to solid-solid and solid-liquid equilibria in silicate systems; igneous and metamorphic processes that structured the petrology of the earth’s crust and mantle through time.

16:460:512. (S) METAMORPHIC PETROLOGY (3)
Herberg. Prerequisite: 01:460:301,302 or equivalent.
Principles of thermodynamics applied to the stabilities of mineral assemblages in metagneous and metasedimentary rocks of the earth’s crust; fluids in the crust; metamorphism and plate tectonics.

16:460:513. (S) VOLCANOLOGY (3)
Carr. Prerequisite: 01:460:302 or equivalent.
Geologic settings of volcanoes; geophysical and geochemical constraints on the origin of magmas; energetics and periodicity; volcanoes and earthquakes; eruption mechanisms; volcanic hazards and prediction; geothermal power and volcanogenic ore deposits.

16:460:514. (S) DEPOSITIONAL ENVIRONMENTS (3)
Ashley. Prerequisite: 01:460:340 or equivalent.
Examination of clastic depositional environments, with emphasis on sedimentary processes. Sediment sampling and analyzing; sedimentary structures; grain characteristics; facies models.

16:460:515. (F) ADVANCED TECTONICS (3)
Withjack. Prerequisites: Structural geology; two terms of calculus.
Plate tectonic theory; quantitative analysis of plate motions on a sphere; use of paleomagnetism and seismology in tectonics; causes of plate motion.

16:460:516. (F) ADVANCED STRUCTURAL GEOLOGY (3)
Schlische. Lec. 2 hrs, lab. 3 hrs. Prerequisites: Structural geology; two terms of calculus, linear algebra.
Advanced topics in structural geology, including tensor analysis of stress and strain; practical strain measurement; geometric, kinematic, and dynamic analysis of folds and fractures; seismic expression of structural styles.

16:460:519. (F) MESOZOIC- CENOZOIC STRATIGRAPHY (3)
Miller. Prerequisite: 01:460:304.
Study of the Mesozoic-Cenozoic stratigraphic sequences in different basinal settings and relationship to tectonic history.

16:460:525. (S) MARINE SEDIMENTOLOGY (3)
Ashley. Prerequisite: 01:460:340 or equivalent.
Examination of the physical processes of sedimentation on the continental shelf and continental slope environments. Interrelationship between organisms and sediment, as well as environmental problems.
16:460:526. (F) PALEOCEANOGRAPHY (3)
Miller, Kaashuu, Wright. Prerequisite: Paleontology.
Paleoecology, paleoclimatology, and paleography of marine microfossils; study of major paleoceanographic events and their relationships to stratigraphy and sedimentary facies.

16:460:528. (F) GROUNDWATER MODELING (3)
Rafter, Prerequisite: 01:460:428 or equivalent.
Modeling of groundwater flow and associated mass/energy transport. Real examples used to formulate correct mathematical statement of problem; numerical models applied for solution.

16:460:538. (S) EVOLUTIONARY PALEOECOLOGY (3)
McIvor. Prerequisite: 01:460:303 or equivalent.
Evolution of ecological systems in geologic time; application of evolutionary theory to paleoecological patterns and processes.

16:460:541. (F) MARINE GEOLOGY (3)
Miller, Wright. Prerequisite: 01:460:341 or equivalent or permission of instructor.
Structure and evolution of ocean basins, continental margins, and marine sediments.

16:460:551. (S) ISOPTO GEOCHEMISTRY (3)
Fallgen. Prerequisite: 01:460:401 or equivalent.
Studies of stable and radiogenic isotopes in the earth’s mantle and crust. The use of isotopes in age dating, source tracing, and geothermometry.

16:460:553 (F) PALEOMAGNETISM (3)
Kent. Prerequisite: 01:460:412 or equivalent.
Applications of geomagnetism and paleomagnetic techniques to geological and geophysical problems. Topics include the modern geomagnetic field, secular variation, the earth dynamo, rock magnetism, paleomagnetic studies, geomagnetic reversals, magnetostratigraphy, paleointensity variations, apparent and true polar wander, environmental magnetism, and magnetic proxies of climate change.

16:460:555. (F) GEOPHYSICS I (3)
Sheridan. Prerequisites: 01:460:307, 01:640:252, 01:750:204, or permission of instructor.
Theory and application of seismic refraction, seismic reflection, deep-earth seismology, surface waves, and heat flow. Collection and interpretation of seismic data.

16:460:556. (S) GEOPHYSICS II (3)
Sheridan. Prerequisites: 01:460:307, 01:640:252, 01:750:204, or permission of instructor.
Theory and application of gravity, magnetics, paleomagnetics, and electrical prospecting. Measurement and interpretation of potential field anomalies.

16:460:560. (S) NUMERICAL METHODS IN PALEOECOLOGY (3)
McIvor. Prerequisites: Calculus and statistics, or permission of instructor.
Digital computational methods for paleoecologists and paleontologists; measurement systems and data transformation; statistics; discrete association and gradient analytic techniques for paleoecological research. Emphasis on applied data analysis.

16:460:561. (F) STUDIES IN MICROPALEONTOLOGY (3)
Prerequisites: 01:460:303, 341.
Paleoecology and biostratigraphy of foraminifera; identification and interpretation of microscopic organic remains in rocks and sediments.

16:460:601,602. ADVANCED STUDIES IN GEOLOGY (BA,BA)

16:460:611. SEMINAR IN GEOLOGY (BA)
Course may be taken more than once.
Special topics chosen each term.

16:460:612. (F) GRADUATE RESEARCH SEMINAR (1)
Presentation and discussion of current topics in geosciences, and faculty- and student-led group discussions on topics of professional development (some examples: paper authorship, reviewing papers and proposals, writing proposals, ethics and scientific fraud, funding, news about science).

16:460:655,656. (F,S) RESEARCH COLLOQUIUM (1,1)
Students attend weekly lectures by visiting scientists on current research in geosciences; one or more papers required on one or more of the topics covered.

16:460:701,702. RESEARCH IN GEOLOGY (BA,BA)

GERMAN 470
Degree Programs Offered: Master of Arts, Doctor of Philosophy
Director of Graduate Program: Professor William Collins Donahue, 101-A German House, 64 College Avenue, College Avenue Campus (732/932-7201/7379)

Members of the Graduate Faculty
Markus Ciklamini, Professor of German, FAS-NB; Ph.D., Yale
History of the German language; Old Norse literature; Medieval studies
Christine Cosentino-Dougherty, Professor of German, FAS-C; Ph.D., Columbia Literature before and after German unification; expressionism
William Collins Donahue, Assistant Professor of German, FAS-NB; Ph.D., Harvard
Nineteenth- and twentieth-century literature; German-Jewish studies
Hildburg Herbst, Associate Professor of German, FAS-NB; Ph.D., Princeton
Eighteenth-century romanticism; German literature; German cinema
Fatima Naqvi, Assistant Professor of German, FAS-NB; Ph.D., Harvard
Twentieth-century German and Austrian literature, culture, and film (post 1945)
Joanna M. Ratych, Professor Emerita of German; FAS-NB; Ph.D., Munich
Contemporary German literature; stylistics
Nicholas A. Renne, Assistant Professor of German, FAS-NB; Ph.D., Yale
Eighteenth- to twentieth-century aesthetics; theory
James A. Rushing, Associate Professor of German, FAS-C; Ph.D., Princeton
Medieval studies; nineteenth- and twentieth-century narrative
Ottavio M. Zitzelsberger, Professor of German, FAS-NB; Ph.D., Columbia
German philology and literature prior to 1500

Programs
Areas of specialization available include philology, older German literature before the baroque period, and German literature of the seventeenth, eighteenth, nineteenth, or twentieth century.
Requirements for the master’s degree are 30 credits of course work beyond the bachelor’s degree (or 24 credits and a thesis) and an examination covering the general field of German literature. In addition, students must display knowledge of the history of the German language and of Middle-High German.

Students pursuing the doctorate must take a minimum of 48 credits of course work beyond the bachelor’s degree and possess a reading knowledge of one additional language, as deemed appropriate by the candidates’ advisers. In addition, a candidate must complete successfully a written examination based on a core reading list and an oral examination in his or her area of specialization. Finally, each candidate must submit an acceptable dissertation. The Ph.D. qualifying examination may be taken in parts spaced over six months. No more than 3 credits for the master’s degree and no more than 6 credits for the doctorate may be taken in independent study courses. A Master of Philosophy degree can be obtained by candidates who complete their course work and qualifying examination within four years. Although there is no formal residence requirement, the candidates accepted must be available for close supervision and consultation.

Courses at the 500 and 600 levels are open to all graduate students and constitute the major portion of the program. As part of their graduate training, doctoral students are given the opportunity to assume certain teaching obligations under faculty supervision. Further details concerning the program, including additional information about the qualifying examination and the dissertation, as
well as information about teaching assistantships, can be found in Graduate Programs in German and in Guidelines for Graduate Students in German. These pamphlets are available on request from the office of the graduate director.

Graduate Courses

Three courses from the following list normally are offered each term.

16:470:501. The Teaching of College German (3)
Introduction to the nature of language acquisition; critical examination of instructional materials; principles of cultural analysis; theory and practice of teaching literature. Patterned to the practice of college instruction.

16:470:502. Teaching Apprenticeship in German (N1.5)
Weekly workshops for teaching, testing, and evaluation techniques in elementary and intermediate language courses. Observation of language classes.

16:470:510. Literary Theory and Methodology (3)
Ciklamini, Rennie, Rushing. Recommended during the first year. Study and practice of scholarly techniques, the use of secondary literature for research, the writing of papers, and an overview of literary theories.

16:470:511. Advanced Grammar (3)
Ciklamini
Comparison of syntactic and semantic differences between source and target languages.

16:470:512. Advanced Stylistics (3)
Studies in the nature and development of literary styles and nonfiction prose from the sixteenth century to the present, with emphasis on the expressive possibilities of various syntactic modes.

16:470:513. Analysis of Literary Texts (3)
Study of selected works of poetry, drama, and prose with a view to increasing a teacher's faculties of literary interpretation and aesthetic judgment.

16:470:515. History of the German Language (3)
Ciklamini, Zitzelsberger
Survey of linguistic changes and phenomena from the Indo-European era to the present.

16:470:516. Introduction to Middle-High German (3)
Ciklamini, Zitzelsberger
Phonology and grammar. Reading of representative texts from the Middle-High German period A.D. 1050 to A.D. 1350, with special emphasis on the popular epic, court epic, and Minnesänger.

16:470:517. Introduction to Old High German (3)
Zitzelsberger
Survey of the morphology of Old High German with readings and discussions of representative literary texts as recorded in the various dialects.

16:470:520. Literature of the Middle Ages (3)
Ciklamini, Zitzelsberger
Analysis of the folk epic (Nibelungenlied) and its sources; the courtly romances by Hartmann von Aue, Wolfram von Eschenbach, and Gottfried von Strassburg; the saint's legend; and poems by prominent Minnesänger.

16:470:521. Literature of the Renaissance, Reformation, and Baroque (3)
Zitzelsberger
Sociohistorical overview of German literature of the sixteenth and seventeenth centuries.

16:470:522. From Rococo to Classicism (3)
Herbst, Rennie
Literature of the eighteenth century with emphasis on Anakreontik, Sturm und Drang, and the Weimarer Klassik, focusing mainly on contemporaries of Goethe and Schiller.

16:470:523. German Romanticism (3)
Ciklamini, Herbst
Aims and characteristics of the romantic movement as reflected in the works of Hölderlin, Novalis, Kleist, Brentano, Eichendorff, and Hoffmann.

16:470:524. Nineteenth-Century Realism (3)
Donahue, Rushing
Studies in the theory, themes, and styles of German literary realism in the nineteenth century, focusing on the works by Büchner, Hebbel, Stifter, Keller, Meyer, Storm, and Fontane.

16:470:525. Literature of the Twentieth Century Before 1945 (3)
Donahue, Naqvi
Study of significant literary works and trends against the background of late Wilhelminian Germany, the Weimar Republic, and the Nazi era.

16:470:526. Literature of the Twentieth Century After 1945 (3)
Consentino-Doughtery, Donahue, Naqvi
Study of German writers after World War II, including Bernhard, Borchert, Böll, Dürrenmatt, Frisch, Grass, Handke, Hochhuth, Johnson, Lenz, Botho Strauss, Walser, and Weiss.

16:470:601, 602. Independent Study in German Languages and Literatures (3, 3)
Prerequisites. Permission of instructor and approval of graduate director. Independent study or directed research. Intended for exploring areas not covered in depth by regularly scheduled courses.

16:470:610. Old Norse Literature (3)
Ciklamini, Zitzelsberger. Conducted in English.
Principal genres of saga literature; Eddic and Scaldic poetry.

16:470:611. Courtly Poetry and Medieval Drama (3)
Ciklamini, Rushing, Zitzelsberger
Major lyrics of the Minnesang and its later developments. The Latin and romance origins of German lyric poetry. Selected dramas from the thirteenth to the late fifteenth centuries.

16:470:615. Literature of the Baroque (3)
Zitzelsberger
Study of lyric, dramatic, and prose works as an expression of religious, historical, and cultural currents of the seventeenth century.

16:470:622. The German Enlightenment (3)
Herbst, Rennie
The concept and question of German Enlightenment, especially as it relates to modernity. Readings by Leibniz, Kant, Mendelssohn, Gottsched, Bodmer, Lessing, Klopstock, Wieland, and Gellert.

16:470:625. Goethe (3)
Herbst
Study of Goethe's poetry, drama, and prose, focusing on three major areas: works of the Storm and Stress, works of Goethe's classical period, and the "Alterswerk," including Faust.

16:470:626. Faust in German Literature (3)
Herbst
The Faust tradition from biblical days to contemporary German literature. Emphasis on the Volksbuch, the Faust theme in the Storm and Stress period, Goethe's Faust, and Faust works of the twentieth century.
16:470:627. SCHILLER (3)
Herbst
Schiller’s development as an author through detailed study of his prose, poetry, and plays, including Die Räuber, Kabale und Liebe, Don Carlos, and Wallenstein.

16:470:632. HEINE AND HIS CONTEMPORARIES (3)
Development of German literature of the nineteenth century in the context of social and political change brought about by the end of feudalism and the rise of industrialism in the period 1813 to 1849.

16:470:642. THE EXPRESSIONIST MOVEMENT (3)
Costantino-Dougherty
German expressionism from its early prewar phase to the mid-1920s, with emphasis on its philosophical foundations, socio-political aims, and poetic styles. The poets Benn, Heym, Stadler, Stramm, and Werfel; the dramatists Coering, Hasenclever, Kaiser, Sorge, Sternheim, and Toller.

16:470:645. CONTEMPORARY GERMANY (3)
Costantino-Dougherty, Donahue, Nagy
Study of modern Germany with consideration of pertinent cultural, historical, political, geographical, and sociological factors and their impact on contemporary literary life.

16:470:650. LYRICAL POETRY FROM THE MIDDLE AGES TO THE PRESENT (3)
Ratych
Study of significant poets, with special emphasis on the development of literary movements and the intellectual background of the times.

16:470:651. GERMAN DRAMA FROM THE BAROQUE TO THE PRESENT (3)
Ratych
Readings of selected plays with background studies in the theory and historical development of the drama.

16:470:652. SHORT FORMS OF GERMAN PROSE (3)
Donahue, Herbst, Nagy
Short prose forms such as the Anekdote, Skizze, Novelle, Erzählung, and Kurzgeschichte. Historical, theoretical, and analytical approaches to representative works.

16:470:653. THE GERMAN “NOVELLE” AND “NOVELLE” THEORY (3)
Donahue, Herbst
Development of the Novelle as a specific German narrative form and as an expression of social, philosophical, and metaphysical viewpoints.

16:470:654. THE GERMAN NOVEL (3)
Donahue, Nagy, Rennie
Development of the novel as a literary genre in German literature. Emphasis on European influences, the novel and the court, the rise of the bourgeoisie, women and writing, and theory of novel.

16:470:660. AUSTRIAN NARRATIVE OF THE NINETEENTH AND TWENTIETH CENTURIES (3)
Nagy, Rennie
Comparative study of representative works that use various narrative techniques. Special emphasis on the end of the monarchy, the emergence of national socialism, and the period after 1945.

16:470:661. FOLKLORE IN GERMAN LITERATURE (3)
Ciklamini
Archetypal patterns, motifs, figures in folklore, Sage, folksong, hagiography, and sources in pagan and biblical tradition as a basis for study of adaptations and interpretations in literary works of various genres and periods to the present.

16:470:662. GERMAN FEMINIST WRITERS (3)
Donahue, Nagy
The rise of literary feminism and a sociological analysis of women’s literature.

16:470:663. LITERATURE AND IDEOLOGY (3)
Donahue, Rennie, Rushing
Study in the history of ideas, dealing specifically with the conflict of ideologies in varying periods of German culture as expressed in the works of such authors as Gottfried von Strassburg, Luther, Gryphius, Goethe, Büchner, Nietzsche, Wagner, and Brecht.

16:470:670,671,672,673. TOPICS IN GERMAN LITERATURE (1,1,1,1) (3,3,3)
Special topics devoted to the investigation of a single author, text, critical or philosophical problem, theme or motif, historical period or development.

16:470:701,702. RESEARCH IN GERMAN (BA,BA)

Interdisciplinary Graduate Course

15:617:510. INTRODUCTION TO LITERARY THEORY (3)
Davidson, Edmonds, Eisenweg, Flieger, Galperin, Marsh, Paris. Open to second-year graduate students; priority given to students from programs participating in the Council of Languages and Literature.
Introduction to contemporary literary theory, including formalism, structuralism, poststructuralism, feminism, psychoanalysis, cultural studies, and other approaches. Readings of theoretical texts and applications to short literary texts from a variety of literatures.

HISTORY 510

Degree Programs Offered: Master of Arts, Doctor of Philosophy
Director of Graduate Program: Professor Deborah G. White, 305D Van Dyck Hall, College Avenue Campus (732/932-8493)
Vice Chairperson for Graduate Education: Professor James Livingston, 305E Van Dyck Hall, College Avenue Campus (732/932-7941)

Members of the Graduate Faculty

Michael P. Adams, Abraham Voorhees Professor of History, FAS–NB; Ph.D., Wisconsin
Comparative history; colonialism and technology

Samuel L. Bailly, Professor of History, FAS–NB; Ph.D., Pennsylvania
Comparative migration; twentieth-century Latin American social history

Norma Basch, Professor of History, FAS–N; Ph.D., New York
American legal history; U.S. antebellum politics and culture

Mia Elisabeth Bay, Associate Professor of History, FAS–NB; Ph.D., Yale
African-American history; American intellectual and cultural history

Seymour Becker, Professor of History, FAS–NB; Ph.D., Harvard
History of modern Russia (nineteenth and early twentieth centuries)

Rudolph M. Bell, Professor of History, FAS–NB; Ph.D., CUNY
Europe; quantitative history

Alastair Bellany, Assistant Professor of History, FAS–NB; Ph.D., Princeton
Early modern Britain

Herman L. Bennett, Assistant Professor of History, FAS–NB; Ph.D., Duke
Colonial Latin American history; early modern Iberian history

Lauren Benton, Associate Professor of History, FAS–N/JIT; Ph.D., Johns Hopkins
Comparative economic development; world history; Latin America and Spain; anthropology

Carolyn Brown, Associate Professor of History, FAS–NB; Ph.D., Columbia
African history; labor history

Christopher L. Brown, Assistant Professor of History, FAS–NB; D.Phil., Oxford
Early America; Afro-American history; comparative history

Kim D. Butler, Assistant Professor of History, FAS–NB; Ph.D., Johns Hopkins
Brazilian studies; African diaspora history; Afro-Latin and Afro-Caribbean studies

Jack L. Cargill, Professor of History, FAS–NB; Ph.D., California (Berkeley)
Ancient Greek history and epigraphy; ancient Rome

John W. Chambers, Professor of History, FAS–NB; Ph.D., Columbia
Twentieth-century U.S. history, especially war and peace studies, film and history, political history, U.S. foreign relations

Paul G. Clemens, Professor of History, FAS–NB; Ph.D., Wisconsin
Early American history and history of the South

Dorothy Sue Cobble, Associate Professor of History, FAS–NB; Ph.D., Stanford
Labor and women’s history

Belinda Davis, Associate Professor of History, FAS–NB; Ph.D., Michigan (Ann Arbor)
Modern European history; Germany; women’s history

Leslie Ellen Fishbein, Associate Professor of American Studies, FAS–NB; Ph.D., Harvard
Women’s history
Programs

The graduate program in history is intended primarily for students who pursue full-time work toward a Ph.D. Requirements for a Ph.D. degree include twelve courses in history or in a supporting discipline. Two of those courses must be in a minor field, and two or more courses must be research seminars. Students must complete successfully examinations in their major and minor fields. Normally, these tests are taken in the third year. Doctoral candidates working in European and non-Western history must have a reading knowledge of two foreign languages. Candidates are required to prepare an acceptable thesis based on original research and defend that thesis successfully in a final examination conducted by a faculty committee. Credits for M.A. work in history done at other institutions likely will be transferred with the permission of the Graduate School–New Brunswick.

The M.A. is offered within the framework of the doctoral program. Its requirements include eight courses in history and successful completion of an examination in the student’s major field. A thesis is not required. Students whose sole objective is the M.A. should consider applying to the M.A. program in American history on the Rutgers–Camden campus or to the M.A. program in history on the Rutgers–Newark campus. For further information about these M.A. programs, write to Department of History, Rutgers, The State University of New Jersey, Camden, NJ 08102, or Department of History, Rutgers, The State University of New Jersey, Newark, NJ 07102, respectively.

Students who plan to seek financial assistance should apply for the September term no later than January 15. Other students should apply by February 15. Transcripts, Graduate Record Examination scores, three letters of recommendation, and a writing sample are required.

The Ph.D. program offers work in most fields of American, European, Latin American, and East Asian history, but the department has particular strengths in American women’s, cultural/intellectual, comparative/world, and African-American history. New major fields have been established in the history of technology, environment, and health; women’s and gender history; the history of Atlantic cultures; and the African diaspora. Each is designed as an interdisciplinary curriculum. The department also is home to the Thomas A. Edison Papers, the Institute of Electronic and Electrical Engineers History Center, the Medieval and Early Modern Data Bank project, the Elizabeth Cady Stanton and Susan B. Anthony papers, and the African Studies Association.

A full description of the program may be found in the brochure Graduate Study in History, available from the department or online at http://history.rutgers.edu. This brochure also offers information about fellowships (which pay $13,000, plus tuition remission), teaching assistantships, and other forms of financial aid.

Graduate Courses

Courses in Historiography, Theory, and Practice

16:510:501. COLLOQUIUM: HISTORY OF HISTORICAL WRITING (3)
Kelley, Morrison, Renert
Exploration of the evolution of historical writing in varying cultural and chronological contexts, but excluding contemporary historiographic theory and practice.

16:510:503. CONTEMPORARY HISTORIOGRAPHY—THEORY AND PRACTICE (3)
Lears, Livingston, Yans-McLaughlin
Impact of social and literary theories on the work of recent prominent historians, including assessments of the utility and testability of such theories in contemporary historical practice.

16:510:505. STATISTICAL METHODS IN HISTORY (3)
Bell
Analysis of secondary literature employing quantitative methods, design, implementation, and presentation of an original historical research problem involving statistical techniques and computer applications.

16:510:507. HISTORICAL EDITING (3)
Jenkins

16:510:509. TEACHING OF HISTORY (3)
Adas, Baily, Bell, Howard
Designed for second- or third-year students, including first-time teaching assistants. Offers guidance and practical experience in undergraduate instruction.

Courses with Transnational, Comparative, or Interdisciplinary Themes

16:510:511. COLLOQUIUM IN COMPARATIVE HISTORY (3)
Adas, Howard

16:510:513. COLLOQUIUM IN CULTURAL HISTORY (3)
Lears, Matsuda

16:510:515. COLLOQUIUM IN DIPLOMATIC HISTORY (3)
Foglesong, Gardner

16:510:517. COLLOQUIUM IN ECONOMIC HISTORY (3)
Livingston, Triner-Besosa
Survey of the principal problems and methodologies in economic history.

16:510:519. COLLOQUIUM IN INTELLECTUAL HISTORY (3)
Lears, Livingston, Yans-McLaughlin
An investigation of consciousness—past and present—through the writings of philosophers, moralists, and cultural critics from the seventeenth through the twentieth centuries.

16:510:521. COLLOQUIUM IN LABOR HISTORY (3)
Livingston

16:510:523. COLLOQUIUM IN MIGRATION, COMMUNITY, AND IDENTITY (3)
Baily, Whalen, Yans-McLaughlin
Immigration, community, and identity formations among immigrants. Dynamics of assimilation and its opposites in selected cultural and chronological contexts.

16:510:525. COLLOQUIUM IN POLITICAL HISTORY (3)
Bach, O’Neill, Oshinsky

16:510:527. TOPICS IN THE HISTORY OF RELIGION (3)
Lears, Mack, Morrison, Renert
Selected issues and relevant historiography in the history of religion. Specific cultural and historical context varies according to the interests of the instructors.

16:510:529. TOPICS IN THE HISTORY OF SEXUALITY (3)
Janes, Renert, Scott, Smith
Problems and historiography on the history of sexuality in selected historical and cultural contexts.

16:510:531. COLLOQUIUM IN SOCIAL HISTORY (3)
Gillis, Read
Introduction to European and American social history, with emphasis on historical demography, the family, class structure and social stratification, protest, and culture.

16:510:532. COLLOQUIUM IN ATLANTIC HISTORY AND THE AFRICAN DIASPORA (3)
Bay, Bennett, Ca. Brown, Ch. Brown, Butler, Hawitt, Howard, Morgan, White
Examines the connected histories of Africa, Europe, and the Americas and the experiences of peoples of African descent.

16:510:533. TOPICS IN SOCIAL HISTORY (3,3)
Gillis, Read

16:510:534. COLLOQUIUM IN ENVIRONMENTAL HISTORY (3)
Adas, Iredal, Scranton, Schröder
Studies how environments and cultures have interacted throughout human history.
16:510:535. **Colloquium in the History of Technology** (3)
Ada: Gershowitz, Israel, Scranton
Explores how culture has shaped technology as well as the social impacts of technology.

16:510:536. **Colloquium in the History of Health and Medicine** (3)
J. Golden, Herrick, March, Red
How culture has shaped medical and scientific knowledge and how ideas about health and illness have influenced aspects of culture.

16:510:537. **Colloquium in Urban History** (3)
Howard
Introduction to the urbanization process, with emphasis on the city building process, social mobility and social structure, ethnicity, social and geographic mobility, and political and social reform.

16:510:539. **Colloquium in Women’s and Gender History** (3)
Bach, Davis, Gillis, James, LeGall, J. Lewis, Morgan, Smith, White, Yans-McLaughlin
Women’s and gender history across national/cultural contexts and time periods.

16:510:541. **(F) Colloquium in World History** (3)
Baily, Ch. Brown, Howard, D. Lewis
Prerequisite: Admission to Ph.D. program.
Focuses on a specific problem or set of problems in world history using readings designed to promote an understanding of the relevant theoretical and analytical literature.

16:510:543. **Seminar in Cultural History** (3)
Leurs, Matsuda

16:510:546. **Seminar I in the History of Technology, Environment, and Health: History and Social Theory** (3)
Adas, Pauly, Red, Schreper, Scranton
Theoretical perspectives, drawn chiefly from the social sciences, emphasizing their role in initiating historical research projects.

16:510:547. **Seminar II in the History of Technology, Environment, and Health** (3)
Adas, Pauly, Red, Schreper, Scranton
Directed research related to the global history of technology, environment, and health.

16:510:549,550. **Seminar in the History of Women** (3,3)
Davis, Garran, Hawitt, James, J. Lewis, Mack, Morgan, Smith, Yans-McLaughlin

16:510:551. **(S) Seminar in World and Comparative History** (3)
Adas, Baily, Ch. Brown, Howard, Roden
Prerequisite: Admission to Ph.D. program.
Directed research in projects related to a specific theme (such as immigration, imperialism, comparative gender ideologies) that are announced in advance by the instructor.

Courses in American History

16:510:553. **Problems and Directed Readings in American History I** (3)
Ch. Brown, Clemens, Morgan
Introductory survey of history and historiography. America from precontact Indian societies to the Great Awakening. European and African background to colonization; colonial society and politics.

16:510:555. **Problems and Directed Readings in American History II** (3)
Ch. Brown, Clemens, J. Lewis, Morgan
Introductory survey of history and historiography. America from the Great Awakening (1740s) to the early nineteenth century. The American Revolution and the Constitution; emergence of new gender roles, economic and family relationships, and social patterns.

16:510:557. **Problems and Directed Readings in American History III** (3)
Bach, Clemens, W. Gillette, Hawitt, J. Lewis, Livingston, White
Introductory survey of history and historiography. America from the early nineteenth through early twentieth centuries, covering key themes of political, military, social, and cultural development.

16:510:559. **Problems and Directed Readings in American History IV** (3)
Chambers, Fogleman, Gardner, Garrison, Lawson, J. Lewis, Livingston, O’Neill, Oshinsky, Yans-McLaughlin
Introductory survey of history and historiography. America from the early twentieth century to the present, covering key themes of political, military, social, and cultural development.

16:510:560. **Problems and Directed Readings in Women’s and Gender History** (3)
Hawitt, Jones, Mack, Morgan, Smith, Yans-McLaughlin
Introduction to the problems and concepts of women’s history on an international scale.

16:510:561. **Colloquium in American History** (3)
Chambers, O’Neill, Schreper

16:510:563. **Colloquium in African-American History** (3)
Bay, D. Lewis

16:510:565. **Colloquium in American Legal History** (3)
Bach, Clemens
Focuses on the interplay between law and social change in American legal history.

16:510:567. **Seminar in American Colonial History** (3)
Clemens, J. Lewis

16:510:571. **Seminar in Recent American History** (3)
Markowitz, O’Neill, Oshinsky, Yans-McLaughlin

16:510:573,574. **Seminar in African-American History** (3,3)
Bay, D. Lewis

16:510:575,576. **Seminar in American Diplomatic History** (3,3)
Fogleman, Gardner

16:510:579. **Seminar in the Intellectual History of the United States** (3)
Leurs

16:510:581. **Seminar in American Political History** (3)
Chambers, W. Gillette, Oshinsky

16:510:583. **Seminar in American Social History** (3)
Jenkins, Reed

Courses in European History

16:510:591. **Ancient History: Topics and Problems** (3)
Cargill, Reiner
Colloquium structured around important primary and secondary readings in Greek and/or Roman history.

16:510:593. **Problems and Directed Readings in Medieval History** (3)
Machade, Morrison, Reiner
Introduction to the major problems and readings in the field of medieval history. Designed to prepare students to become competent and informed teachers in their major field.

16:510:595. **Colloquium in Medieval History** (3)
Morrison, Reiner
16:510:597. PROBLEMS AND DIRECTED READINGS IN EARLY MODERN EUROPEAN HISTORY (3)
Davis, Gillis Jones, Kelley, Smith
Introduction to the major problems and readings in the field of early modern European history. Designed to prepare students to become competent and informed teachers in their major field.

16:510:599. PROBLEMS AND DIRECTED READINGS IN MODERN EUROPEAN HISTORY (3)
Davis, Gillis Jones, Kelley, Smith
Introduction to the major problems and readings in the field of modern European history. Designed to prepare students to become competent and informed teachers in their major field.

16:510:601. COLLOQUIUM IN EUROPEAN HISTORY (3)
Bekker, Belis, Bellamy, Galili, Jones, Mack, Matsuda

16:510:603. COLLOQUIUM IN BRITISH HISTORY (3)
Bellamy, Gillis, Mack, Maschade

16:510:605. COLLOQUIUM IN MODERN RUSSIAN HISTORY (3)
Bekker, Galili
Introduction to the historical literature and major problems of nineteenth- and twentieth-century Russian history. Designed to complement training in modern European or American history.

16:510:611. SEMINAR: WESTERN EUROPE IN THE MIDDLE AGES (3)
Maschade, Morrison, Reinet

16:510:615,616. SEMINAR IN EUROPEAN HISTORY (3,3)
Davis, Mack

16:510:617. SEMINAR IN EUROPEAN INTELLECTUAL HISTORY (3)
Kelley, Morrison

16:510:619. SEMINAR IN EUROPEAN POLITICAL HISTORY (3)
Held

16:510:621. SEMINAR IN EUROPEAN SOCIAL HISTORY (3)
Bellamy, Gillis, Smith

Courses in African, Asian, and Latin American History

16:510:625. COLLOQUIUM IN AFRICAN HISTORY (3)
Bail, Gillis, Brown
Study of development prior to colonialism. Commercial systems and religious movements analyzed in the context of culture and social organization. Background for studying carryover of culture to the Americas; recent African history.

16:510:627. PROBLEMS AND DIRECTED READINGS IN EAST ASIAN HISTORY (3)
Gaster, Rodin
Basic introduction to the field of East Asian history.

16:510:629. COLLOQUIUM IN CHINESE HISTORY (3)
Gaster
Introduction to major problems and readings in the field. Designed to prepare students to become competent and informed teachers of Chinese history.

16:510:631. COLLOQUIUM IN LATIN AMERICAN HISTORY (3)
Baily, Bennett, Triner-Beeva, Waserman

16:510:635. SEMINAR IN CHINESE HISTORY (3)
Gaster
Research training in Chinese history. Topic of seminar varies depending on the instructor.

16:510:637,638. SEMINAR IN LATIN AMERICAN HISTORY (3,3)
Baily, Triner-Beeva, Waserman

Individualized Study
16:510:677. ADVANCED TOPICS IN HISTORY (3)
16:510:678. ADVANCED TOPICS IN HISTORY (3)
16:510:679. ADVANCED TOPICS IN HISTORY (3)
16:510:701,702. RESEARCH IN HISTORY (BA,BA)
Open only to advanced students. Designed to facilitate research work toward the doctoral dissertation.

HUMAN RESOURCE MANAGEMENT
(See the catalog of the School of Management and Labor Relations for information about the program leading to the Master of Human Resource Management.)

INDUSTRIAL AND SYSTEMS ENGINEERING 540

Degree Program Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Professor Susan L. Albin,
CoRE Building, Busch Campus (732/445-3654)
Email: salbin@egr.rutgers.edu
Web Site: http://www.engr.rutgers.edu/~ie

Members of the Graduate Faculty

Susan L. Albin, Professor of Industrial and Systems Engineering, SE;
D.Sc., Columbia

Quality engineering, stochastic models

Tayfur Altinkaynak, Professor of Industrial and Systems Engineering, SE; Ph.D.,
North Carolina State

Production lines; production/inventory systems; queuing networks; simulation

Melike Baykal-Gursoy, Associate Professor of Industrial and Systems Engineering, SE; Ph.D., SUNY (Buffalo)

Stochastic processes; stochastic optimization and control; applications to manufacturing telecommunication systems, and transportation systems

Thomas O. Boucher, Professor of Industrial and Systems Engineering, SE; Ph.D., Columbia

Production analysis and control; automation and manufacturing systems; management and engineering economics

David W. Coit, Assistant Professor of Industrial and Systems Engineering, SE; Ph.D., Pittsburgh

Reliability engineering; optimization

Elsayed A. Elsayed, Professor of Industrial and Systems Engineering, SE; Ph.D., Windsor

Production analysis and control; automation and manufacturing systems; quality and reliability engineering

Mohsen A. Jafari, Professor of Industrial Engineering, SE; Ph.D., Syracuse

Manufacturing systems control design and analysis; simulation; quality control

James T. Lushby, Associate Professor of Industrial and Systems Engineering, SE; Ph.D., Virginia Polytechnic Institute and State University

Maintenance, reliability, and systems safety; production economics; decision support systems

Hoang Pham, Associate Professor of Industrial and Systems Engineering, SE; Ph.D., SUNY (Buffalo)

Reliability theory and applications; software reliability; applied probability

Fred Roberts, Professor of Mathematics, FAS-NB; Ph.D., Stanford

Discrete mathematical models; graph theory; decision making; measurement theory

Shanxing Wang, Assistant Professor of Industrial and Systems Engineering, SE; Ph.D., California (Berkeley)

Laser micromachining; manufacturing processes; micromanufacturing
Programs
The industrial and systems engineering program at Rutgers has a twofold mission. First, it provides a high-quality education to graduate students. In addition, it conducts research, often in collaboration with industry and other disciplines, to advance the state of knowledge and practice in industrial engineering.

The program seeks to ensure that each student is firmly rooted in scientific principles. At the same time, it gives students the knowledge and confidence to employ these principles to solve engineering problems in the public sector and in industry.

Specialized training provided in the program provides doctoral students with the tools to become capable, independent researchers and leaders in the academic and industrial communities.

The program’s research focus is in manufacturing/production engineering, quality/reliability engineering, and aviation and systems modeling.

Research in manufacturing/production engineering is conducted at the systems and machine levels. Faculty members investigate problems in production planning and control; manufacturing-process validation; computer-integrated manufacturing; and automation. They also study real-time machine control and such manufacturing processes as laser micromachining, layered manufacturing, and sheet-folding technologies.

In quality/reliability engineering, research is conducted in online process control, off-line quality improvement through designed experiments, multivariate statistical models, stochastic control, reliability optimization, component and systems reliability, accelerated life testing, software reliability, data acquisition and analysis, maintenance models, and warranty estimation.

In systems modeling and aviation research, the faculty researches air-traffic separation standards and aircraft inspection. Using simulation and analytic tools, projects are under way in the areas of performance modeling of client-server computer networks, manufacturing system performance, port operation, and modeling of intelligent transportation systems.

Industrial and systems engineering offers programs leading to the Master of Science and Doctor of Philosophy degrees. The Ph.D. degree requires a minimum of 48 credits of course work beyond the B.S. degree and 24 credits in research. Students must complete qualifying examinations, one year of full-time residence, and an original research dissertation.

The M.S. degree requires a minimum of 30 course credits beyond the B.S. degree. Students may choose a thesis option. The degree requires a comprehensive examination in core subjects. At least 21 of the 30 credits must be taken in the industrial and systems engineering program. The remaining credits may be taken in other graduate programs, including statistics, mathematics, mechanical and electrical engineering, computer science, economics, and operations research.

The program offers three options for the M.S. degree. The industrial and systems engineering option provides the most flexibility. It gives students knowledge in the major areas of the discipline, including stochastic and deterministic models, and in such application areas as production, quality, reliability, manufacturing, transportation, and aviation. It also provides a range of skills, including simulation and statistical analysis.

The quality and reliability engineering option, offered in cooperation with the statistics graduate program, includes courses in process control, design of experiments, and quality management and reliability. This option is enhanced by the Quality and Reliability Engineering Center, a National Science Foundation industry/university collaboration run in cooperation with Arizona State University.

The manufacturing-systems engineering option includes courses in CAD/CAM, robotics, manufacturing processes, automation, control, and an independent laboratory project. A special feature of this option is a required course in which each student performs an independent study in the laboratory.

Extensive research facilities are available for student use in manufacturing automation, manufacturing processes, microcomputer/multimedia, facilities design, quality and reliability engineering, and microprocessors. Specialized equipment includes robotics, CNC machines, CAD facilities, microcomputers, quality and reliability engineering metrology and life-testing equipment, temperature chambers, a vibration unit, a scanning electron microscope, metal processing equipment, and materials handling.

Computing facilities include the Sun workstations and a wide range of microcomputers.

To be admitted to the program, students must have completed basic industrial engineering courses, including four terms of calculus; a high-level computer language; and courses in deterministic methods, probability, engineering economics, and production control. Students who are missing prerequisite courses may be admitted to the graduate program with the requirement that they take the prerequisites for no credit within their first year.

Applicants are urged to contact the graduate director for an application and an applicant’s handbook that contains detailed information about admission requirements, financial support, degree requirements, courses, faculty research, and facilities.

Graduate Courses
15:540:510. DETERMINISTIC MODELS IN INDUSTRIAL ENGINEERING (3) Altiok, Baykal-Gursoy, Coit. Prerequisite: Introduction to linear programming. Deterministic models of operations research. Linear programming, the simplex method, duality, sensitivity analysis, transportation assignment, minimum cost network flow problems.

16:540:520. DISTRIBUTION SYSTEMS (3) Boucher. Prerequisite: Probability and linear programming. Methods and techniques of analysis applied to the design of inventory and distribution systems. Topics include sales forecasting, single- and multiechelon inventory and distribution systems, and routing and scheduling of product delivery.

16:540:525. APPLIED QUEUEING THEORY (3) Albin, Altiok, Baykal-Gursoy. Prerequisite: 16:540:515. Markovian and non-Markovian queuing models; networks of queues; numerical solutions, approximations; statistical estimation of system parameters; cost models; emphasis on queuing applications in manufacturing.

16:540:545. APPLICATION OF HUMAN FACTORS TO DECISION SYSTEMS ENGINEERING (3)
Introduction of human factors to engineering techniques. Decision-aiding concepts considered include prompting, expert systems, and artificial intelligence. Use of psychological scaling techniques in the development of a knowledge base for expert systems. Basic concepts in decision theory used in an analysis of decision elements of the FAA Air Traffic Control System and in the design of a panel or a keyboard.

16:540:550. SPECIAL PROBLEMS IN INDUSTRIAL ENGINEERING (BA)
Prerequisite: Permission of instructor.
Special investigations in selected areas of industrial engineering.

16:540:552. MANUFACTURING PROJECT (3)
Boucher, Elsayed, Jafari, Wang. Prerequisite: Permission of instructor.
Understanding of the state of technology in discrete, batch, and continuous manufacturing; hands-on experience.

16:540:555. SIMULATION OF PRODUCTION SYSTEMS (3)
Altiok, Elsayed, Jafari. Prerequisites: 14:540:311; 01:640:477 or 01:960:379; 01:640:481 or 01:960:381, 382, or equivalent; and FORTRAN or C.
Discrete event simulation applied to problems in manufacturing. SIMAN/ARENA simulation tools. Estimation of manufacturing systems performance measures, analysis of production system operating characteristics, comparison of alternative systems, and validation of approximate analytic models. Case studies.

16:540:560. PRODUCTION ANALYSIS (3)
Boucher, Elsayed, Luxhoj. Prerequisite: Undergraduate production planning and control.
Analysis of production engineering, with emphasis on planning and control of manufacturing and service systems.

16:540:565. FACILITIES PLANNING AND DESIGN (3)
Cot, Luxhoj, Pham. Prerequisite: Deterministic models in operations research. Operations research methodologies applied to facilities planning and design problems. Facilities layout and location problems, assembly-line balancing, conveyor design, and automated warehousing problems.

16:540:568. AUTOMATION AND COMPUTER INTEGRATED MANUFACTURING I (3)
Boucher. Prerequisite: Introductory course in computer control or permission of instructor.
Design of automated and computer integrated manufacturing systems using programmable automation. Modeling of discrete and continuous control systems, implementation of programmable controllers and factory information systems.

16:540:570. APPLICATIONS OFRobotics in MANUFACTURING SYSTEMS (3)
Boucher, Elsayed. Prerequisites: 14:540:343, 453, or equivalent.
Integration of robots in manufacturing systems, design of robot workstations, materials handling, and interactions among manufacturing cells. Machine vision with applications in manufacturing.

16:540:572. MANUFACTURING PROCESSES AND CONTROL (3)
Wang. Prerequisite: Basic knowledge of manufacturing process.
Overview of manufacturing processes, machine tools and machining operations, mechanism of metal cutting and tool wear, control and optimization of machining process, sensor-based and other advanced monitoring and control technology, manufacturing automation.

16:540:573. ADVANCED MANUFACTURING PROCESSES (3)
Wang. Prerequisite: 14:540:303 or permission of instructor.

16:540:575. ADVANCED ENGINEERING ECONOMICS I (3)
Boucher, Luxhoj. Prerequisite: Introductory course in engineering economics or equivalent.
Economic decision models for engineers involving allocation and scheduling of resources; evaluation of factual and strategic alternatives; advanced risk and uncertainty analysis; weighing and evaluating nonmonetary factors.

16:540:580. QUALITY MANAGEMENT (3)
Albin
Quality management philosophies, Deming, Juran; quality planning, control, and improvement; quality systems, management organizations for quality assurance. Role of operations research.

16:540:585. SYSTEM RELIABILITY ENGINEERING I (3)
Cot, Elsayed, Pham. Prerequisite: Advanced probability or 16:540:515.
Methods of measuring the reliability and effectiveness of complex manufacturing systems, including optimization theory, preventive maintenance models, and statistical analysis.

16:540:590. DESIGN OF ENGINEERING EXPERIMENTS (3)
Albin, Boucher. Prerequisite Statistics.

16:540:595. SOFTWARE RELIABILITY I (3)
Pham. Prerequisite: 16:540:515 or 16:960:580.
Software-reliability issues; software errors, faults, and failures; software design for reliability; data collection; formal methods for reliability; software fault tolerance; modeling growth in software reliability; cost modeling and estimation; and software quality management.

16:540:650. DISCRETE EVENT DYNAMIC SYSTEMS (3)
Jafari. Prerequisite: 16:540:515.
Supervisory control of discrete event dynamic systems, process monitoring, Petri nets, functional analysis, performance analysis, control specification, control verification and validation.

16:540:655. PERFORMANCE ANALYSIS OF MANUFACTURING SYSTEMS (3)
Altiok. Prerequisites: 16:540:515, 560, or equivalent.
Modeling of manufacturing systems such as flow shops, job shops, transfer lines, and production/inventory systems. Topics include problems of failures and repairs, the role of buffer inventories, capacity allocation, decomposition, approximations, pull-type systems, and the Kanban concept.

16:540:660. INVENTORY CONTROL (3)
Altik, Baykal-Gürsoy. Prerequisites: 16:540:515, 525.
Modeling of pure inventory systems with stochastic demand and lead times. Characterization of optimal control policies and analysis of single as well as multi-item systems with simple and multiple echelons. Computational issues emphasized.

16:540:665. THEORY OF SCHEDULING (3)
Elsayed, Luxhoj. Prerequisite: Production planning and control.
Advanced topics in sequencing and scheduling for manufacturing and service systems; flow shop, job shop—static and dynamic models; multiprocessor parallel machining; preempt-resume algorithms; optimal due-date problems; probabilistic scheduling; simulation and applied operations research models.

16:540:668. AUTOMATION AND COMPUTER INTEGRATED MANUFACTURING II (3)
Boucher, Jafari. Prerequisite: 16:540:568 or permission of instructor.
Design of automated and computer-integrated manufacturing systems using programmable automation. Modeling, specification, and implementation of factory information systems. Reference models and control architecture for discrete parts manufacturing, batch process manufacturing, and semiconductor manufacturing industries.
16:540:673. LASER-BASED MICROMANUFACTURING (3)

16:540:675. ADVANCED ENGINEERING ECONOMICS II (3)
Boucher, Luoho. Prerequisite: 16:540:575 or permission of instructor. Focuses on engineering economic decision making. Application of analytical techniques to the evaluation of industrial projects, the relationship of project selection to long-range planning, and the relationship between the economics of technical choice and industrial productivity.

16:540:680. PRODUCTION AND QUALITY ENGINEERING (3)
Alden, Elsayed. Prerequisites: Production planning and control; operations research. Integration of research in quality and production. Topics include models that relate quality and inventory policies, scheduling, setup costs, lot sizing, production cycles, scrap, rework, repair, location of inspection stations, process control, and electronics testing and manufacturing.

16:540:682. PROCESS MODELING AND CONTROL (3)
Baykal-Gürsoy. Prerequisite: 16:540:515. Stationary (ARMA), nonstationary (ARIMA) time-series models for process control, various automatic process control (APC) strategies, statistical process control (SPC) methods, integration of APC and SPC.

16:540:685. SYSTEM RELIABILITY ENGINEERING II (3)
Cot, Elsayed, Pham. Prerequisite: 16:540:585. Advanced topics in reliability theory and engineering; reliability optimization; theory of preventive maintenance, replacement, and inspection; accelerated life reliability models; renewal processes; and maximum likelihood estimation.

16:540:690. COMPONENT RELIABILITY (3)
Baykal-Gürsoy, Cot, Elsayed, Pham. Prerequisite: 16:540:585. Labor reliability estimation of components stressed through different types of stresses such as thermal, electric field, humidity, vibration, and fatigue. Burn-in testing, reliability estimation from degradation data, and relationships between accelerated stresses and normal operating conditions.

16:540:691,692. SEMINAR IN INDUSTRIAL AND SYSTEMS ENGINEERING (0,0)
Lectures by graduate students, faculty, and invited speakers on current research topics in industrial and systems engineering.

16:540:694. ADVANCED TOPICS IN INDUSTRIAL ENGINEERING (3)
Prerequisite: Permission of instructor. Seminar for doctoral students in a selected area of industrial engineering. Based on current literature.

16:540:701,702. RESEARCH IN INDUSTRIAL ENGINEERING (BA,BA)
INDUSTRIAL RELATIONS AND HUMAN RESOURCES 545

Degree Programs Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Professor Susan Jackson, Janice Levin Building, Livingston Campus (732/445-5447)

Members of the Graduate Faculty
John R. Aiello, Professor of Psychology, FAS-NB; Ph.D., Michigan State
Industrial and organizational psychology; environmental stress; nonverbal communication
Clayton P. Aldert, Professor of Psychology, GSAPP; Ph.D., Yale
Organizational behavior and organizational change

Richard W. Beatty, Professor of Human Resource Management, SMLR; Ph.D., Washington
Human-resource systems and planning; performance appraisal; compensation

David Bensman, Associate Professor of Labor Studies and Employment Relations, SMLR; Ph.D., Columbia
Labor history; contemporary collective-bargaining issues; schools and education

Joseph Blasi, Professor of Labor-Management Relations, SMLR; Ed.D., Harvard
Employee ownership; employee participation in management and governance

John Burton, Professor of Industrial Relations and Human Resources, SMLR; Ph.D., Michigan
Workers compensation; public sector collective bargaining

Paula Caligiuri, Assistant Professor of Human Resource Management, SMLR; Ph.D., Pennsylvania State
International human resources; selection

Cary Cherniss, Professor of Psychology, GSAPP; Ph.D., Yale
Job stress and burnout; careers; organizational change; supervision

Sue Cobble, Assistant Professor of Labor Studies and Employment Relations, SMLR; Ph.D., Stanford
Women and work; labor history; union leadership

Steven M. Director, Professor of Human Resource Management, SMLR; Ph.D., Northwestern
Human-resource policy; planning; and evaluation; financial analysis of human resources and labor relations decisions

Adrienne E. Eaton, Associate Professor of Labor and Employment Relations, SMLR; Ph.D., Wisconsin
Collective bargaining; worker and union participation in management, union organizing

Charles H. Fay, Associate Professor of Human Resource Management, SMLR; Ph.D., Washington
Compensation, performance appraisal, human resource information systems

Charles Heckscsher, Professor of Labor Studies and Employment Relations, SMLR; Ph.D., Harvard
Workplace transformation; new forms of employment representation

Mark Hesselid, Associate Professor of Human Resource Management, SMLR; Ph.D., SUNY (Buffalo)
Strategic human-resource management

Susan E. Jackson, Professor of Human Resource Management, SMLR; Ph.D., California (Berkeley)
Strategic human-resource management; work teams; workforce diversity; stress and burnout

Jeffrey H. Keeffe, Associate Professor of Industrial Relations and Human Resources, SMLR; Ph.D., Cornell
Work restructuring and technology; collective bargaining; telecommunications; labor relations

Mark R. Kittinger, Professor of Economics, FAS-NB; D.Phil., Oxford
Labor and human resource discrimination

Douglas L. Kruse, Associate Professor of Industrial Relations and Human Resources, SMLR; Ph.D., California
Profit-sharing; employee ownership; disability and employment

Barbara A. Lee, Professor of Human Resource Management and Dean, SMLR; Ph.D., Ohio State
Employment law; employee relations

Charles A. Nanny, Professor of Human Resource Management, SMLR; Ph.D., Rutgers
Social organization; training policy; general management

Randall S. Schulter, Professor of Human Resource Management, SMLR; Ph.D., Michigan State
Strategic and international human resource management

Carl Edward Van Horn, Professor of Public Policy, EJBSPP; Ph.D., Ohio State
American political institutions; public policy

Paula Voos, Professor of Labor Studies and Employment Relations, SMLR; Ph.D., Harvard
Collective bargaining; labor markets

John D. Worrall, Professor of Economics, FAS-C; Ph.D., Rutgers
Worker’s compensation; property-casualty insurance; labor economics

Associate Members of the Graduate Faculty
Stan M. Guity, Assistant Professor of Human Resource Management, SMLR; Ph.D., Michigan State
Leadership and team effectiveness; training and development; multilevel theory and analysis

Marlene Kim, Assistant Professor of Labor Studies and Employment Relations, SMLR; Ph.D., California (Berkeley)
Compensation; the working poor; discrimination

Claudia G. Meer, Associate Extension Specialist, SMLR; Ed.D., Rutgers
Education in industry; training and development; adult learning

Jean Phillips, Assistant Professor of Human Resource Management, SMLR; Ph.D., Michigan State
Leadership; teams; learning organizations; job search/recruitment

Saul Rubinson, Assistant Professor of Labor Studies and Employment Relations, SMLR; Ph.D., Massachusetts Institute of Technology
Work systems; organizational transformation
Lisa Schur, Assistant Professor of Labor Studies and Employment Relations, SM LR; J.D., Northwestern; Ph.D., California (Berkeley)
Labor law and employment law; work and disability

James Sesil, Assistant Professor of Human Resource Management, SM LR; Ph.D., London School of Economics
Strategic human resource management; pay systems

Ryan Smith, Assistant Professor of Labor Studies and Employment Relations, SM LR; Ph.D., California (Los Angeles)
Social stratification; workplace diversity; race and ethnic relations

Program
The Ph.D. in industrial relations and human resources is a full-time, interdisciplinary program committed to developing scholars who can study the dynamic and changing conditions of employment and work.

The program prepares students to conduct research that contributes to the advancement of knowledge and practice in industrial relations and human-resource management. In addition to studying the fundamentals of theories of industrial relations and human-resource management, students learn how to design and conduct rigorous research, to analyze their results, and to disseminate their findings through scholarly publications. Students are expected to be actively involved in research throughout their enrollment in the program.

Required course work for the program includes seven courses to fulfill interdisciplinary distribution requirements, at least three statistics and research methods courses, two advanced seminars, and four electives. During their second year in the program, students complete an empirical research project. After completing their master’s thesis and required course work, students take a qualifying examination tailored to their research interests. Upon passing the qualifying examination, students are awarded the M.S. degree and admitted to Ph.D. candidacy. Students complete a dissertation during their fourth and fifth years.

Graduate Courses
16:545:601-602. INDEPENDENT STUDY IN INDUSTRIAL RELATIONS AND HUMAN RESOURCES (3,3)
Directed study under the supervision of a faculty member.

16:545:610. PROSEMINAR IN INDUSTRIAL RELATIONS AND HUMAN RESOURCES (1)
Research, theoretical, or pedagogical presentation by SMLR faculty, outside scholars, and advanced Ph.D. students. Students must enroll for eight terms.

16:545:611. SEMINAR IN INDUSTRIAL RELATIONS: A SURVEY OF THE SCHOLARLY LITERATURE (3)
Industrial relations systems theory. Analysis of managerial capitalism and the diffusion of systematic management techniques; the development of modern craft, industrial, and professional labor organizations; and the emergence of the regulatory state and the role of law and specialized government agencies in regulating industrial conflict. Conceptual framework to assess bargaining power, negotiations processes, grievance procedures, and conflict resolution.

16:545:612. SEMINAR IN HUMAN RESOURCES A SURVEY OF THE SCHOLARLY LITERATURE (3)

16:545:613. RESEARCH METHODS FOR INDUSTRIAL RELATIONS AND HUMAN RESOURCES (3)
Prerequisite: One Ph.D.-level statistics or measurement course. Problems of research design, data collection, data management, and the selection of analytical techniques.

16:545:614. MULTIVARIATE ANALYSIS FOR INDUSTRIAL RELATIONS AND HUMAN RESOURCES (3)
Prerequisite: Ph.D.-level course in regression, and one additional Ph.D.-level measurement or statistics course. Multiple regression, analysis of variance, analysis of covariance, factor analysis, canonical correlation, and cluster analysis.

16:545:615. ECONOMICS FOR INDUSTRIAL RELATIONS AND HUMAN RESOURCES (3)
Alternative theories of the firm and labor markets explored, with focus on competing hypotheses and research evidence about wage and benefit determination, internal labor markets, discrimination, unions, and employee incentive systems.

16:545:621. SELECTED PROBLEMS IN INDUSTRIAL RELATIONS AND HUMAN RESOURCES (3)
Special topics in industrial relations and human resources of current interest.

16:545:701.702. RESEARCH IN INDUSTRIAL RELATIONS AND HUMAN RESOURCES (3,3)
Dissertation study.

INTERDISCIPLINARY PH.D. PROGRAM 554
Special interdisciplinary Ph.D. programs may be arranged for individual students who wish to pursue subjects that cut across the boundaries of program curricula.

A student who seeks the Ph.D. in an area requiring the services of two or more programs should consult interested faculty members and then submit a formal proposal to the Dean of the Graduate School–New Brunswick outlining a program of study. Courses, examinations, the dissertation topic, and the names of faculty members who have consented to serve as the student’s committee must have the approval of the directors of the Ph.D. programs involved. Once approved by the dean, the student will be transferred into the interdisciplinary Ph.D. program code (554) for registration purposes. A member of the Graduate School–New Brunswick academic staff serves as graduate director of this program.

Contact the Office of the Graduate School–New Brunswick, 25 Bishop Place, New Brunswick, NJ 08903, for further information, or call 732/932-7275.

ITALIAN 560
Degree Programs Offered: Master of Arts, Master of Arts for Teachers, Doctor of Philosophy
Director of Graduate Program: Professor Laura S. White, 84 College Avenue, College Avenue Campus (732/932-7536)

Members of the Graduate Faculty
Andrea Baldi, Assistant Professor of Italian, FAS–NB; Dott. in Lettere, Firenze; Ph.D., California (Los Angeles) Sixteenth- and seventeenth-century literature
Franco Ferrucci, Professor of Italian, FAS–NB; Dott. in Lettere, Pavia Dante studies; sixteenth- and seventeenth-century literature
Guido A. Guarniero, Professor Emeritus of Italian, FAS–NB; Ph.D., Columbia University Humanism and Renaissance literature
Umberto Mariani, Professor of Italian, FAS–NB; Dott. in Lettere, Pavia Nineteenth- and twentieth-century literature
David R. Marsh, Professor of Italian, FAS–NB; Ph.D., Harvard Influence of classical literature in Renaissance Italy from Petrarch to Tasso
Alessandro Vettori, Assistant Professor of Italian, FAS–NB; Dott. in Lettere, Florence Ph.D., Yale Thirteenth-century literature; Dante and Franciscan literature
Laura S. White, Chairperson of Department and Professor of Italian, FAS–NB; Dott. in Lettere, Trieste Ph.D., California (Los Angeles) Seventeenth- and eighteenth-century literature; Renaissance theater; the epic early medieval literature
Programs

The graduate faculty in Italian offers three degree programs. The M.A. program is intended primarily for those who are teaching, or intend to teach, at the secondary school level. The program emphasizes language, literature, and civilization. The M.A. and Ph.D. programs deal with all aspects of Italian literature and literary criticism. All three programs are open to candidates with academic records of distinction and other evidence of scholarly accomplishment. The Master of Philosophy degree is available to doctoral candidates in Italian who, in addition to meeting the other M.Phil. requirements of the Graduate School–New Brunswick, achieve grades of A in at least nine term courses.

Candidates for the M.A.T. must complete satisfactorily ten term courses (30 credits) and take an examination based on a reading list. Master of Arts candidates also take ten term courses (30 credits) and must pass a comprehensive examination based on a reading list. Six of the 30 credits required for the M.A. may be devoted to a research problem if the candidate elects to write a thesis.

Doctoral candidates usually are required to complete 48 credits of course work beyond the bachelor’s degree and do a minimum of 24 credits of research toward the dissertation. In addition, they must be in residence for one year. Credit for graduate work taken at other institutions may be accepted in partial fulfillment of the course requirement, but in no case may the doctoral candidate do less than a full year of course work at Rutgers. Doctoral candidates must demonstrate a reading knowledge of German, Greek, or Latin and reading proficiency in a second Romance language.

The language requirement must be satisfied before the candidate is admitted to the qualifying examination. This examination is based on a reading list covering all periods of Italian literature. Once a student fulfills the course requirements, including the residence requirement, and passes the qualifying examination, he or she is admitted to candidacy for the Ph.D. degree and then may proceed with the preparation of a dissertation.

Reading lists on which the examinations are based, as well as the Guide for Graduate Students in Italian, are available at the office of the program director.

Graduate Courses

March
Development of the Italian language from its origins to the present day, with emphasis on the phonological, morphological, syntactical, and lexical growth of the literary tongue.

16:560:503,504. Advanced Grammar and Composition (3,3)
Advanced grammar, with special attention to problems of idiomatic expression and literary style; themes, oral presentations, and translation.

16:560:505. (F) Applied Linguistics in Italian (3)
Contrastive analysis of the phonology, morphology, and syntax of English and Italian, oriented toward actual teaching problems in the classroom.

16:560:507,508. Introduction to Romance Philology (3,3)
Introduction to the typology of the Romance languages. First term: history and structure of the Romance languages. Second term: readings of parallel texts with studies of special problems.

16:560:509,510. Italian Civilization (3,3)
Survey of Italian civilization, with emphasis on its expression through the arts from the thirteenth century to the present.

16:560:511,512. Approaches to Literature (3,3)
Poetry and prose from various periods of Italian literature, with examples of interpretive and textual scholarship and criticism, and various methods of literary study.

16:560:513,514. Stylistics and Literary Criticism (3,3)
Prerequisite 16:560:504 or permission of instructor. Elements of style and theory of grammar; rhetoric and structure of literature; stylistic analysis and practice in literary criticism.

16:560:515,516. Italian Literature from the Thirteenth to the Sixteenth Centuries (3,3)
Survey of the first four centuries of Italian literature. First term: late medieval literary currents. Second term: the age of humanism and the Renaissance.

16:560:517,518. Italian Literature from the Seventeenth to the Twentieth Centuries (3,3)
Survey of the main literary currents and major writers of modern and contemporary Italy. First term: from the baroque to romanticism. Second term: from Verismo to the present.

16:560:521. (F) Problems of Teaching Italian (N1.5)
Objectives, teaching techniques, testing, and student evaluation in elementary and intermediate language and literature courses. Bibliographical and other professional resources. Observation of classes.

16:560:522. (S) Teaching Apprenticeship in Italian (N1.5)
Observation of elementary and intermediate language classes; supervised practice teaching.

16:560:601,602. Studies in Early Italian Literature (3,3)
Vettori, White
The beginnings of Italian literature in the thirteenth century; poetry and prose before Dante, the Sicilian School, and the dolce stil nuovo.

16:560:605,606. Dante Seminar (3,3)
Ferruci, Vettori
Medieval thought as represented in Dante’s works.

16:560:610,611. The Classical Tradition in Italian Literature (3,3)
March
Survey of Greek and Roman literary genres (epic, lyric, tragedy, comedy, history, pastoral, epyllion, satire, dialogue, and novel) and their influence on Italian literature from the late Middle Ages to the present.

16:560:613,614. Italian Literature of the Fourteenth Century (3,3)
White

16:560:615,616. Italian Literature of the Fifteenth Century (3,3)
March

16:560:621,622. Italian Literature of the Sixteenth Century (3,3)
Baldi
The flowering of the Renaissance (the Reformation, Ariosto, Machiavelli, Guicciardini, Castiglione, Della Casa, Bembo, Aretino, Tasso, and others).

16:560:625,626. Italian Epic and Chivalric Poetry (3,3)
Baldi, White
Medieval origins of the genre and its evolution during the Renaissance through Pulci’s Morgante, Boiardo’s Orlando Innamorato, Ariosto’s Orlando Furioso, and Tasso’s Gerusalemme Liberata.

16:560:631. Italian Literature of the Seventeenth Century (3,3)
White
Works of Campanella, Marino, Galilei, and Baroque theater.

16:560:632,633. Italian Literature of the Eighteenth Century (3,3)
White
Works of Vico, Goldoni, Gozzi, Parini, Alfieri, and others.
16:560:641,642. The Romantic Age (3,3)
Ferruci

16:560:643,644. Italian Literature of the Late Nineteenth Century (3,3)
Baldi, Ferruci

16:560:645,646. Studies in Italian Literature of the Nineteenth Century (3,3)
Ferruci
Each term deals in depth with one or two major literary figures or movements of nineteenth-century Italian literature.

16:560:651,652. Italian Poetry of the Twentieth Century (3,3)
Mariani

16:560:653,654. Italian Novel of the Twentieth Century (3,3)
Mariani

16:560:655,656. Modern Italian Theater (3,3)
Mariani
Italian naturalistic and bourgeois theater from its late nineteenth-century origins to the major works of Verga, D’Annunzio, Giacosa, and Bracco. The “grotesque” theater, Pirandello, and the contemporary theater from Betti, Fabbrì, and De Filippo to Zardi, Squarzina, and Testori.

16:560:657,658. Italian Literature of the Twentieth Century (3,3)
Mariani
Reaction to the nineteenth-century models in poetry, fiction, and theater; establishment of new models of writing in the cultural climate that followed futurism and World War I; the hermeticism of the 1930s and the neoerrealism of the 1940s; major literary figures and trends of recent decades.

16:560:661,662. The Italian Short Story (3,3)
The origins, development, and influence of the Italian short story from the Novelino to today.

16:560:671,672. History of Italian Criticism (3,3)
Survey of modern Italian critical thought, starting with the proto-romantic aesthetics of Vico in the early eighteenth century and concluding with the twentieth-century contributions of Croce and the post-Croceans.

16:560:673,674. Problems in Literary Relationships (3,3)
Independent study under the supervision of a faculty member of the relationship between Italian literature and the literature of France or Spain.

16:560:701,702. Research in Italian (BA,BA)

Interdisciplinary Graduate Course
15:617:510. Introduction to Literary Theory (3)
Davidson, Edmunds, Eisenberg, Flieger, Galperin, Marsh, Persin, et al. Prerequisite Open to second-term graduate students; priority given to students from programs participating in the Council of Languages and Literature. An introduction to contemporary literary theory, including formalism, structuralism, poststructuralism, feminism, psychoanalysis, cultural studies, and other approaches. Readings of theoretical texts and applications to short literary texts from a variety of literatures.

LABOR AND EMPLOYMENT RELATIONS
(See the catalog of the School of Management and Labor Relations for information about the program leading to the Master of Labor and Employment Relations.)

LIBRARY STUDIES
(See the catalog of the School of Communication, Information and Library Studies for information about programs leading to the Master of Library Service.)

LINGUISTICS 615

Degree Programs Offered: Master of Arts, Doctor of Philosophy
Director of the Graduate Program: Professor Veneeta Dayal,
18 Seminary Place, College Avenue Campus (732/932-7289)

Members of the Graduate Faculty
Akinbode M. Akinlabi, Associate Professor of Linguistics, FAS-NB; Ph.D., Ibadan

Phonology; tone; intonation in tone languages; Benue-Congo phonology; Yoruba

Mark Baker, Professor of Linguistics, FAS-NB; Ph.D., Massachusetts Institute of Technology

Comparative syntax; linguistic universals; semantic roles; Amerindian and African languages

Maria Bittner, Professor of Linguistics, FAS-NB; Ph.D., Texas (Austin)

Crosslinguistic semantics, pragmatics; ergativity; Eskimo and other exotic languages

Jose Camacho, Assistant Professor of Linguistics, Spanish and Portuguese, FAS-NB; Ph.D., Southern California

Spanish syntax; second-language acquisition; language contact; Amazonian linguistics

Veneeta Dayal, Associate Professor of Linguistics, FAS-NB; Ph.D., Cornell

Syntax-semantics interface; semantics; South-Asian linguistics

Viviane M. Déprez, Associate Professor of Linguistics, FAS-NB; Ph.D., Massachusetts Institute of Technology

Syntactic theory; Romance linguistics; language acquisition; Creole syntax

Jane Grimshaw, Professor of Linguistics, FAS-NB; Ph.D., Massachusetts Institute of Technology

Syntactic theory; the lexicon; language acquisition; cognitive science

Alan S. Prince, Professor of Linguistics, FAS-NB; Ph.D., Massachusetts Institute of Technology

Phonology; prosody; prosodic morphology; optimality theory; cognitive science

Kenneth Safir, Professor of Linguistics, FAS-NB; Ph.D., Massachusetts Institute of Technology

Syntactic theory; Germanic linguistics; Romance linguistics; history of linguistics; learnability theory

Roger Schwarzschild, Associate Professor of Linguistics, FAS-NB; Ph.D., Massachusetts

Semantic; pragmatics; intonation

Bruce Tesar, Assistant Professor of Linguistics, FAS-NB; Ph.D., Colorado

Learnability and acquisition; computational linguistics; cognitive science; phonology

Hubert Truckenbrodt, Assistant Professor of Linguistics, FAS-NB; Ph.D., Massachusetts Institute of Technology

Phonology; syntax-phonology interface; intonation
Associate Members of the Graduate Faculty
Young-mee Yu Cho, Associate Professor of East Asian Languages and Culture, FAS-NB; Ph.D., Stanford
Phonology, morphology, Korean linguistics synchronic variation; diachrony
Matthew Stone, Assistant Professor of Computer Science, FAS-NB/RuCCS;
Ph.D., Pennsylvania Natural-language generation; conversational dialogue agents; knowledge representation and logic programming
Karin Stromswold, Associate Professor of Psychology, FAS-NB; Ph.D., Massachusetts Institute of Technology; M.D., Harvard
Language acquisition; cognitive and neural basis of language; functional neuroimaging

Program*
The graduate program in linguistics offers a comprehensive program of study leading to the Ph.D. in the major areas of theoretical linguistics. It is structured to facilitate the student’s involvement in research through work undertaken in close contact with members of the faculty. The program is designed to prepare graduates for careers in research and teaching at the university level in linguistics or in linguistically oriented subfields within the larger enterprise of cognitive science. Before specializing, students are expected to develop broad expertise in all of the core areas of phonology, syntax, and semantics.

Graduate Courses
16:615:505. LINGUISTICS COLLOQUIUM (3)
Discussion and presentation of research in progress by advanced graduate students, visitors, and faculty members.

16:615:510. SYNTAX I (3)
Introduction to syntactic theorizing and analysis. Provides fundamental background in phrase structure theory; predicate argument structure, grammatical function changing, conditions on anaphora, case marking, thematic roles, and long-distance dependencies.

16:615:511. SYNTAX II (3)
Prerequisite 16:615:510.
Intermediate-level discussion of major issues in syntactic theory, including theories of parametric variation, logical form and levels of grammar, and components and subtheories of grammar.

16:615:515. SEMINAR IN SYNTACTIC THEORY (3)
Prerequisite 16:615:511, or permission of instructor.
Advanced-level discussion of current issues in syntactic theory. Topics vary.

16:615:517. TOPICS IN GERMANIC SYNTAX (3)
Prerequisite Working knowledge of generative grammar.
Further study of Germanic phenomena in the construction of syntactic theory. Emphasis on construction types that are of the greatest theoretical and crosslinguistic interest.

16:615:520. PHONOLOGY I (3)
Introduction to major phonological phenomena and concepts of current theory, with emphasis on the development of analytical skills.

16:615:521. PHONOLOGY II (3)
Prerequisite 16:615:520.
In-depth investigation of leading issues in current theory, with focus on the structure of representations and the organization of the phonological component of the grammar.

16:615:525. SEMINAR IN PHONOLOGY (3)
Prerequisite 16:615:521 or permission of instructor.
Exploration of a special topic arising from current research in phonological theory.

16:615:530. SEMANTICS I (3)
Introduction to model-theoretic semantics. Topics include elementary set theory, predicate logic, and their applications in the analysis of major semantic phenomena.

16:615:531. SEMANTICS II (3)
Prerequisite 16:615:530.
Mathematical tools for relating syntactic structure to semantic interpretation. Topics include higher-order logic, lambda calculus, intensional logic, type theory, type driven translation, type lifting, and lattices.

16:615:532. TOPICS IN SEMANTICS I (3)
Prerequisite 16:615:531 or permission of instructor.
Selected topics in model-theoretic semantics. Questions, focus, presupposition, conversational implicature, context dependence, and context change.

16:615:533. TOPICS IN SEMANTICS II (3)
Prerequisite 16:615:531 or permission of instructor.
Selected topics in model-theoretic semantics, modals, conditionals, indexicals, tense, aspect, and genericity.

16:615:535. SEMINAR IN SEMANTICS (3)
Prerequisite 16:615:532 or 533 or permission of instructor.
Exploration of current issues in semantic theory. Topics vary.

16:615:610. FORMAL METHODS FOR LINGUISTICS (3)
Prerequisites: 16:615:511, 521, 531, or permission of instructor.
Selected topics in logic, algebra, formal languages, computation, mathematical analysis, statistics, and / or formal learning theory, with applications to linguistics.

16:615:631. FIELD METHODS FOR LINGUISTICS (3)
Prerequisites: 16:615:511, 521, 531, or permission of instructor.
Analysis of the linguistic structure of an unfamiliar language, based on in-class work with a native-speaker consultant.

16:615:660. SPECIAL TOPICS IN CURRENT LINGUISTIC THEORY (3)
Prerequisites: 16:615:511, 521, 531, or permission of instructor.
Topics in current linguistic research that cross subdisciplinary boundaries.

16:615:670. SEMINAR IN LEARNABILITY AND LINGUISTIC THEORY (3)
Prerequisite 16:615:520 or permission of instructor.
Examines approaches to language learning, focusing on relationships between learning proposals and linguistic theory. Includes concepts from computational learning theory relevant to understanding the learning implications of contemporary linguistic theory.

16:615:690,691. QUALIFYING PAPER WORKSHOP (3,3)
Prerequisites 16:615:511, 521, 531.
Students working on qualifying papers present work in progress for discussion and criticism.

LITERATURE AND LANGUAGE 617

The Council of Literatures and Languages coordinates activities of interest and benefit to graduate programs in literatures and languages. The council sponsors lectures, promotes professional preparation, and facilitates interdisciplinary activities and workshops. It also offers literary, linguistic, and film theory courses that are open to students in all literary disciplines. Inquiries may be addressed to the current chair of the council, Professor François Cornilliat, Graduate Program in French, Ruth Adams Building (732/932-8223).

* Students do not enroll for the M.A.; a terminal master’s degree is offered.
Graduate Courses
16:617:S01. METHODOLOGY OF LANGUAGE TEACHING (3)
A teaching methodology course designed by a second-language acquisition/applied-linguistics specialist. For first- and second-year teaching assistants.

16:617:S10. INTRODUCTION TO LITERARY THEORY (3)
Prerequisite: Open to second-term graduate students; priority given to students from programs participating in the Council of Languages and Literature. Introduction to contemporary literary theory, including formalism, structuralism, poststructuralism, feminism, psychoanalysis, cultural studies, and other approaches. Readings of theoretical texts and applications to short literary texts from a variety of literatures.

16:617:S12. LINGUISTIC THEORY AND THE STUDY OF LITERATURE (3)
The major schools of linguistic theory and methods (e.g., de Saussure, American structuralism, Prague School, generative grammar) and their relevance for other fields (such as anthropology, literature, and cognitive science).

16:617:S14. INTRODUCTION TO FILM THEORY AND ANALYSIS (3)
Surveys major film theories and methods of close analysis in the context of literary and cultural studies; includes “classical” theory, formalist analysis, feminist and psychoanalytic approaches.

LITERATURAS IN ENGLISH
(See English, Literatures in 350)

MATHEMATICS 640, 642
Degree Programs Offered: Master of Science, Doctor of Philosophy Director of Graduate Program: Professor Stephen Greenfield, Hill Center for the Mathematical Sciences, Busch Campus (732/445-3864)

Members of the Graduate Faculty
Eric Allender, Professor of Computer Science, FAS–NB; Ph.D., Georgia Institute of Technology
Complexity theory; parallel and probabilistic computation
Abbas Bahri, Professor of Mathematics, FAS–NB; Doctorate, École Normale Supérieure
Variational problems in nonlinear analysis and geometry
Tadeusz Balaban, Professor of Mathematics, FAS–NB; Ph.D., Warsaw
Mathematical physics
Jose Barroso-Neto, Professor Emeritus of Mathematics, FAS–NB; Ph.D., São Paulo
Functional analysis; partial differential equations
R. Michael Beals, Professor of Mathematics, FAS–NB; Ph.D., Princeton
Harmonic analysis; Fourier integral operators; partial differential equations
Josue Beck, Harold H. Martin Professor of Mathematics, FAS–NB; Ph.D., Hungarian Academy of Sciences
Combinatorics; combinatorial games; number theory
Adi Ben-Israel, Professor of Management, SB–NB; Ph.D., Northwestern
Matrix theory; numerical linear algebra; convexity and optimization operations research, mathematical economics
Edward Boylan, Associate Professor of Mathematics, FAS–N; Ph.D., Princeton
Analysis
Haim Brezis, Distinguished Visiting Professor of Mathematics, FAS–NB; Doctorate, Paris
Nonlinear functional analysis; partial differential equations
Felix E. Browder, Professor of Mathematics, FAS–NB; Ph.D., Princeton
Functional analysis and partial differential equations
Richard T. Bumby, Professor of Mathematics, FAS–NB; Ph.D., Princeton
Number theory
Terence Butler, Professor of Mathematics, FAS–NB; Ph.D., Indiana
Differential equations
Sagun Chanillo, Professor of Mathematics, FAS–NB; Ph.D., Purdue
Classical analysis; partial differential equations
Gregory L. Cherlin, Professor of Mathematics, FAS–NB; Ph.D., Yale
Logic: model theory; model theoretic algebra
Vojtech Chvátal, Professor of Computer Science, FAS–NB; Ph.D., Waterloo
Combinatorial optimization; analysis of algorithms
Amy Cohen, Professor of Mathematics, UC–NB; FAS–NB; Ph.D., California (Berkeley)
Partial differential equations; inverse scattering; Korteweg-de Vries equation
Richard M. Cohn, Professor Emeritus of Mathematics, FAS–NB; Ph.D., Columbia
Differential algebra
Bernard Coleman, J. Willard Gibbs Professor of Thermodynamics, SE; Ph.D., Yale
Continuum mechanics; analysis
Jane Cronin, Professor Emerita of Mathematics, FAS–NB; Ph.D., Michigan
Qualitative theory of ordinary differential equations; biomathematics
William D. Dube, Professor of Mathematics, FAS–NB; Ph.D., New York
Analytic number theory and automorphic forms
Cari C. Faith, Professor Emeritus of Mathematics, FAS–NB; Ph.D., Purdue
Theory of rings and modules
Richard S. Falk, Chair of Department and Professor of Mathematics, FAS–NB; Ph.D., Cornell
Numerical analysis; partial differential equations
Paul Feehan, Associate Professor of Mathematics, FAS–NB; Ph.D., Columbia
Partial differential equations; gauge theory and applications to four-manifolds non-abelian monopoles
Steven Ferry, Joshua Barlaz Professor of Mathematics, FAS–NB; Ph.D., Michigan
Geometric topology; differential topology; differential geometry
Michael L. Freedman, Professor of Computer Science, FAS–NB; Ph.D., Stanford
Data structures and algorithms; computational complexity
Giovanni Gallavotti, Distinguished Visiting Professor of Mathematics, FAS–NB; Ph.D., Florence
Statistical mechanics; quantum field theory; dynamical systems
Israel M. Gelfand, Professor of Mathematics, FAS–NB; Ph.D., Moscow State
Mathematics; artifical intelligence; neuoanatomy; cell biology
Jane P. Gilman, Professor of Mathematics, FAS–N; Ph.D., Columbia
Riemann surfaces; Fuchsian groups; Teichmüller theory; geometric topology; combinatorial group theory
Simon G. Gindikin, Professor of Mathematics, FAS–NB; Ph.D., Mathematics Institute (Leningrad)
Theory of representations; integral geometry; several complex variables; mathematical physics
Gerald A. Goldin, University Director; Science and Mathematics Partnership, and Professor of Mathematics and Physics Education, GSE; Ph.D., Princeton
Lie theory; mathematical physics; secondary education
Sheldon Goldstein, Professor of Mathematics, FAS–NB; Ph.D., Yeshiva
Statistical mechanics; probability theory
Roe Goodman, Professor of Mathematics, FAS–NB; Ph.D., Massachusetts
Institute of Technology
Differential operators and analysis on Lie groups
Stephen A. Greenfield, Professor of Mathematics, FAS–NB; Ph.D., Brandeis
Linear partial differential equations; several complex variables
Richard F. Cundy, Professor of Statistics, FAS–NB; Ph.D., Chicago
Wavelets and time-frequency analysis; probability theory
Andráj Hajnal, Professor of Mathematics; FAS–NB; Ph.D., Bolyai Institute (Szeged)
Combinatorics; mathematical logic; set theory
Peter Hammer, Professor of Mathematics, FAS–NB, and Director of the Rutgers Center for Operations Research; Ph.D., Bucharest
Boolean methods in operations research; integer programming; applications of discrete mathematics; graph theory
Zheng-Chao Han, Associate Professor of Mathematics, FAS–NB; Ph.D., Courant Institute (New York)
Nonlinear analysis; partial differential equations
William Hoyt, Associate Professor Emeritus of Mathematics, FAS–NB; Ph.D., Chicago
Algebraic geometry; elliptic surfaces; modular forms
Xiaojun Huang, Associate Professor of Mathematics, FAS–NB; Ph.D., Washington (St. Louis)
Several complex variables
Yi-Zhi Huang, Professor of Mathematics, FAS–NB; Ph.D., Rutgers
Conformal field theory; mathematics underlying string theory
Hennry Iwamesic, State of New Jersey Professor of Mathematics, FAS–NB; Ph.D., Warsaw
Analytic number theory
Howard J. Jacobowitz, Professor of Mathematics, FAS–C; Ph.D., New York
Differential geometry
Jeffry N. Kahn, Professor of Mathematics, FAS–NB; Ph.D., Ohio State
Combinatorics and related fields
Johannes H.B. Kemperman, Professor Emeritus of Statistics, FAS–NB; Ph.D., Amsterdam
Probability and statistics
C. David Keyes, Associate Professor of Mathematics, FAS–N; Ph.D., Chicago
Number theory; harmonic analysis and representation theory of p-adic groups
Friedrich Knop, Professor of Mathematics, FAS–NB; Ph.D., Basel (Switzerland)
Algebraic geometry; representation theory
János Komlós, Professor of Mathematics; FAS–NB; Ph.D., Edvősi
Combinatorics; probability; theoretical computer science

136
Maxim Kontsevich, Distinguished Visiting Professor of Mathematics, FAS-NB; Ph.D., Moscow
String theory and quantum field theory; quantum cohomology
Antoni A. Kosinski, Professor Emeritus of Mathematics, FAS-NB; Ph.D., Harvard
Differential topology
Martin Kruskal, David Hilbert Professor of Mathematics, FAS-NB; Ph.D., New York
Soliton equations; asymptotic analysis; surreal numbers
Antti Kupiainen, Distinguished Visiting Professor of Mathematics, FAS-NB; Ph.D., Princeton
Mathematical physics; quantum field theory; statistical mechanics
Peter S. Landweber, Professor of Mathematics, FAS-NB; Ph.D., Harvard
Algebraic topology; bordism theory; generalized homology theory
Solomon Leader, Professor Emeritus of Mathematics, FAS-NB; Ph.D., Princeton
Analysis abstract spaces
Joel L. Lebowitz, George William Hill Professor of Mathematics and Director of the Center for Mathematical Sciences Research, FAS-NB; Ph.D., Syracuse Mathematical physics; statistical mechanics
James I. Lepowsky, Professor of Mathematics, FAS-NB; Ph.D., Massachusetts Institute of Technology
Representation theory; vertex operator algebras; mathematics underlying string theory
Norman Leviitt, Professor of Mathematics, FAS-NB; Ph.D., Princeton
Differential and geometric topology; surgery theory; structural theory
Yanyan Li, Professor of Mathematics, FAS-NB; Ph.D., New York University
Nonlinear analysis; partial differential equations
Feng Luo, Associate Professor of Mathematics, FAS-NB; Ph.D., California (San Diego)
Topology and geometry
Richard N. Lyons, Professor of Mathematics, FAS-NB; Ph.D., Chicago
Simple groups
Benjamin Muckenhoupt, Professor Emeritus of Mathematics, FAS-NB; Ph.D., Chicago
Harmonic analysis; orthogonal expansions; weighted norm inequalities
Roger Nussbaum, Professor of Mathematics, FAS-NB; Ph.D., Chicago
Nonlinear functional analysis
Daniel L. Ocone, Professor of Mathematics, FAS-NB; Ph.D., Massachusetts Institute of Technology
Stochastic processes; stochastic control; filtering
Michael O’Nan, Professor of Mathematics, FAS-NB; Ph.D., Princeton
Permutation groups; simple groups
Barbara L. Osofsky, Professor of Mathematics, FAS-NB; Ph.D., Rutgers
Ring theory; homological algebra
Ted Petrie, Professor of Mathematics, FAS-NB; Ph.D., Princeton
Algebraic and differential topology; transformation groups; equivariant surgery; financial mathematics
Andras Prekopka, Professor of Operations Research and Statistics, FAS-NB; Ph.D., Budapest
Optimization of stochastic systems
John D. Randall, Associate Professor of Mathematics, FAS-N; Ph.D., Warwick
Topology; algebraic geometry
Vladimir Retakh, Associate Professor of Mathematics, FAS-NB; Ph.D., Moscow
Pedagogical Institute
Noncommutative algebra and combinatorics; special functions and differential equations
Mathematics education
Fred S. Roberts, Professor of Mathematics, FAS-NB, and Director of DIMACS; Ph.D., Stanford
Discrete mathematical models; graph theory; decision making; measurement theory
Xiaochun Rong, Associate Professor of Mathematics, FAS-NB; Ph.D., SUNY (Stony Brook)
Riemannian geometry
Joseph Rosenthal, Professor of Mathematics, FAS-NB, and Associate Director of Education, DIMACS; Ph.D., Cornell
Logic; linear orderings; recursive model theory
David Ruelle, Distinguished Visiting Professor of Mathematics, FAS-NB; Ph.D., Brussels
Statistical mechanics; dynamical systems
Siddhartha Sahai, Professor of Mathematics, FAS-NB; Ph.D., Yale University
Representations of reductive groups
Michael Saks, Professor of Mathematics, FAS-NB; Ph.D., Massachusetts Institute of Technology
Combinatorial optimization and algorithms; extremal set theory; partially ordered sets
Vladimir Scheffer, Professor of Mathematics, FAS-NB; Ph.D., Princeton
Geometric measure theory; partial differential equations
David Shanno, Professor of Management, SB-NB; Ph.D., Carnegie Mellon University Mathematical programming; numerical analysis
Saharon Shelah, Distinguished Visiting Professor of Mathematics, FAS-NB; Ph.D., Hebrew (Jerusalem)
Logic; model theory
Diana F. Shelstad, Professor of Mathematics, FAS-N; Ph.D., Yale
Harmonic analysis on algebraic groups related to number theory and geometry
Lawrence Shepp, Professor of Statistics, FAS-NB; Ph.D., Princeton
Pure and applied probability; tomography; mathematics of finance
Charles C. Sims, Professor of Mathematics, FAS-NB; Ph.D., Harvard
Computational group theory and algebraic algorithms
Afraam Szefer, Professor of Mathematics, FAS-NB; Ph.D., Tel Aviv University
Theory of partial differential evolution equations; Schrödinger operators and scattering theory; general mathematical physics
Eduardo D. Sontag, Professor of Mathematics, FAS-NB; Ph.D., Florida State University
System and control theory
Eugene R. Speyer, Professor of Mathematics, FAS-NB; Ph.D., Princeton
Mathematical physics
Hector J. Sussmann, Professor of Mathematics, FAS-NB; Ph.D., New York University
System and control theory
William J. Sweeney, Professor Emeritus of Mathematics, FAS-NB; Ph.D., Stanford University
Linear partial differential equations; overdetermined systems
Endre Szemerédi, State of New Jersey Professor of Computer Science, FAS-NB; Ph.D., Budapest
Theoretical computer science; number theory; combinatorics
Earl J. Taft, Professor of Mathematics, FAS-NB; Ph.D., Yale
Hopf algebras
A. Shadi Tahvildar-Zadeh, Associate Professor of Mathematics, FAS-NB; Ph.D., Princeton
Nonlinear hyperbolic partial differential equations
Jean E. Taylor, Professor of Mathematics, FAS-NB; Ph.D., Princeton University
Geometric measure theory
Simon Thomas, Professor of Mathematics, FAS-NB; Ph.D., London University
Model theory; infinite groups
Myles Tierney, Professor of Mathematics, FAS-NB; Ph.D., Columbia University
Tops of theory
Gabriel Teter, Professor of Mathematics, FAS-C; Ph.D., Edouard Lérand
Differential geometry
J. François Trèves, Robert Adrain Professor of Mathematics, FAS-NB; Ph.D., Sorbonne University
Functional analysis; linear partial differential equations; several complex variables
Jerrold B. Tunnell, Associate Professor of Mathematics, FAS-NB; Ph.D., Harvard University
Number theory; automorphic forms
Wolmer V. Vasconcelos, Professor of Mathematics, FAS-NB; Ph.D., Chicago University
Commutative algebra; computational algebra
Michael Vogeliuss, Board of Governors Professor of Mathematics, FAS-NB; Ph.D., Maryland University
Numerical analysis; partial differential equations
Bertrand Walsh, Professor of Mathematics, FAS-NB; Ph.D., Michigan University
Analysis; functional analysis; potential theory
Charles A. Weber, Professor of Mathematics, FAS-NB; Ph.D., Chicago
Algebraic K-theory; homological algebra; algebraic topology; category theory
Tilla K. Weinstein, Professor Emerita of Mathematics, FAS-NB; Ph.D., New York University
Differential geometry; surfaces in semi-Riemannian manifolds
Richard L. Wheelen, Professor of Mathematics, FAS-NB; Ph.D., Yale University
Lie algebras
Norman Zaborsky, State of New Jersey Professor of Computational Fluid Dynamics, SE; Ph.D., California Institute of Technology
Vortex dynamics in two and three dimensions
Daron Zeilberger, Board of Governors Professor of Mathematics, FAS-NB; Ph.D., Weizmann Institute
Algebraic and enumerative combinatorics; experimental mathematics
Haiman J. Zimmerberg, Professor Emeritus of Mathematics, FAS-NB; Ph.D., Chicago
Boundary value problems

Associate Members of the Graduate Faculty
Lisa Carson, Assistant Professor of Mathematics, FAS-NB; Ph.D., Columbia University
Group actions on trees
Ovidiu Costin, Assistant Professor of Mathematics, FAS-NB; Ph.D., Rutgers University
Exponential asymptotics; asymptotic analysis; mathematical physics
Martin Farach-Colton, Associate Professor of Computer Science, FAS-NB; Ph.D., Maryland University
Computational molecular biology; sequential and partial algorithms
William F. Keigher, Associate Professor of Mathematics, FAS-NB; Ph.D., Illinois Institute of Technology
Differential and commutative algebra; category theory; algebraic geometry
Michael Kierszal, Associate Professor of Mathematics, FAS-NB; Ph.D., Ruhr (Bochum)
Statistical mechanics
Haisheng Li, Assistant Professor of Mathematics, FAS-N; Ph.D., Rutgers University
Vertex operator algebras; mathematics related to string theory
Stephen D. Miller, Assistant Professor of Mathematics, FAS-NB; Ph.D., Princeton University
Automorphic forms; L-functions
Jacob Sturman, Associate Professor of Mathematics, FAS-N; Ph.D., Princeton University
Number theory; automorphic forms
Christopher T. Woodward, Assistant Professor of Mathematics, FAS-NB; Ph.D., Massachusetts Institute of Technology
Symplectic geometry; geometric quantization

137
Programs

The graduate program in mathematics offers courses of study leading to the degrees of Master of Science and Doctor of Philosophy. Possible areas of specialization include algebraic geometry, category theory and topos theory, commutative algebra, theory of computation, differential geometry, discrete mathematics, functional analysis, geometric measure theory, group theory, harmonic analysis on Euclidean spaces, Lie theory, logic, mathematical physics, nonlinear analysis, number theory, numerical analysis, ordinary differential equations, operations research, partial differential equations, probability theory, ring theory, mathematics underlying string theory, system and control theory, and algebraic and geometric topology.

The program in mathematics is housed in the Hill Center for the Mathematical Sciences, a seven-story building on the Busch campus. Hill Center and the adjoining CoRE Building house the computer science and statistics departments, the Center for Discrete Mathematics and Theoretical Computer Science, and the Mathematical Sciences Library. The library contains more than 27,000 volumes and subscribes to more than 300 research journals in pure and applied mathematics. Office space is provided to all full-time graduate students in mathematics. The graduate programs in biology, chemistry, physics, and engineering are located nearby.

Applicants to the Ph.D. programs must have a strong undergraduate background in mathematics and must submit scores from both the general and subject tests of the Graduate Record Examination (GRE). Financial aid through fellowships and teaching assistantships is available to qualified doctoral students. Application for financial support should be made by February 1.

Applicants to the master’s programs should have an undergraduate degree in mathematics or a related area. Preferably, they should have taken courses in linear algebra and advanced calculus. Both the general and subject tests of the GRE are required for master’s applicants.

It is also possible to apply for admission as a nondegree student. The GRE is not required for these applicants. As many as 12 credits of course work taken as a nondegree student can count toward a degree if the student is subsequently admitted to a degree program.

All doctoral students must pass a two-stage qualifying examination before officially commencing work on their thesis. The first examination, a written one, is designed to ensure that Ph.D. graduates know certain basic material. Normally, it is taken at the beginning of the student’s second year. The second examination, which is oral, normally is taken by the beginning of the second term of the student’s third year.

Students pursuing a Ph.D. in mathematics must take 48 credits in approved courses. Normally, this curriculum will include 16:640:501,502 Theory of Functions of a Real Variable, 16:640:503 Theory of Functions of a Complex Variable I, and 16:640:551,552 Abstract Algebra. Students should choose a program that gives them knowledge in a broad range of mathematics and/or its applications. In addition, students in the sequence must take 16:640:616,617 Seminar in Mathematics; acquire a reading knowledge of French, German, or Russian; complete 24 credits of research; and submit a doctoral dissertation.

Not all graduate courses listed below are given every year. Each course is scheduled subject to student demand and at the discretion of the graduate faculty.

Graduate Courses (640)
16:640:501,502. Theory of Functions of a Real Variable (3,3)
Prerequisite: Advanced calculus.
Real number system, measure theory, and Lebesgue integration in Euclidean and abstract spaces, set functions, bounded variation, absolute continuity, differentiation of the indefinite integral. Radon measure, L^1 spaces.

16:640:503. Theory of Functions of a Complex Variable I (3)
Prerequisite: Advanced calculus.
Elementary properties of complex numbers, analytic functions, the exponential function and logarithm, conformal mapping, Cauchy integral formula, maximum modulus principle, Laurent series, classification of isolated singularities, residue theorem.

16:640:504. Theory of Functions of a Complex Variable II (3)
Prerequisite 16:640:503.
Analytic continuation and the monodromy theorem, normal families and Riemann mapping theorem, Picard theorems, and other topics.

16:640:507,508. Functional Analysis (3,3)
Prerequisites 16:640:502,503, 540.

16:640:509,510,511. Selected Topics in Analysis (3,3,3)
Prerequisites 16:640:502 and permission of instructor.

Prerequisite: Permission of instructor.

16:640:515. Ordinary Differential Equations (3)
Prerequisites: Linear algebra and advanced calculus.

16:640:517,518. Partial Differential Equations I,II (3,3)
Pre or corequisites 16:640:502,503, 507.

16:640:519. Selected Topics in Differential Equations (3)
Prerequisite: Permission of instructor.
Topics in ordinary and partial differential equations chosen by the instructor.

16:640:520. Distribution Theory (3)
Spaces of distribution; tempered distributions; Sobolev spaces; spaces of test functions; topology and dualities of these spaces. Kernel theorems. Growth conditions; the Fourier transform.
16:640:574. Special Topics in Number Theory (3)
Prerequisite Permission of instructor.

16:640:615. Special Studies in Advanced Mathematics (BA)

16:640:616,617. Seminar in Mathematics (1,1)
Prerequisite Two years of graduate study in mathematics.
Two-term participation in one of the seminars conducted by the
department required of all candidates for the Ph.D.

16:640:651. Category Theory (3)
Prerequisite Some background in algebra and topology.
Basic theory of categories, functors, and natural transformations.
Abstract theory interpreted and illustrated through examples.

16:640:663. Topics in Mathematical Physics (3)

16:640:699. Nonthesis Study (1)

16:640:701,702. Research in Mathematics (BA,BA)

Graduate Courses in Applied Mathematics (642)

Prerequisites Advanced calculus, differential equations.
Theory and applications of partial differential equations. First order
Classification of second-order linear equations. Hyperbolic:
characteristics, wave equation. Elliptic: maximum principles,
Laplace’s and reduced-wave equations. Parabolic: heat equation.
Fourier and Laplace transforms.

16:642:527,528. Methods of Applied Mathematics (3,3)
Prerequisite Permission of instructor. Credit not given for these courses and
16:650:567,568.
Appropriate topics from linear algebra, linear operators in Hilbert
space, linear integral equations, boundary-value problems,
calculus of variations, numerical solution of ordinary and partial
differential equations.

16:642:550. Linear Algebra and Applications (3)
Vector spaces, bases, and dimension. Linear operators, quadratic
forms, and their matrix representations. Eigenvalues, eigenvectors,
diagonalizability, Jordan, and other canonical forms. Applications
to systems of linear differential equations.

16:642:551. Applied Algebra (3)
Prerequisite 16:642:550.
Basic algebraic structures, including groups and their representa-
tions, finite fields, and Boolean algebra. Applications to physics,
counting arguments, switching circuits, and coding theory.
Automata theory.

16:642:561-562. Introduction to Mathematical Physics (3,3)
Prerequisites Linear algebra, advanced calculus.
Study of models of classical and/or quantum mechanical
physical systems, with emphasis on the use of rigorous mathemat-
ical techniques.

16:642:563. (F) Rigorous Results in Statistical Mechanics I: Equilibrium (3)
Prerequisite Permission of instructor. Students should have either a general
mathematical background equivalent to that of a second-year graduate student
in mathematics or knowledge of statistical mechanics obtained from physics,
chemistry, or engineering courses in the subject.
Treats the subject ab initio. Deals with general questions such as the
existence of the thermodynamic limit, convergence of low-density
expansions, correlation inequalities, coexistence of phases.

16:642:564. (S) Rigorous Results in Statistical Mechanics II: Nonequilibrium (3)
Prerequisite Permission of instructor. Students should have either a general
mathematical background equivalent to that of a second-year graduate student
in mathematics or knowledge of statistical mechanics obtained from physics,
chemistry, or engineering courses in the subject.
Ergodic theory, time evolution of infinite systems, heat flow
in random systems, stationary nonequilibrium systems, exactly
soluble models systems, stochastic processes.

16:642:573,574. Numerical Analysis (3,3)
Prerequisites Advanced calculus, linear algebra, and differential equations.
Ideas and techniques of numerical analysis illustrated by problems
in the approximation of functions, numerical solution of linear
and nonlinear systems of equations, approximation of matrix eigen-
values and eigenvectors, numerical quadrature, and numerical
solution of ordinary differential equations.

Prerequisite Partial differential equations.
Finite-difference schemes, investigating stability and convergence,
other methods such as those of Ritz-Galerkin type and collocation.

16:642:577,578. Selected Mathematical Topics in System Theory (3,3)
Prerequisites Linear algebra, differential equations.
Selection of topics from mathematical system theory (e.g., realiza-
tion, control, stability, optimization, and feedback), with emphasis
on qualitative aspects. Algebraic techniques in linear system theory,
gerometrical and functional analytic techniques in the study of
nonlinear control systems.

16:642:581. (S) Graph Theory (3)
Prerequisites 01:640:350 and 411, or permission of instructor. 01:640:477
is recommended.
Advanced introduction to graph theory. Topics include matching
theory, connectivity, graph coloring, planarity, extremal graph
theory, and the main techniques (elementary, probabilistic, alge-
braic, and polyhedral) for analyzing the structure and properties
of graphs.

16:642:582,583. Combinatorics (3,3)
Prerequisites 01:640:350 and 411, or permission of instructor. 01:640:477 and
16:640:551 are recommended.
Advanced introduction to combinatorial theory and applications.
Typical topics include hypergraphs, probabilistic methods, alge-
braic methods, matching theory, packing and covering, Ramsey
theory, partially ordered sets and lattices, block designs, error-
correcting codes, and matroids. Topics and emphasis vary
depending on instructor.

Prerequisites Linear algebra, elementary probability.
Mathematical models of problems in social sciences and the public
and private policy areas, emphasizing discrete models. Transpor-
tation and communication networks. Energy modeling. Pollution
models. Models from economics, psychology, sociology, and
political science, dealing with such issues as currency movement,
land development, learning, small group behavior, and power in
legislatures. Development of requisite mathematical tools about
graphs, signed graphs, Markov chains, and n-person games.

16:642:586. (S) Theory of Measurement (3)
Prerequisite Undergraduate modern algebra or permission of instructor.
Foundations of measurement from a mathematical point of view.
Homomorphisms or relational systems; scale type; uniqueness
theory; ordinal, extensive, difference, and conjoint measurements;
utility and expected utility; subjective probability; applications
to social and physical sciences.

16:642:587. Selected Topics in Discrete Mathematics (3)
Prerequisite Permission of instructor.
Choice of topics depends on year and instructor.
16:642:588. (F) INTRODUCTION TO MATHEMATICAL TECHNIQUES IN OPERATIONS RESEARCH (3)
Prerequisite: Linear algebra.

16:642:589. (S) TOPICS IN MATHEMATICAL TECHNIQUES IN OPERATIONS RESEARCH (3)
Prerequisite: 16:642:588 or equivalent, permission of instructor.
Special mathematical topics such as matching, matroids, dynamic programming, recent work in combinatorial optimization.

16:642:591,592. TOPICS IN PROBABILITY AND ERGODIC THEORY (3,3)
Basic probability theory and its applications. Topics include stochastic independence, distributions and densities, Markov processes, stationary processes, the law of large numbers, and the central limit theorem. A broad range of applications to communications engineering, economics, biology, and physics.

16:642:593. (F) MATHEMATICAL FOUNDATIONS FOR INDUSTRIAL AND SYSTEMS ENGINEERING (3)
Prerequisite: Permission of instructor.
Underlying mathematical principles of system modeling. Foundations of the real number system and calculus of functions of one variable, with emphasis on logical principles and methods of proof.

16:642:611,612. SELECTED TOPICS IN APPLIED MATHEMATICS (3,3)
Prerequisite: Permission of instructor.
Topics of current interest.

16:642:613. SELECTED MATHEMATICAL TOPICS FROM PHYSIOLOGY AND MEDICINE (3)
Prerequisite: Permission of instructor.
Problems in the qualitative theory of nonlinear ordinary and functional differential equations that arise in such subjects as the Hodgkin-Huxley theory, hormonal control systems, and rhythms in physiology.

16:642:661,662. SELECTED TOPICS IN MATHEMATICAL PHYSICS (3,3)
Prerequisite: Permission of instructor.
Topics of current interest in areas such as classical mechanics, statistical mechanics, ergodic theory, nonrelativistic quantum mechanics, and quantum field theory.

MECHANICAL AND AEROSPACE ENGINEERING 650

Degree Programs Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Professor Haym Benaroya, SE; Ph.D., Virginia Polytechnic Institute
D104 Engineering Building, Busch Campus (732/445-4408)
Web Site: http://cronos.rutgers.edu/~mechaero

Members of the Graduate Faculty

Haim Baruh, Associate Professor of Mechanical and Aerospace Engineering, SE; Ph.D., Virginia Polytechnic Institute
Structural dynamics; controls; system identification

Haym Benaroya, Professor of Mechanical and Aerospace Engineering, SE; Ph.D., Pennsylvania
Aerospace structures; structural dynamics; probabilistic mechanics; lunar development

William J. Botts, Associate Professor of Mechanical and Aerospace Engineering, SE; Ph.D., Yale
Composite structures; applied mechanics

David G. Briggs, Professor Emeritus of Mechanical and Aerospace Engineering, SE; Ph.D., M.I.T
Heat transfer; thermodynamics; numerical modeling

Yu Chen, Professor Emeritus of Mechanical Engineering, SE; Sc.D., Harvard
Numerical simulation of thermomechanical phenomena; applied mechanics

Alberto Cuitrillo, Associate Professor of Mechanical and Aerospace Engineering, SE; Ph.D., Brown
Computational solid mechanics

Mitsunori Denda, Associate Professor of Mechanical and Aerospace Engineering, SE; Ph.D., Harvard
Fracture mechanics; computational solid mechanics

Ellis H. Dill, University Professor of Mechanical and Aerospace Engineering, SE; Ph.D., California (Berkeley)
Continuum mechanics; computational mechanics; finite element methods

Gregory S. Elliott, Associate Professor of Mechanical and Aerospace Engineering, SE; Ph.D., Ohio State
Experimental fluid mechanics

Hae Chang Gea, Assistant Professor of Mechanical and Aerospace Engineering, SE; Ph.D., Michigan
Design and structural optimization; finite element

Yogesh Jafuria, Professor of Mechanical and Aerospace Engineering, SE; Ph.D., Cornell
Convex/convex numerical methods in heat transfer; materials processing

Mukund V. Karve, Assistant Professor of Food Science, CC; Ph.D., Rutgers
Thermal processing of food materials; numerical modeling

Doyle D. Knight, Professor of Mechanical and Aerospace Engineering, SE; Ph.D., California Institute of Technology
Computers and fluids; turbulence; computational fluid dynamics; automated optimal design; high performance computing; aerodynamics

Noshir A. Langrana, Professor of Mechanical and Aerospace Engineering, SE; Ph.D., Cornell
Computer-aided design; biomechanics; artificial intelligence in design

Constantinos Mavroidis, Associate Professor of Mechanical and Aerospace Engineering, SE; Ph.D., Paris VI
Computational fluid dynamics; turbulence; chaos; parallel processing

Michael R. Muller, Professor of Mechanical and Aerospace Engineering, SE; Ph.D., Brown
Fluid mechanics; waves; rotating flows; fluidized beds

Andrew N. Norris, Chairperson and Professor of Mechanical and Aerospace Engineering, SE; Ph.D., Northwestern
Dynamics of solids and wave propagation; mechanics of composite materials

Madhura M. Ogut, Associate Professor of Mechanical and Aerospace Engineering, SE; Ph.D., Pennsylvania State
Computer-aided design; dynamics; optimization; robotics

Kook D. Paik, Professor of Mechanical and Aerospace Engineering, SE; Ph.D., Pennslyvania State
Polymer mechanics; high-pressure effects on properties of polymers; surface modification of polymers

Assimina A. Peleg, Assistant Professor of Mechanical and Aerospace Engineering, SE; Ph.D., Georgia Institute of Technology
Computational fluid dynamics; electromechanical systems; smart structures

Richard B. Pelz, Professor of Mechanical and Aerospace Engineering, SE; Ph.D., Princeton
Computational fluid dynamics; turbulence; chaos; parallel processing

Richard L. Peskin, Professor Emeritus of Mechanical and Aerospace Engineering, SE; Ph.D., Princeton
Computational fluid dynamics

Constantine E. Polymersopoulos, Professor of Mechanical and Aerospace Engineering, SE; Ph.D., California Institute of Technology
Computational fluid dynamics; turbulence; chaos; parallel processing

Kyoung T. Rhee, Professor of Mechanical and Aerospace Engineering, SE; Ph.D., Cornell
Computational fluid dynamics

Hyun-Joong Kim, Professor of Mechanical and Aerospace Engineering, SE; Ph.D., Wisconsin
Internal combustion engines; flame propagation

Valentinivas Serres, Professor Emeritus of Mechanical and Aerospace Engineering, SE; Ph.D., Toronto
Optical techniques; boiling heat transfer; experimental methods

Samuel Ternkin, Professor Emeritus of Mechanical and Aerospace Engineering, SE; Ph.D., Brown
Computational fluid dynamics

Stephen D. Tse, Assistant Professor of Mechanical and Aerospace Engineering, SE; Ph.D., California (Berkeley)
Combustion and propulsion; heat and mass transfer; thermosciences; fire safety

Timothy Wei, Professor of Mechanical and Aerospace Engineering, SE; Ph.D., Michigan
Fluid mechanics and turbulence

George J. Weng, Professor of Mechanical and Aerospace Engineering, SE; Ph.D., Yale
Micromechanics of composite materials; phase transformation

Norman J. Zabusky, State of New Jersey Professor of Computational Fluid Dynamics, SE; Ph.D., California Institute of Technology
Computational fluid dynamics; computational and analytical; nonlinear dynamical systems

Abdelhafiz Zebib, Associate Dean and Professor of Mechanical and Aerospace Engineering, SE; Ph.D., California Institute of Technology
Experimental fluid mechanics; computational fluid mechanics

Dajun Zhang, Assistant Professor of Mechanical and Aerospace Engineering, SE; Ph.D., CUNY
Bone mechanics, biophysics, tissue damage mechanics, poroelasticity; experimental mechanics
Programs

Mechanical and aerospace engineering offers graduate programs leading to the Master of Science and Doctor of Philosophy degrees. Individuals wishing to enroll in the M.S. program should have a B.S. degree in mechanical and/or aerospace engineering from an accredited institution and should have graduated with a cumulative grade-point average of 3.0 (where A = 4.0) or better. Applicants who have a B.S. degree in other engineering disciplines or in applied mathematics, geology, meteorology, or physics also are considered.

Admission into the Ph.D. program requires an M.S. in mechanical and/or aerospace engineering. Applicants who have an M.S. in a closely related discipline may be admitted directly into the Ph.D. program, provided their preparation has no significant deficiencies. The Master of Philosophy degree is available to doctoral candidates.

The Master of Science program is meant to broaden the undergraduate preparation. It can be considered as a terminal degree or may be used as preparation for the Ph.D. program. The M.S. program requires a minimum of 30 credits and normally includes a research thesis.

The Ph.D. program is intended for those individuals primarily interested in teaching and/or research. It requires a minimum of 48 credits of course work beyond the B.S. degree and a minimum of 24 credits of research beyond the M.S. degree. The program requires successful performance in the Ph.D. qualifying examination, one year of full-time residence, and the completion of a satisfactory research dissertation. Proficiency in a foreign language is not required. Although a student may attend full time throughout his or her studies, the one-year residence requirement normally is satisfied after the student has passed the qualifying examination.

The residency year is devoted mainly to research.

Study is offered in the general areas of applied mechanics and engineering science and design. There are four major fields of study in mechanical and aerospace engineering. These are design and control, fluid mechanics, solid mechanics, and thermal sciences. Because of the exceptional variety and large number of courses available in these areas and because of the wide range of research activities in the program, students have a unique opportunity to acquire a broad and thorough education and training.

Facilities for research include modern laboratories in acoustics, biomechanics, combustion, computational fluid dynamics, computational solid mechanics, heat transfer and thermal convection, computer-aided design, experimental fluid mechanics, geophysical fluid dynamics, internal-combustion engines, optics, and high-pressure mechanics. The Department of Mechanical and Aerospace Engineering Computing Services (MECS) in collaboration with other departments at Rutgers University offers the Rutgers Computational Grid (RCG)—a state-of-the-art distributed multiprocessor (Beowulf) computing facility based on high-performance processors and the Linux operating system.

More than 100 processors were installed on the RCG as of September 2000, with additional expansion planned. ECS operates two public workstation laboratories with seventy Sun workstations for instruction and research. ECS provides high-speed network access to the U.S. National Supercomputer Centers sponsored by the National Science Foundation, the Department of Defense, and the Department of Energy. Rutgers operates two 64-processor Sun E10,000 parallel computers located at the Center for Advanced Information Processing (CAIP).

Research areas in which the faculty of the program are engaged include acoustics, applications of artificial intelligence, biomechanics, boiling heat transfer, combustion, composite materials, computational fluid dynamics, computational solid mechanics, convective heat transfer, delamination mechanics, droplet dynamics, energy management, fracture mechanics, gas dynamics, geophysical fluid dynamics, hydrodynamical instability, internal-combustion engines, incompressible fluid dynamics, kinematics and dynamics of mechanisms, mantle convection, material processing, mechanical design, micromechanics, nondestructive evaluation, numerical modeling, optimal design, particulate emission, polymer mechanics, plasticity, random vibration, smart structures, space structures, stability of structures, structural dynamics, thermal-stress analysis, turbulence, turbulent dispersion, and waves in solids.

Degree programs in mechanical and aerospace engineering may be arranged with the graduate program director. Further details may be found on the departmental web site.

Graduate Courses

16:650:500. EXPERIMENTAL METHODS (3)
Prerequisites: Undergraduate fluid mechanics and heat transfer. Survey of current measuring techniques used in mechanical and aerospace engineering research; principles of digital and analog data acquisition and reduction.

16:650:504,505. MATHEMATICAL METHODS IN ENGINEERING (3,3)
Prerequisites: Undergraduate calculus and differential equations. Review of matrix algebra; numerical methods for inversion; ordinary differential equations, functions of a complex variable; calculus of variations; partial differential equations and their classification; Fourier methods; asymptotic and perturbation methods.

16:650:510. (F) COMPUTER-AIDED DESIGN (3)
Prerequisite: Permission of instructor. Broad introduction to computer-aided design and modeling. Mathematical representations of curves, surfaces, and solids. Two- and three-dimensional computer graphics. Programming required for design projects.

16:650:514. DESIGN OF MECHANISMS (3)
Prerequisite: Undergraduate kinematics of mechanisms or equivalent. Complete mechanism design cycle: synthesis, analysis, and redesign; analytical, numerical, and visualization techniques applied to mechanism synthesis (type, number, and dimensional) and analysis; application of optimization methods in the design cycle; planar and spatial mechanisms.

16:650:518. BIOMECHANICAL SYSTEMS (3)
Prerequisites: Undergraduate mechanical design and solid mechanics. Selected topics from the study of the human body as a mechanical system, with emphasis on modeling, analysis, and design. Investigation of biomechanical systems in orthopedic surgery and physical rehabilitation.

16:650:522. (S) ANALYTICAL DYNAMICS (3)
Prerequisite: Graduate standing in mechanical/aerospace engineering. Newtonian mechanics, rotating frames, variational principles, Lagrange’s equations, Hamilton’s equations, Euler angles, Euler equations, gyroscopic motion.

16:650:530. FLUID MECHANICS I (3)
Prerequisite: Undergraduate fluid mechanics. Physical properties of fluids; basic equations of motion; kinematics; exact solutions of the Euler and Navier-Stokes equations; incompressible boundary-layer equations and applications; flow past bodies, jets, and wakes; introduction to turbulent flows.

16:650:534. COMPUTATIONAL FLUID MECHANICS (3)
Prerequisites: Undergraduate fluid mechanics and thermodynamics. Development and application of computational methods for fluid mechanics based on the incompressible and compressible Navier-Stokes equations, boundary-layer equations, and Euler equations. Selected algorithms, including finite difference, finite volume, and special techniques. Applications chosen from incompressible and compressible flows.

16:650:550. MECHANICS OF MATERIALS (3)
Prerequisite: Undergraduate solid mechanics. Theories and methods for evaluating stresses and deformations of mechanical components and structures under static and dynamic loading.
16:650:554. MECHANICS OF CONTINUUM (SOLID MECHANICS I) (3)
Prerequisite: Undergraduate mechanics and engineering mathematics.
Introduction to the fundamental concepts of continuum mechanics, including stress and strain, kinematics, balance laws, and material symmetry. Theories of elasticity, plasticity, fracture, viscoelasticity, and classical fluid dynamics.

16:650:570. CONDUCTION HEAT TRANSFER (3)
Prerequisite: Undergraduate heat transfer.
Analytical methods in steady and transient heat conduction in solids; finite difference methods in heat conduction.

16:650:574. THERMODYNAMIC THEORY (3)
Prerequisite: Undergraduate thermodynamics.
Principles and methods of thermodynamics, including classical, statistical, and irreversible thermodynamics.

16:650:578. CONVECTION HEAT TRANSFER (3)
Prerequisite: Undergraduate heat transfer; 16:650:530 or equivalent.
Forced and free convection in laminar and turbulent flows; mass transfer; applications.

16:650:582. COMPUTATIONAL HEAT TRANSFER (3)
Prerequisites: Undergraduate fluid mechanics and thermodynamics.
Development and application of computational methods for conduction; natural, forced, and mixed convection; radiation; traditional and recent conjugate heat transfer; and mass transfer. Selected algorithms include finite difference, finite volume, finite element, and spectral techniques. Applications chosen from thermal energy systems, environmental heat transfer, microelectronics packaging, materials processing, and other areas.

16:650:601,602. INDEPENDENT STUDY (3,3)
Prerequisites: Permission of instructor and graduate program director.
Independent studies or investigations in a selected area of mechanical and aerospace engineering. The instructor prepares a syllabus on subject being studied for student’s file.

16:650:604. ADVANCED ENGINEERING ANALYSIS (3)
Prerequisite: 16:642:527: 16:650:522 or 530.
Behavior of linear and nonlinear systems, phase-plane analysis, bifurcation, stability criteria, perturbation methods. Examples from fluid mechanics, dynamics, and heat transfer.

16:650:606. ADVANCED MECHANICAL ENGINEERING TOPICS (3)
Topics of current interest in mechanical and aerospace engineering, such as applications of computer-aided intelligence, computer-aided manufacturing, and waves in fluids.

16:650:608,609. SEMINAR IN MECHANICAL ENGINEERING (1,1)
Prerequisite: Ph.D. candidacy in mechanical and aerospace engineering or permission of graduate program director.
Lectures by Ph.D. students, faculty, and invited speakers on current research topics in mechanical and aerospace engineering.

16:650:610. ROBOTICS AND MECHATRONICS (3)
Prerequisites: Undergraduate vibrations, controls, dynamics, and statistics.
Introduction to robotics and mechatronics, including mechanisms and control theories as well as applications; manipulator mechanics; design considerations; control fundamentals; model and sensor-based control algorithm development; walking robots; medical and space robotics; experimental mechatronics.

16:650:614. OPTIMAL DESIGN IN MECHANICAL ENGINEERING (3)
Prerequisite: 16:650:530.
Formulation and solution of engineering optimal design problems in mechanical engineering. Introduction to algorithms for constrained and unconstrained searching. Application to optimal design of mechanical and structural components. Use of discretization techniques; shape optimization problem.

16:650:618. SPECIAL APPLICATIONS IN CONTROL (3)
Prerequisite: Graduate background in mechanical control systems and vibration.
Introduction to recently developed concepts in control theory and their application in real-life problems. Topics include robust and optimal control (H2, H-infinity, and advanced LQR control techniques), neural networks, and system identification.

16:650:622. ADVANCED OPTIMIZATION (3)
Prerequisite: 16:650:614.
Focuses on the mathematical framework of optimization; in-depth coverage of mathematical programming, probabilistic optimization methods, global optimization, and multiobjective optimization and their applications.

16:650:626. ADVANCED DESIGN AND FABRICATION (3)
Prerequisite: 16:650:514 and 614, or equivalent.
Synthesis of design methodologies with application to industrial problems.

16:650:630. FLUID MECHANICS II (3)
Prerequisite: 16:650:530 or equivalent, or permission of instructor.
Vortex dynamics of incompressible inviscid and low-viscosity fluids. One-, two-, and three-dimensional compressible flows. Linear, nonlinear, acoustic, and gravity waves; shock waves using shock polars. Stability of viscous and inviscid vortex, wave and boundary-layer flows. Special topics include accelerated flows; Rayleigh-Taylor and Richtmeyer-Meshkov for supersonic combustion and inertial confinement fusion; visualization and quantification of evolving flows; and turbulent scaling laws.

16:650:634. COMPRESSIBLE FLOWS (3)
Prerequisite: 16:650:630 or equivalent.
Linear and nonlinear theory of one-dimensional inviscid unsteady motion, compression and expansion waves, shock-tube and wave interactions; two-dimensional inviscid steady motions, including linearized subsonic and supersonic flows, boundary-layer theory of compressible fluids.

16:650:636. TURBULENCE (3)
Prerequisite: 16:650:530.
Physical aspects and methods of analysis of turbulent flows; scaling laws, modeling techniques, and statistical description of turbulence; application to problems in engineering science and geophysical fluid dynamics.

16:650:638. (F) HYDRO_DYNAMIC STABILITY (3)
Prerequisite: 16:650:530 or equivalent.
Thermal, centrifugal, and shear instabilities; linear, nonlinear, and energy methods.

16:650:640. ACOUSTICS (3)
Prerequisite: Undergraduate fluid mechanics. Pre- or corequisite: 16:642:530.

16:650:642. SUSPENSIONS (3)
Prerequisites: 16:650:530 or equivalent and one graduate-level course in applied mathematics, or consent of instructor.
Fluid mechanics of small bubbles, droplets, and rigid particles in fluids. Fluid forces and heat transfer rate. Two-phase fluid dynamics. Applications to aerosols, bubbly liquids, emulsions, and hydrosols.

16:650:650. THEOREY OF ELASTICITY (SOLID MECHANICS II) (3)
Prerequisite: 16:642:527 or equivalent. Corequisite: 16:642:528.
Classical theory of linear elasticity. Equations of equilibrium; plane stress; plane strain; Airy stress function; torsion; energy theorems; solutions of selected classical problems.
16:650:651. MECHANICS OF INELASTIC BEHAVIOR (SOLID MECHANICS III) (3)
Prerequisite: 16:650:554, 550 or 650.
Mechanics of inelastic behavior, including plasticity, viscoelasticity, and micromechanics. Yield criteria, flow and hardening rules, Drucker’s postulates, multiaxial theories, and boundary value problems. Rheological models, creep compliances and relaxation moduli, complex moduli, rheologically simple materials. Dislocation theories, crystal plasticity, Eshelby’s solution for an inclusion, mechanics of phase transformation.

16:650:652. COMPOSITE MATERIALS, FRACTURE MECHANICS, AND THERMOELASTICITY (SOLID MECHANICS IV) (3)
Prerequisite: 16:650:554, 650.

16:650:653. STRUCTURAL MECHANICS (SOLID MECHANICS V) (3)
Prerequisite: 16:650:554, 550, and 650, or permission of instructor.

16:650:654. DYNAMICS OF SOLIDS AND STRUCTURES (SOLID MECHANICS VI) (3)
Prerequisite: Undergraduate course in mechanical vibration and 16:650:550, 554, and 650.

16:650:660. COMPUTATIONAL SOLID MECHANICS (3)
Prerequisite: 16:650:554.
General theory, application of finite element methods to the solutions of the equations of elasticity, viscoelasticity, and plasticity. Two- and three-dimensional linear and nonlinear, static, and dynamic problems. Working computer programs.

16:650:661. ADVANCED MECHANICAL AND RANDOM VIBRATION (3)
Prerequisite: 16:650:654.
Continuous systems, exact and approximate solutions; integral formulation; vibration under combined effects, inclusion principle, qualitative and quantitative behavior of the eigensolution, computational techniques. Random vibration of nonlinear oscillators, Markov processes.

16:650:662. ADVANCED STRESS WAVES IN SOLIDS (3)
Prerequisite: 16:650:554.
Propagation of elastic waves in solids, reflection and transmission, Rayleigh waves, waves in plates, dispersion, radiation from a point load, Fourier transforms methods; scattering; waves in anisotropic materials; propagation of discontinuities; shocks.

16:650:663. ADVANCED PLASTICITY (3)
Prerequisite: 16:650:651.

16:650:664. ADVANCED FRACTURE MECHANICS (3)
Prerequisite: 16:650:652.
Fracture mechanics: linear elastic, dynamic, and elastic-plastic methods and structures. Time dependent fracture and fatigue crack growth for metals, ceramics, polymers, and composites. Mathematical methods in fracture mechanics; weight functions (3D), Green’s functions (dislocation and point force), complex variable methods (2D), integral transforms, and applications of the FEM and BEM.

16:650:665. ADVANCED COMPOSITE MATERIALS (3)
Prerequisite: 16:650:650.
Classification of anisotropy; elastic constants; particulate, fiber, and disc reinforcements; stress-strain average and energy principles; mean-field theory; self-consistent method; differential scheme; Hashin-Shtrikman’s variational principles; bounding techniques; and viscoelastic, plastic, and viscoplastic composites.

16:650:666. ADVANCED MICROMECHANICS (3)
Prerequisite: 16:650:650 or 651.
Origins of internal stress, Green’s tensor function. Eshelby’s solutions of ellipsoidal inclusions, stress concentration; crystal plasticity; continuous distribution of dislocations; single crystal versus polycrystal; Martensitic transformation in shape-memory alloys, ferroelectric ceramics.

16:650:667. ADVANCED STABILITY OF ELASTIC SYSTEMS (3)
Hamilton’s principle; discrete and continuous systems; dynamical theories of beams and plates; nonlinear vibrations; Liapunov stability; limit cycles; chaotic motion. Applications include the static and dynamic stability of thin-walled structures.

16:650:668. ADVANCED VISCOELASTICITY (3)
Prerequisite: 16:650:651.
Basic rheological models and differential constitutive equations; Boltzman’s superposition principle and hereditary integrals; Laplace transform; creep, relaxation, and complex moduli; discrete and continuous spectra; thermorheologically simple materials; glass transition temperature; William-Landel-Ferry (WLF) equation; chronorheologically simple and rheological complex materials; physical aging.

16:650:669. ADVANCED THERMOELASTICITY (3)
Prerequisite: 16:650:652.
Formulation and solution of problems involving the effects of temperature on the elastic and inelastic behavior of materials and structures. Thermodynamics of deformation; heat transfer; thermoelasticity/thermoviscoelasticity.

16:650:670. COMBUSTION (3)
Prerequisites: Undergraduate thermodynamics and fluid mechanics.
Fundamentals of combustion processes; premixed flames, diffusion flames, one-dimensional gas dynamics, thermal explosion theory.

16:650:674. RADIATION HEAT TRANSFER (3)
Prerequisite: Undergraduate heat transfer.
Theory of radiant heat transfer; characteristics of ideal and real systems; radiant energy exchange with and without a participating medium; analytical numerical experimental techniques; gray and nongray system analysis.

16:650:678. BOILING AND CONDENSATION HEAT TRANSFER (3)
Prerequisites: Undergraduate heat transfer and fluid mechanics.
Detailed presentation of boiling and condensation heat transfer; nucleate boiling, transitional boiling, film boiling, film condensation, and dropwise condensation.

16:650:682. THERMAL TRANSPORT IN MATERIALS PROCESSING (3)
Prerequisites: Limited enrollment, permission of instructor.
Transport phenomena in processes such as heat treatment, bonding, extrusion, casting, injection molding, crystal growing, metal forming, and plastic processing; analysis, mathematical modeling, and numerical simulation of such processes for design and optimization of the relevant systems.
MECHANICS 654

Degree Programs Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Bernard D. Coleman,
B134 Engineering Building, Busch Campus (732/445-5558)

Members of the Graduate Faculty
Haim Brezis, Visiting Distinguished Professor of Mathematics, FAS-NB; Doctorat, Paris
Nonlinear functional analysis; partial differential equations
Bernard D. Coleman, J. Willard Gibbs Professor of Thermomechanics, SE; Ph.D., Yale
Continuum physics; mathematical analysis; constitutive theory; thermodynamics; rheology; liquid-crystal physics
Ellis H. Dill, University Professor of Mechanical and Aerospace Engineering, SE; Ph.D., California (Berkeley)
Continuum mechanics; computational mechanics; finite element methods
Richard S. Falk, Professor of Mathematics, FAS-NB; Ph.D., Cornell
Numerical analysis; problems in elasticity; partial differential equations
Wilma K. Olson, Mary I. Bunting Professor of Chemistry, FAS-NB; Ph.D., Stanford
Geometric measure theory; theory of crystal growth
Irwin Tobias, Professor of Chemistry, FAS-NB; Ph.D., Princeton
Continuum models of biological macromolecules; mechanics of supercoiling in DNA
Michael Vogelius, Professor Emeritus of Mathematics, FAS-NB; Ph.D., Maryland
Numerical analysis; partial differential equations

Programs

The graduate program in mechanics offers advanced instruction and research in theoretical mechanics. The broad areas of study are continuum mechanics, thermodynamics, analytical dynamics, and their applications to problems in engineering, materials science, and molecular biology. The topics of courses, seminars, and research include elasticity, viscoelasticity, the theory of non-Newtonian fluids, liquid-crystal theory, the mechanics and thermodynamics of phase transformations and the development of the elastic rod model for DNA. Students also can explore modern constitutive theory (e.g., invariance principles, thermodynamic relations, and homogenization theory).

Excellent computational facilities are available to students, including a variety of workstations and access to supercomputers. Students applying to the M.S. and Ph.D. programs should have a B.S. or B.A. degree in engineering, mathematics, or the physical sciences. The M.S. degree requires 30 credits and either a critical essay or a research thesis. The requirements for the Ph.D. degree include an appropriate combination of course work and research. The qualifying examination is given in two parts, written and oral. Students are required to attend and participate in the mechanics seminar series. Candidates for the Ph.D. degree will be expected to spend at least one year in full-time residence, a requirement that will be waived only in exceptional circumstances.

Several fellowships are available to first-year and advanced students. Students receiving fellowships are expected to devote their full time to course work and research. Teaching assistantships and research assistantships associated with specific research projects may be available. Further information about these and other matters may be found in the Graduate Program in Mechanics, available upon request from the program office.

Graduate Courses

16:654:659. NOnThesis Study (N1)

16:650:701,702. RESEARCH IN MECHANICAL AND AEROSPACE ENGINEERING (BA,BA)
By arrangement with adviser.

MEDEIVAL STUDIES 667

Program Offered: Certificate in Medieval Studies
Director of the Certificate Program in Medieval Studies: Professor James Masschaele, Medieval Studies Program (732/932-6705; fax: 732/932-6763), Department of History, Room 002A, Van Dyck Hall, College Avenue Campus

Participating Faculty
The following members of the graduate faculty are among those in charge of the curricular arrangements for a certificate program in medieval studies as part of a wider advanced-degree program:

- P. Bathory, Political Science
- R. Bell, History
- J. Bodel, Classics
- C. Chisman, Literatures in English
- M. Ciklamini, German
- P. Cornilliat, French
- S. Crane, Literatures in English
Certificate Program

Students with a special interest in medieval studies may pursue, in the course of their regular advanced-degree program, a special concentration in medieval studies. Those who fulfill the requirements may be awarded a certificate in medieval studies upon completion of their degrees.

1. take at least two courses in a medieval subject within the chosen discipline with no grade lower than B,
2. complete at least three other courses in a medieval culture in other disciplines with no grade lower than B,
3. demonstrate a reading knowledge of at least two languages in the forms common during the Middle Ages,

The various courses in medieval studies are offered by the participating faculty and additional faculty through their departments. A list of such courses is available from the director.

Graduate Courses

16:667/501,502. MEDIEVAL LATIN (3,3)
Prerequisite Two terms of classical Latin.
An overview of medieval Latin; grammar and syntax followed by readings in major texts, including works in theology, philosophy, and literature.

16:667/550,551. MEDIEVAL PALEOGRAPHY (3,3)
Introduction to the study of manuscripts, records, and the manuscript book.

16:667/602. ADVANCED TOPICS IN MEDIEVAL STUDIES (3)
Seminar of interdisciplinary scope.

METEOROLOGY
(See Environmental Sciences 375)

MICROBIOLOGY AND MOLECULAR GENETICS 681

Degree Programs Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Professor Andrew K. Vershon, Nelson Biology Laboratories, Busch Campus (732/445-5086)

Members of the Graduate Faculty

Mesorad A. Abou-Sabé, Associate Professor of Cell Biology and Neuroscience, FAS-NB; Ph.D., Pittsburgh
Microbial genetics; gene expression

Alan D. Antoine, Associate Professor of Microbiology, CC; D.Sc., Johns Hopkins Microbial biochemistry and physiology; metabolism of nitroaromatic compounds; biochemistry and toxicological classification of cyanobacteria

Edward Arnold, Professor of Chemistry, FAS-NB/CABM; Ph.D., Cornell Protein and virus structure; crystallography; AIDS; polymers; drug and vaccine design

David E. Axelrod, Professor of Genetics, FAS-NB; Ph.D., Tennessee Cellular and molecular oncology; tumor-cell proliferation

Tamar Barkay, Assistant Professor of Biochemistry and Microbiology, CC; Ph.D., Maryland
Microbial ecology of the interactions of microbes with toxic metals

Helen M. Berman, Professor of Chemistry, FAS-NB; Ph.D., Pittsburgh Gene expression in cancer, immunity, and heart disease

Steven J. Brill, Associate Professor of Molecular Biology and Biochemistry, FAS-NB; Ph.D., SUNY (Stony Brook)
Biochemistry and genetics of DNA replication in yeast

Linda Brzuszkiewicz, Associate Professor of Genetics, FAS-NB; M.D., Columbia Human molecular genetics; genetics of psychiatric disorders

George M. Carman, Professor of Food Science, CC; Ph.D., Massachusetts Molecular biology of phylloplane microorganisms in yeast

Kiran K. Chada, Professor of Biochemistry, UMDNJ-RWJMS; Ph.D., Oxford Functional genomics in cancer and obesity

Theodore Chase, Jr., Professor and Chairperson of Biochemistry and Microbiology, CC; Ph.D., California (Berkeley) Microbial biochemistry in the environment; plant enzymology and molecular biology of ripening and flavor

Suzie Chen, Associate Professor of Chemical Biology, CP; Ph.D., Albert Einstein Transgenic mice predisposed to melanoma development; molecular mechanisms of adipocyte differentiation; U937-inducible genes

Xuemei Chen, Assistant Professor of Genetics, WIM; FAS-NB; Ph.D., Cornell Molecular genetic analysis of flower development in Arabidopsis

Kathleen Chin, Assistant Professor of Medicine and Pharmacology, CNJ; UMDNJ-RWJMS; Ph.D., Rutgers Drug resistance in cancer; regulation of gene expression

Lori Ruth Covey, Associate Professor of Cell Biology and Neuroscience, FAS-NB; Ph.D., Columbia Switch recombination in human B lymphocytes in response to T cell factors

Kieron M. Das, Professor of Medicine, Microbiology, and Molecular Genetics, UMDNJ-RWJMS; Ph.D., Edinburgh; M.D., Calcutta Autoimmunity in inflammatory-bowel diseases

David T. Denhardt, Professor of Cell Biology and Neuroscience, FAS-NB; Ph.D., California Institute of Technology Molecular biology of cancer; cell signaling and regulation of gene expression; structure and function of cytokines and other cell-surface proteins

Jonathan D. Dinman, Assistant Professor of Molecular Genetics and Microbiology, UMDNJ-RWJMS; Ph.D., Johns Hopkins Probing molecular mechanisms of ribosomal frame-shifting

Hugo K. Dooner, Professor of Plant Genetics, CC; WIM; Ph.D., Wisconsin Plant molecular genetics; transposable elements; recombination; functional genomics

Joseph P. Dougherty, Associate Professor of Molecular Genetics and Microbiology, UMDNJ-RWJMS; Ph.D., Yale Retrovirus replication and gene therapy

Monica Driscoll, Associate Professor of Molecular Biology and Biochemistry, FAS-NB; Ph.D., Harvard Functional genomics in cancer and obesity

Donald T. Dubin, Professor of Molecular Genetics and Microbiology, UMDNJ-RWJMS; M.D., Columbia Evolution of antibiotic resistance in bacteria

Richard H. Ebright, Professor of Chemistry, WIM; Ph.D., Harvard Transcription; protein-DNA interaction; protein-protein interaction; single-molecule imaging

Isaac Evely, Assistant Professor of Molecular Biology and Biochemistry, FAS-NB/CABM; Ph.D., McGill Molecular mechanism underlying biological clocks

Douglas E. Everleigh, Professor of Microbiology, CC; Ph.D., Exeter Applied microbiology: fermentation, organic chemicals from biomass cellulose transformation; microbial ecology

Martin Farach-Colton, Associate Professor of Computer Science, FAS-NB; M.D., Johns Hopkins; Ph.D., Maryland Computational biology: design and analysis of sequential and parallel algorithms

Dunnie Feng, Associate Professor of Cell Biology and Neuroscience, FAS-NB; Ph.D., Princeton Immunology and molecular cell biology of parasitic protozoans

L. Edmunds, Classics
M. Cozey, Spanish
F. Grave, Music
C. Guardiola, Spanish
J. Masschelee, History
E. McLauchlan, Art History
J. Miller, Literatures in English
K. Morrison, History
D. Otero-Torres, Spanish
A. Pairet, French
S. Reinert, History
L. Scanlon, Literatures in English
M. Speer, French
F. Sumner, Music
A. Tripolitis, Comparative Literature
A. Welsh, Literatures in English
M. Westermann, Art History
L. White, Italian
Inherited susceptibility to neurotoxicants; intracellular targeting of drugs; molecular and microbial physiology

Ronald J. Read, Associate Professor of Pharmacology, UMDNJ-RWJMS; M.D., Brown

Professor of Biochemistry and Molecular Biology, University of Miami; M.D., Florida State

Mechanism of ubiquitin-mediated proteolysis in DNA repair and signal transduction

Rachel A. Mann, Associate Professor of Medicine, UMDNJ-RWJMS; M.D., Florida State

Immunopathogenesis of renal disease

Karl M. MacArthur, Robert L. Starkey Professor Emeritus of Microbiology, CC; Ph.D., Columbia

Comparative virology; parasitology; cell culture

Charles E. Martin, Professor of Cell Biology and Neurosciences, FAS-NB; Ph.D., Florida State

Genetic regulation of membrane lipid biosynthesis in Saccharomyces

Kim S. McMann, Assistant Professor of Genetics, FAS-NB; Ph.D., British Columbia

Regulation of meiotic recombination; homologous chromosome pairing; DNA repair

Joachim W. Messing, University Professor of Molecular Biology and Director of the Waksman Institute of Microbiology, Ph.D., Münich

Molecular biology of higher plants, M11 cloning, sequencing, gene synthesis

Gaetano T. Montelione, Associate Professor of Molecular Biology and Biochemistry, FAS-NB; Ph.D., Cornell

Protein structure and dynamics; NMR spectroscopy; structural bioinformatics

Thomas J. Montville, Professor of Food Science, CC; Ph.D., Massachusetts Institute of Technology

Metabolic regulation of food borne microbes; novel antimicrobials

N. Ronald Morris, Professor of Pharmacology, UMDNJ-RWJMS; M.D., Yale

Structure and function of glycoprotein hormones and their receptors

William R. Moyle, Professor of Obstetrics and Gynecology, UMDNJ-RWJMS; Ph.D., Harvard

Significance of matching in DNA sequences; scan-statistic probabilities of clustering data editing

Lorenz Neugebauer, Lecturer in Life Sciences, FAS-NB; Ph.D., Columbia

Genetic and molecular analysis of regulated gene expression

Robert A. Niederman, Professor of Molecular Biology and Biochemistry, FAS-NB; Ph.D., Illinois

Structure, function, and assembly of energy-transducing membranes

David N. Norris, Assistant Professor of Molecular Biology and Biochemistry, FAS-NB; Ph.D., Harvard

Effect of chromatin structure and transcription and recombination in yeast

Erica Olson, Assistant Professor of Plant Pathology, Ph.D., Cornell

Yeast genetics and plant biology

Robert L. Starkey Professor Emeritus of Microbiology, CC; Ph.D., Stanford

Theoretical studies of nucleic acid structure and properties; relation of structure, conformation, and function of nucleic acids

Richard Pagdant, Professor of Molecular Biology and Biochemistry, FAS-NB; Ph.D., North Carolina

TGF beta signal transduction in C. elegans and Drosophila

Howard C. Passmore, Jr., Professor of Microbiology and Molecular Genetics, FAS-NB; Ph.D., Michigan

Regulation of recombinant recombination; mouse models for the expression of tumor suppressor genes

Henrik Pedersen, Professor of Chemical and Biochemical Engineering, SE; Ph.D., Yale

Plant cell culture; biotechnology

Stuart W. Peltz, Professor of Molecular Genetics and Microbiology, UMDNJ-RWJMS; Ph.D., Wisconsin (Madison)

Eukaryote gene expression

Sidney Pestka, Professor and Chairperson of Molecular Genetics and Microbiology, UMDNJ-RWJMS; M.D., Pennsylvania

Interferons and cytokine receptors; signal transduction

Ronald D. Petero, Professor of Biochemistry and Microbiology, CC; Ph.D., SUNY (Buffalo)

Inherited susceptibility to neurotoxins; intracellular targeting of drugs; endocytosis; glycoconjugate glycolipids

David Prasher, Professor Emeritus of Microbiology, CC; Ph.D., Rutgers

Biological control; biodegradation of natural and manufactured compounds; nematode-trapping fungi

Carl A. Price, Professor Emeritus of Genetics, FAS-NB; Ph.D., Harvard

Molecular biology of human retroviruses; gene regulation in human cancer

Tariq Mahmood Rana, Associate Professor of Pharmacology, UMDNJ-RWJMS; Ph.D., California (Davis)

RNA-protein interactions; regulation of HIV-1 gene expression; drug design; artificial proteolysis

Ph.D., Rutgers

Molecular biology of higher plants; M11 cloning, sequencing, gene synthesis

Gaetano T. Montelione, Associate Professor of Molecular Biology and Biochemistry, FAS-NB; Ph.D., Cornell

Protein structure and dynamics; NMR spectroscopy; structural bioinformatics

Thomas J. Montville, Professor of Food Science, CC; Ph.D., Massachusetts Institute of Technology

Metabolic regulation of food borne microbes; novel antimicrobials

N. Ronald Morris, Professor of Pharmacology, UMDNJ-RWJMS; M.D., Yale

Structure and function of glycoprotein hormones and their receptors

William R. Moyle, Professor of Obstetrics and Gynecology, UMDNJ-RWJMS; Ph.D., Harvard

Significance of matching in DNA sequences; scan-statistic probabilities of clustering data editing

Lorenz Neugebauer, Lecturer in Life Sciences, FAS-NB; Ph.D., Columbia

Genetic and molecular analysis of regulated gene expression

Robert A. Niederman, Professor of Molecular Biology and Biochemistry, FAS-NB; Ph.D., Illinois

Structure, function, and assembly of energy-transducing membranes

David N. Norris, Assistant Professor of Molecular Biology and Biochemistry, FAS-NB; Ph.D., Harvard

Effect of chromatin structure and transcription and recombination in yeast

Erica Olson, Assistant Professor of Plant Pathology, Ph.D., Cornell

Yeast genetics and plant biology

Robert L. Starkey Professor Emeritus of Microbiology, CC; Ph.D., Stanford

Theoretical studies of nucleic acid structure and properties; relation of structure, conformation, and function of nucleic acids

Richard Pagdant, Professor of Molecular Biology and Biochemistry, FAS-NB; Ph.D., North Carolina

TGF beta signal transduction in C. elegans and Drosophila

Howard C. Passmore, Jr., Professor of Microbiology and Molecular Genetics, FAS-NB; Ph.D., Michigan

Regulation of recombinant recombination; mouse models for the expression of tumor suppressor genes

Henrik Pedersen, Professor of Chemical and Biochemical Engineering, SE; Ph.D., Yale

Plant cell culture; biotechnology

Stuart W. Peltz, Professor of Molecular Genetics and Microbiology, UMDNJ-RWJMS; Ph.D., Wisconsin (Madison)

Eukaryote gene expression

Sidney Pestka, Professor and Chairperson of Molecular Genetics and Microbiology, UMDNJ-RWJMS; M.D., Pennsylvania

Interferons and cytokine receptors; signal transduction

Ronald D. Petero, Professor of Biochemistry and Microbiology, CC; Ph.D., SUNY (Buffalo)

Inherited susceptibility to neurotoxins; intracellular targeting of drugs; endocytosis; glycoconjugate glycolipids

David Prasher, Professor Emeritus of Microbiology, CC; Ph.D., Rutgers

Biological control; biodegradation of natural and manufactured compounds; nematode-trapping fungi

Carl A. Price, Professor Emeritus of Genetics, FAS-NB; Ph.D., Harvard

Molecular biology of human retroviruses; gene regulation in human cancer

Tariq Mahmood Rana, Associate Professor of Pharmacology, UMDNJ-RWJMS; Ph.D., California (Davis)

RNA-protein interactions; regulation of HIV-1 gene expression; drug design; artificial proteolysis
Karel Raska, Jr., Professor of Pathology, Molecular Genetics, and Microbiology, UMDNJ–RWJMS; M.D.; Charles, Ph.D., Czechoslovak Academy of Sciences
DNA tumor viruses; immunopathology and molecular mechanisms in human cancers
Yakov Ron, Associate Professor of Molecular Genetics and Microbiology, UMDNJ–RWJMS; Ph.D., Weizmann Institute of Science
Autoimmunity; development of B and T cells; gene therapy
Amrik Sabhota, Research Professor of Genetics, FAS–NB; Ph.D., London
Human inherited diseases and molecular diagnosis
Marilyn M. Sanders, Professor of Pharmacology, UMDNJ–RWJMS; Ph.D., Washington
DNA topoisomerases as antifungal and antiprotein drug targets; heat shock response in eukaryotic cells
Carl P. Schaffner, Professor Emeritus of Microbial Chemistry, WIM; Ph.D., Illinois
Chemical and biological properties of microbial products
Donald W. Schaffner, Associate Extension Specialist in Food Science, CC; Ph.D., Georgia
Food microbiology
Konstantin Severinov, Assistant Professor of Genetics, FAS–NB; Ph.D., Russian Academy of Sciences
Structure and function of RNA polymerases from eubacteria and yeasts
Aaron J. Shatkin, Professor of Molecular Genetics and Microbiology, UMDNJ–RWJMS; University Professor of Molecular Biology, FAS–NB; Director of the Center for Advanced Biotechnology and Medicine, Ph.D., Rockefeller Eukaryotic genomics: viral cytopathogenesis
Leonard H. Sigal, Associate Professor of Medicine, UMDNJ–RWJMS; M.D., Stanford
Immunopathogenesis of Lyme neurologic disease; cross-reactions between human viral protein and flagellin of Borrelia burgdorferi
Lee D. Simon, Associate Professor of Genetics, FAS–NB; Ph.D., Rochester Molecular biology of protein degradation in prokaryotes
Andrew Singerson, Assistant Professor of Genetics, FAS–NB/WIM; Ph.D., California (San Diego)
Reproductive biology and cell-cell interactions in C. elegans
Navin K. Sinha, Assistant Professor of Genetics, FAS–NB; Ph.D., Minnesota
Mechanisms of spontaneous and induced mutations
Peter Smouse, Professor of Marine and Coastal Studies, CC; Ph.D., North Carolina State
Mathematical representation of molecular phylogenetics
William Skole, Professor of Genetics, FAS–NB/WIM; Ph.D., Miami
Genetic algorithms for predicting secondary structure of proteins
Stanley Stein, Professor of Molecular Biology, CABM/UMDNJ–RWJMS; Ph.D., CUNY
Protein analysis; synthesis of peptides and antisense DNA
Ruth Steuwer, Professor of Molecular Biology and Biochemistry, WIM/FAS–NB; Ph.D., Basel
NF-KB signaling; establishment of embryonic polarity; nuclear migration and RNA transport in Drosophila
Ann C. St. John, Associate Professor of Genetics, FAS–NB; Ph.D., Wisconsin (Madison)
Regulation of protein catabolism; stress-response proteins
William Stover, Professor of Molecular Genetics and Microbiology, UMDNJ–RWJMS; M.D.C.M.; Queen’s (Ontario)
Virulence in mammalian and insect cells
Roger Strair, Associate Professor of Medicine, CIN/UMDNJ–RWJMS; M.D., Ph.D., Albert Einstein
Hematopoietic malignancies; stem-cell transplantation
Theresa Thomas, Associate Professor of Environmental and Community Medicine, UMDNJ–RWJMS; Ph.D., Indian Institute of Science (Bangalore)
Molecular biology of breast cancer: polyamines, estradiol, and cyclins
Moti I. Tikun, Associate Professor of Medicine, UMDNJ–RWJMS; M.D.; Delhi
Immunology of autoimmune diseases; rheumatoid and osteoarthritis; immunology and cytokine biology; reactive oxygen radicals and aging
Jay Tischfield, Professor and Chair of Genetics, FAS–NB; Ph.D.; Yale Gene regulation, human genetic diseases
Robert Treleslad, Professor of Pathology and Laboratory Medicine, UMDNJ–RWJMS; M.D.; Harvard
Matrix metalloproteases and mammary gland patterning
Nilgun E. Tuner, Professor of Plant Pathology, BCAE; Ph.D., Purdue
Mechanisms of virus resistance, mechanism of antiviral action of ribosome inactivating proteins; turfgrass transformation and improvement
Andrei Varsavcev, Professor of Cell Biology and Neurosciences, FAS–NB; Ph.D., Chicago
Cell biology; plant molecular biology; chloroplast development, function, and regulation; carbohydrate metabolism in plants
Andrew W. Visscher, Associate Professor of Molecular Biology and Biochemistry, WIM/FAS–NB; Ph.D., Massachusetts Institute of Technology
Regulation of gene expression in yeast
Yuh-Hwa Wang, Assistant Professor of Biochemistry, UMDNJ–RWJMS; Ph.D., North Carolina State
Triplet repeat diseases, chromatin structure, fragile site, DNA–protein interactions

148
Institute of Microbiology, (3) the Department of Molecular Genetics and Microbiology of the University of Medicine and Dentistry of New Jersey—Robert Wood Johnson Medical School, (4) the Department of Biochemistry and Microbiology of Cook College, (5) the Center of Advanced Biotechnology and Medicine of the University of Medicine and Dentistry of New Jersey, and (6) the Biotechnology Center for Agriculture and the Environment.

The Master of Science degree requires the satisfactory completion of a minimum of 24 course credits, 6 research credits, and a research thesis. Students can earn a degree without writing a thesis by taking additional courses. Candidates for the M.S. degree also are required to complete 2 credits from courses 16:681:681–686. (See further course requirements below.)

The Doctor of Philosophy degree requires 32 course credits and a minimum of two consecutive terms (summer included) in residence. Candidates must complete 4 credits from courses 16:681:681 through 16:681:686 (See further course requirements below). In addition, each student must pass a qualifying examination, complete a research project, submit a dissertation, and defend that dissertation in an oral examination. As part of their graduate training, doctoral students may be required to fulfill certain teaching duties under faculty supervision. There is no language requirement.

General Microbiology 16:681:501 and 16:681:502 Molecular Genetics or 16:681:580 Fundamentals of Molecular Genetics are required courses. Exemptions may be granted for students transferring equivalent graduate credits.

The Master of Philosophy degree is available to doctoral candidates. All degrees in this program are conferred jointly between Rutgers University and the University of Medicine and Dentistry of New Jersey. For information about joint M.S. and Ph.D. degrees available in this program, see the beginning of this chapter. For detailed description of the program faculty, degree requirements, and course offerings, refer to the Student Bulletin available from the program director.

Graduate Courses

The following courses have minimum prerequisites for undergraduate degrees in biochemistry, biology, chemistry, or microbiology with a concentration in genetics, organic chemistry, general biochemistry, or general microbiology.

16:681:501. (F) GENERAL MICROBIOLOGY (3)

16:681:502. (S) MOLECULAR GENETICS (3)

16:681:520. (S) MICROBIAL BIOCHEMISTRY AND MOLECULAR BIOLOGY (3)
Antoine. Prerequisite: 16:115:511,512, or equivalents 16:681:521. Survey of the biochemical activities unique to microorganisms emphasizing the similarities and differences between prokaryotic and eukaryotic organisms; consideration of the genetic regulation and practical importance of these biochemical capabilities. Topics include lipids, membranes, toxins, biodegradation, microbial transformations, and secondary metabolites.

16:681:521. (S) MICROBIAL PHYSIOLOGY AND METABOLISM (3)

16:681:524. (S) INDUSTRIAL MICROBIOLOGY (3)
Evediugh. Prerequisite: 16:681:501, one year of organic chemistry. Industrial applications of microorganisms, including production of chemicals and antibiotics, transformations, product stability, protection from deterioration, impact on environment, continuous fermentations, and waste disposal.

16:681:530. (S) INTRODUCTION TO MOLECULAR MEDICINE (3)
 Sanders Application of molecular and cell biology to a wide variety of human diseases; recent advances in understanding basic mechanisms.

16:681:544. (S) MEDICAL MICROBIOLOGY AND IMMUNOLOGY (4.5)

16:681:545. (S) MEDICAL MICROBIOLOGY AND IMMUNOLOGY LABORATORY (2.5)
Corequisite: 16:681:544. Experiments in the isolation, identification, and growth kinetics of bacteria; bioassay methods; organelle biogenesis; human karyotyping; diagnostic bacteriology; immunological methods; animal cell culture and virology. Concepts and techniques relevant to medical problems emphasized.

16:681:546. (F) INFECTIOUS DISEASES (4)
Dubin. Prerequisites: 16:681:544,545, or equivalent; permission of instructor. Open to advanced students who can demonstrate the need for a clinically oriented course in infectious diseases. Consists of six three- or four-hour sessions (sixty hours total) over a period of two months. Time varies consult instructor. Diagnosis and management of human diseases caused by infectious agents. Principles of the epidemiology, pathogenesis, and clinical manifestations of common diseases.

16:681:548. CELL SURFACE RECEPTORS (3)

16:681:555. (F) MOLECULAR ViroLOGY (3)
Stollar. Prerequisite: 16:681:501 or equivalent. Detailed consideration of fundamental physical-chemical properties, schemes of classification, genetics, and modes of replication of selected animal viruses.

16:681:572. (S) MICROBIAL ECOLOGY AND BIODIVERSITY (4)

16:681:580. (F) FUNDAMENTALS OF MOLECULAR GENETICS (3)
Sinha. Prerequisites: 16:115:511,512. Basic mechanisms of information storage in and retrieval from nucleic acids; organization of prokaryotic and eukaryotic genomes; mechanisms of DNA replication; transposable genetic elements; transcriptional and translational control of gene expression. Designed to provide necessary background for advanced molecular genetics courses.

16:681:585. (S) CANCER MOLECULAR BIOLOGY (3)
Core Curriculum Program

The Graduate School–New Brunswick and the University of Medicine and Dentistry of New Jersey–Graduate School of Biomedical Sciences offer a shared interdisciplinary core curriculum in molecular and cell biology. The core curriculum provides new course offerings and fellowship support to qualified students who want to pursue Ph.D. degrees in the Consolidated Graduate Programs in Molecular Biosciences.

Students enrolled in molecular and cell biology are expected to follow the curriculum outlined below in their first year of study. Subsequently, they are expected to proceed in one of the participating degree-granting programs. The core curriculum courses are to be integrated into the requirements of the program in which the student earns the degree. This curriculum is followed by all students in the molecular biosciences programs.

Fall Term

16:115:501 Biochemistry (3)
16:115:502 Biochemistry (Molecular Biology) (3)
16:115:536 Ethical Scientific Conduct (1)
16:695:611 Special Topics in Molecular and Cell Biology (1)
16:695:615 Laboratory Rotation in Molecular and Cell Biology (4)

Spring Term

16:681:502 Microbial and Molecular Genetics (3)
16:695:601 Advanced Cell Biology (3)
16:695:612 Special Topics in Molecular and Cell Biology II (1)
16:695:616 Laboratory Rotation in Molecular and Cell Biology II (2 or 4)

Graduate Courses

16:695:601. ADVANCED CELL BIOLOGY (3)
Molecular analysis of eukaryotic cells, including cell structure, receptors, cell-cell interactions, cytoskeleton, growth, differentiation, and transformation.

16:695:611,612. SPECIAL TOPICS IN MOLECULAR AND CELL BIOLOGY I,II (1,1)
First term: student seminars and discussions based on assigned literature readings in biochemistry and molecular genetics, with emphasis on structure and function of macromolecules. Second term: student seminars and discussions based on assigned literature readings in molecular cell biology, with emphasis on molecular approaches to cellular structures and activities in eukaryotic cells.

16:695:615,616. LABORATORY ROTATION IN MOLECULAR AND CELL BIOLOGY I,II (4, 2 or 4)
Leibowitz
Students participate in research projects in the laboratories of selected faculty members.

MOLECULAR BIOPHYSICS 696

Program Offered: Core Curriculum
Director of Interdisciplinary Core Curriculum: Professor Wilma K. Olson, Center for Molecular Biophysics and Biophysical Chemistry, Wright-Rieman Laboratories, Busch Campus (732/445-6376)

Participating Faculty

The following members and associate members of the graduate faculty, identified more fully under their respective programs, represent part of the faculty who participate regularly in the core curriculum in molecular biophysics.

Stephen Anderson, Biochemistry and Chemistry
Edward Arnoldi, Biochemistry, Chemistry, and Microbiology and Molecular Genetics
Jean S. Baum, Biochemistry and Chemistry
Helen M. Berman, Biochemistry, Chemistry, and Microbiology and Molecular Genetics
Kenneth J. Breslauer, Biochemistry and Chemistry
Barbara Brodsky, Biochemistry
Edward W. Castner, Chemistry
Bernard Coleman, Mechanics
Richard H. Ebright, Biochemistry, Chemistry, and Microbiology and Molecular Genetics
Martin Farach-Colton, Computer Science and Microbiology and Molecular Genetics
Marc Gartenberg, Biochemistry, Microbiology and Molecular Genetics, and Pharmacology
Millie M. Georgiadis, Biochemistry, Chemistry, and Microbiology and Molecular Genetics

MOLECULAR BIOPHYSICS 696
Core Curriculum Program

The core curriculum in molecular biophysics gives students the ability to use the tools and concepts of the physical sciences to solve significant biological problems. Many important contributions to molecular biophysics, for example, have come from a single discipline, but from a synthesis of ideas found in biology, chemistry, mathematics, and physics. Thus, the molecular biophysics core curriculum goes beyond the curricula of individual academic disciplines to set its own course guidelines and dissertation requirements. The program’s requirements, however, are consistent with those of existing graduate-degree programs. This overlap enables a student to earn a Ph.D. in one of the major academic disciplines while pursuing a concentration in molecular biophysics.

Supplemental work in molecular biophysics gives students broad exposure to the principles and methods of molecular biophysics and rigorous training in relevant physical sciences. While the program allows students to combine course requirements in molecular biophysics with those in predoctoral programs, it also enables them to choose from a wide range of molecular-biophysics courses that are not included specifically in the formal requirements. Finally, the program is flexible. It offers a wide choice of advanced electives that permit students from various backgrounds and with different interests to work out curricula that meet their needs. Formal course requirements are limited to a core program in biophysical chemistry and a choice of two advanced courses. All students are expected to complete a sequence of laboratory rotations and to register every term for the core curriculum seminar.

The laboratory rotation exposes students to the methods of molecular biophysics and gives them useful experience in picking dissertation advisers. The seminar, on the other hand, informs students about new developments in the field and helps them cement their relationships with faculty members. Students will work with a particular faculty member on a dissertation problem. The emphasis of the research training is on the structures, interactions, and physical-chemical properties of biological macromolecules. Students in the program are expected to have a background in the physical and biological sciences. Students will take courses to fill in gaps in their backgrounds and to provide the training needed to carry out intensive, specialized research. The departmental courses offered at Rutgers provide a rich resource for this purpose. Most students are expected to take four to five years to complete degree requirements.

Graduate Courses

Biophysical Chemistry I, II, 16:696:601, 602. Seminar in Molecular Biophysics (1,1)
Oral presentations and discussions of the current literature in molecular biophysics.

16:696:611, 612. Laboratory Rotation in Molecular Biophysics (BA, BA)
Introduction to the techniques and research areas of molecular biophysics. Participation in the research projects of two to three faculty members. Students are encouraged to take rotations in different areas. At least one of the rotations should be involved with the structural investigation (either by experimental or theoretical means) of a biopolymer.

MOLECULAR BIOSCIENCES

The Consolidated Graduate Programs in Molecular Biosciences coordinates recruitment and admission of applicants to the doctoral programs in biochemistry, cell and developmental biology, microbiology and molecular genetics, and cellular and molecular pharmacology. As part of this task, it has established a common first-year doctoral core curriculum for those disciplines. The consolidated programs are conducted jointly by the Graduate School–New Brunswick of Rutgers University and the Graduate School of Biomedical Sciences of the University of Medicine and Dentistry of New Jersey–Robert Wood Johnson Medical School.

Students may study with more than 200 participating faculty members affiliated with these programs. They have opportunities for study in such fields as biochemistry, biotechnology, cell biology, computational molecular biology, developmental biology, macromolecular structure, microbiology, molecular biology, molecular biophysics, molecular genetics, molecular virology, and protein engineering.

Admission Requirements

The best preparation for the molecular biosciences consists of an undergraduate degree in biology (cellular, developmental, molecular, or microbiology), in biochemistry, or in chemistry (analytical, organic, or physical). Applicants must have adequate backgrounds in calculus and physics, and all applicants are required to have earned an undergraduate cumulative grade-point average of 3.0 or better.

Faculty Affiliations

Rutgers, The State University of New Jersey
Faculty of Arts and Sciences–New Brunswick/Division of Life Sciences
Department of Cell Biology and Neurosciences
Department of Chemistry
Department of Genetics
Department of Molecular Biology and Biochemistry
Department of Psychology

College of Pharmacy
Department of Chemical Biology and Pharmacognosy

Cook College
Department of Animal Sciences
Department of Biochemistry and Microbiology
Department of Food Science

University of Medicine and Dentistry of New Jersey–Robert Wood Johnson Medical School
Department of Biochemistry
Department of Cell and Molecular Pharmacology
Department of Medicine (and other clinical departments)
Department of Molecular Genetics and Microbiology
Department of Neurosciences and Cell Biology
Department of Pathology
Department of Physiology and Biophysics
Academic Research Centers and Institutes
Biotechnology Center for Agriculture and the Environment (BCAE)
Cancer Institute of New Jersey (CINJ)
Center for Advanced Biotechnology and Medicine (CABM)
Center for Advanced Food Technology (CAFT)
Center of Alcohol Studies (CAS)
Center for Computer Aids for Industrial Productivity (CAIP)
Center for Molecular Biophysics and Biophysical Chemistry (CMB)
Center for Theoretical and Applied Genetics (CTAG)
Environmental and Occupational Health Sciences Institute (EOHSI)
Waksman Institute of Microbiology (WIM)

First-Year Core Curriculum

Fall Term
16:115:501 Biochemistry (3)
16:115:502 Biochemistry (Molecular Biology) (3)
16:115:556 Ethical Scientific Conduct (1)
16:695:611 Special Topics in Molecular and Cell Biology I (1)
16:695:615 Laboratory Rotation in Molecular and Cell Biology I (4)

Spring Term
16:681:502 Microbial and Molecular Genetics (3)
16:695:601 Advanced Cell Biology (3)
16:695:612 Special Topics in Molecular and Cell Biology II (1)
16:695:616 Laboratory Rotation in Molecular and Cell Biology II (2 or 4)
one elective course (3)

For information regarding specific areas of study as well as course listings, see the program descriptions for biochemistry, cell and developmental biology, cellular and molecular pharmacology, and microbiology and molecular genetics within this chapter of the catalog and in related materials from UMDNJ–RWJMS.

Music 700

Degree Programs Offered: Master of Arts, Doctor of Philosophy
Director of Graduate Program: Professor Floyd Grave, Chapel Drive, Douglass Campus (732/932-9256)

Members of the Graduate Faculty
William Berz, Professor of Music, MGSA; Ph.D., Michigan State
Music education; instructional technology
Antonius Bittmann, Assistant Professor of Music, MGSA; Ph.D., Eastman School of Music (Rochester)
Performance practice, organ
Gerald C. Chenoweth, Professor of Music, MGSA; Ph.D., Iowa
Music composition; theory and analysis
Richard Christian, Associate Professor of Music, MGSA; Ph.D., Yale
Contemporary music theory
Nancy Cooper, Associate Professor of Music, MGSA; D.M.E., Indiana
Music education
Noel C. DiCosta, Professor of Music, MGSA; M.A., Columbia
Music theory; composition
Nanette de Jong, Assistant Professor of Music, MGSA; Ph.D., Michigan
Ethnomusicology; flute
Floyd Grave, Associate Professor of Music, MGSA; Ph.D., New York
Eighteenth-century music; history of music theory
Douglas Johnson, Professor of Music, MGSA; Ph.D., California (Berkeley)
Eighteenth- and nineteenth-century music; Beethoven
George Jones, Professor of Music, MGSA; Ph.D., New York
Renaissance music; wind instruments
Andrew Kirkman, Assistant Professor of Music, MGSA; Ph.D., Kings College (London)
Renaissance music; early vocal music performance
Nancy Rao, Assistant Professor of Music, MGSA; Ph.D., Michigan
Music theory and analysis

Programs
Graduate music programs at Rutgers prepare students for music scholarship, on the one hand, or composition, on the other. Both areas include extensive study of music theory. Candidates of the M.A. degree specialize in music history and theory or composition and theory. Ph.D. candidates specialize in either musicology or in composition and theory.

The M.A. degree requires a minimum of 30 credits. For students specializing in composition, the following courses are required: 16:700:611, 525, 526, 531, 532, 601, and 602. Before the end of their second term of full-time study, all candidates must take an examination that will determine their eligibility to remain in the program. This examination will require students to identify important composers and compositions. Before the end of the third term, students seeking an M.A. degree must demonstrate a reading knowledge of one foreign language (German, French, Italian, or Latin). Those M.A. candidates who plan to continue for a Ph.D. must demonstrate a reading knowledge of two foreign languages before they complete their work in the M.A. program. One of the two languages should be German, as this language is required for the Ph.D. All candidates must pass a written comprehensive examination. Candidates in music history submit a master’s essay. Those in composition submit a work for chamber ensemble.

For admission to the Ph.D. program, applicants must have met requirements for the M.A. degree or their equivalents. Applicants in musicology should submit an essay giving evidence of their ability to engage in scholarly research. Applicants in composition should submit a work based on a traditional procedural model, such as a motet, chorale prelude, invention, or fugue. They also must provide a portfolio of their recent, representative compositions. Ph.D. candidates in composition must take 16:700:631, 632, 651, and 9 elective credits. Ph.D. candidates in musicology must take 16:700:619, 620, 651, and 9 elective credits. In addition, a minimum of 24 credits in individual research is required. Students should have met all language requirements by the end of the third year of graduate study. Students in musicology must show in a written examination that they have a reading knowledge of French, German, and a third language that is chosen with approval of the graduate director. Students in composition must demonstrate by the end of their third year a working knowledge of German and one Romance language, which is chosen with approval of the graduate director. As part of their graduate training, doctoral students also are required to fulfill certain teaching duties under faculty supervision. Before admission to candidacy for the Ph.D. degree, all students must pass a written and oral comprehensive examination. For students in musicology, a dissertation is required. Candidates in composition must submit an original work of substantial proportions, along with an appropriate critical or theoretical essay.

The Master of Philosophy degree is available to doctoral candidates. The faculty cooperates with the M.A. program in theology, with a major in music, offered by the New Brunswick Theological Seminary.

All students of composition (both M.A. and Ph.D. candidates) are expected to participate in the Composer Forum, a periodic meeting of students and faculty that provides a setting for the performance and discussion of students’ music.

In addition to courses listed below, a student may, with approval of the graduate director, receive credit for certain upper-level, relevant undergraduate or graduate classes offered by other departments. One example would be 01:730:365 Philosophy of Music, which is offered by the philosophy department.
16:700:501. (F) INTRODUCTION TO MUSIC RESEARCH (3)
Survey of bibliographic materials for research in music.

16:700:502. (S) TECHNIQUES OF MUSIC RESEARCH (3)
Prerequisite: 16:700:501. Application of research techniques to the transcription, editing, and interpretation of musical sources.

16:700:511,512. MUSIC THEORY—INTENSIVE REVIEW (3,3)
Review of counterpoint (two- and three-part species counterpoint, including imitation); harmony (part-writing and progressions); sight-reading and analysis.

16:700:515,516. SOUND SYNTHESIS AND COMPUTER-ASSISTED COMPOSITION (3,3)
Prerequisite: Permission of instructor. Analysis of sound and timbre. Use of the computer for musical composition.

16:700:517. THE HISTORY OF MUSICAL STYLE (3)
Prerequisite: Permission of instructor. Aspects of convention and innovation in composers’ approach to sonority, harmony, melody, rhythm, and form in representative vocal and instrumental compositions from different historical periods, ca. 1600–1950.

16:700:519,520. PROSEMINAR IN MUSIC HISTORY (3,3)
Prerequisite: 16:700:501,502. Intensive study of selected areas in the history of music, with guided research leading to oral and written reports.

16:700:522. CANON AND FUGUE (3)
Exercises in polyphonic technique based on practices from the Renaissance to the tonal period.

16:700:525,526. STUDIES IN MUSIC ANALYSIS (3,3)
Study of styles and structures in compositions from the Middle Ages to the present and their relationship to ideas on composition held by composers and theorists.

16:700:527. STUDIES IN OPERA (3)
Prerequisite: Permission of instructor. Offered in alternate years. Study of selected operas. Historical background, sources, editions, textual criticism, analysis, performance practice.

16:700:528. STUDIES IN CHORAL LITERATURE (3)
Prerequisite: Permission of instructor. Offered in alternate years. Study of selected works for chorus and vocal ensemble from the sixteenth century to the present. Historical background, sources, editions, textual criticism, analysis, performance practice.

16:700:529. STUDIES IN INSTRUMENTAL ENSEMBLE LITERATURE (3)
Prerequisite: Permission of instructor. Offered in alternate years. Study of selected chamber and orchestral works from the seventeenth century to the present. Historical background, sources, editions, textual criticism, analysis, performance practice.

16:700:530. STUDIES IN KEYBOARD LITERATURE (3)
Prerequisite: Permission of instructor. Offered in alternate years. Study of selected works for keyboard instruments. Historical background, sources, editions, textual criticism, analysis, performance practice.

16:700:531,532. PROSEMINAR IN COMPOSITION (3,3)
Prerequisite: Permission of instructor. Practice in the techniques of creative composition. Includes participation in the Composer Forum.

16:700:541,542. SPECIAL TOPICS IN MUSIC THEORY AND ANALYSIS (3,3)
Prerequisite: Permission of instructor. Study of selected musical repertories and styles from a variety of theoretical perspectives.

16:700:551. JAZZ RESEARCH AND ANALYSIS (3)
Prerequisite: 16:700:501. Recommended: 16:700:525 (as pre- or corequisite). Introduction to scholarly research in jazz. Covers research methods, transcription, and analysis of recorded jazz performances, pertinent African-American cultural issues, and questions of performance practice.

16:700:552. INTRODUCTION TO ETHNOMUSICOLOGY (3)
Prerequisite: Permission of instructor. Introduction to the theory and methodology of ethnomusicology; current issues and intellectual history.

16:700:567,568. PROSEMINAR IN PERFORMANCE PRACTICE (3,3)
Prerequisite: Permission of instructor. Problems of performance technique and interpretation from the Renaissance to the present.

16:700:571,572. SCHENKERIAN ANALYSIS (3,3)
Prerequisite: Permission of instructor. Offered in alternate years. Premises, terminology, and analytical procedures derived from Heinrich Schenker’s theory of linear structure, with emphasis on verification of analysis through critical listening.

16:700:573,574. TWENTIETH-CENTURY THEORY (3,3)
Prerequisite: Permission of instructor. Offered in alternate years. Analysis of selected compositions from ca. 1910 to the present. Theoretical strategies and perspectives.

16:700:601. INDEPENDENT STUDY (BA)
For those specializing in musicology: individual research leading to an essay demonstrating command of the techniques of historical or analytical research. For those specializing in music composition: individual research leading to a composition of substantial size demonstrating command of the techniques of composition.

16:700:602. MASTER’S PROJECT (BA)
Prerequisite: 16:700:601. Completion of the essay or composition required for the M.A. degree.

16:700:619,620. SEMINAR IN MUSICOLOGY (3,3)
For students pursuing the doctoral program. Individual research in selected areas of music history and musicology.

16:700:631,632. SEMINAR IN COMPOSITION (3,3)
For students pursuing the doctoral program. Advanced study in the techniques of creative composition. Includes participation in the Composer Forum.

16:700:651. HISTORY OF MUSIC NOTATION (3)
Prerequisite: Permission of instructor. Offered in alternate years. Intensive study of medieval and Renaissance notational systems, with exercises in transcription from selected representative sources.

16:700:652. TOPICS IN THE HISTORY OF MUSIC THEORY (3)
Prerequisite: Permission of instructor. Close examination of selected theoretical writings from antiquity to the twentieth century, with emphasis on the study of tuning systems, modes, tonality, and acoustics.

16:700:701,702. RESEARCH IN MUSIC (BA,BA)
Individual research leading either to a musical composition, to an extended essay in an area of music history or theory, or toward completion of the Ph.D. degree.

MUSIC
(See the catalog of the Mason Gross School of the Arts for information about programs that lead to the M.M., A.Dipl., and D.M.A. in music.)
NUTRITIONAL SCIENCES 709

Degree Programs Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Professor Susan K. Fried,
132 Thompson Hall, Cook Campus (732/932-9039)

Members of the Graduate Faculty

John D. Bogden, Professor of Preventive Medicine and Community Health, UMDNJ-RWJMS; Ph.D., Seton Hall

Trace element nutrition and toxicology

Dawn L. Brassam, Assistant Professor of Nutritional Sciences, CC; Ph.D., Wisconsin (Madison)

Biology of neutral lipid storage and release

Robert E. Brolin, Professor of Surgery, St. Peter's Medical Center; M.D., Michigan

Treatment of medically severe obesity; intestinal ischemic disease

Wendie S. Cohick, Assistant Professor of Animal Sciences, CC; Ph.D., Cornell

Hormonal regulation of mammary gland biology and lactational physiology

Julie M. Pagan, Associate Professor of Animal Sciences, CC; Ph.D., Arizona

Oxidative damage, antioxidant defense on aging and disease processes

Ronaldo P. Ferrari, Associate Professor of Physiology, UMDNJ-NJMS; Ph.D., Hawaii (Manoa)

Gastrointestinal physiology; membrane transport of nutrients; intestinal function/dysfunction in aging

Hans Fisher, Professor of Nutritional Sciences, CC; Ph.D., Illinois

Tryptophan and serotonin metabolism in the brain, with special reference to alcoholism and behavior

Susan K. Fried, Professor of Nutritional Sciences, CC; Ph.D., Columbia

Obesity, adipose tissue metabolism; leptin

Peter J. Guarnaccia, Associate Professor of Human Ecology, CC; Ph.D., Cornell

Anthropology of foods and health

Michael W. Hamm, Associate Professor of Nutritional Sciences, CC; Ph.D., Minnesota

Local food supplies nutrition and environment; urban ecology and nutrition

Barry W. Jesse, Associate Professor of Animal Sciences, CC; Ph.D., Michigan State

Nutritional biochemistry of ruminant livestock

Debra P. Keenan, Assistant Professor of Nutritional Sciences, CC; Ph.D., Pennsylvania State

Nutrition education

Paul L. Lachance, Professor of Food Science, CC; Ph.D., Ottawa

Applied human nutrition; nutrition and food processing, nutraceuticals

Debra L. Lasik, Associate Professor of Pharmacology and Toxicology, CP; Ph.D., Medical College of Virginia

Mechanisms of immune cell activation; role of inflammatory cells in the pathogenesis of tissue injury

Peter Lobel, Associate Professor of Pharmacology, UMDNJ-RWJMS; Ph.D., Columbia

Protein targeting; mannose 6-phosphate receptors; cancer prognosis

Sue A. Sharpes, Associate Professor of Nutritional Sciences, CC; Ph.D., Columbia

Metabolism of ions and carotinoid, tissue, diet and human metabolism; osteoporosis

Adria R. Sherman, Professor of Nutritional Sciences, CC; Ph.D., Pennsylvania State

Trace elements: nutrition and immunity, developmental nutrition

T. Peter Stein, Professor of Surgery, UMDNJ-SOM; Ph.D., Cornell

Parenteral nutrition; protein metabolism

Nancy R. Stevenson, Associate Professor of Physiology, UMDNJ-RWJMS; Ph.D., Rutgers

Nutrition and GI physiology curricular development

Judith Storch, Professor of Nutritional Sciences, CC; Ph.D., Columbia

Cellular lipid transport; structure and function of fatty-acid-binding proteins; gastrointestinal lipid absorption

Beverly J. Tepper, Associate Professor of Food Science, CC; Ph.D., Tufts

Regulation of food intake: cognitive factors in food choice; taste perception; changes in taste in disease

T.J. Thomas, Associate Professor of Medicine, UMDNJ-RWJMS; Ph.D., Indian Institute of Science

Regulation of ornithine decarboxylase in autoimmune disease; phytochemicals and carcinogenesis

Malcolm Wastford, Associate Professor of Nutritional Sciences, CC; D.Phil., Oxford

Glutamine metabolism; regulation of glutaminase gene expression

G. Terence Wilson, Professor of Psychology, GASP; Ph.D., SUNY (Stony Brook)

Assessment and treatment of weight and eating disorders

James E. Wohlt, Associate Professor of Animal Sciences, CC; Ph.D., Illinois

Nutrient requirements for growth and lactation

John Worobey, Associate Professor of Nutritional Sciences, CC; Ph.D., Pennsylvania State

Diet and behavior; infant and child nutrition and activity; eating disorders

Chung S. Yang, Professor of Chemical Biology and Pharmacogeny, CP; Ph.D., Cornell

Mechanisms of cancer prevention by dietary constituents, with particular interest in tea

Associate Members of the Graduate Faculty

Carol Byrd-Bredbenner, Extension Specialist in Family and Consumer Science, CC; Ph.D., Pennsylvania State

Nutrition education; health promotion and communication; health literacy

Elaine A. Leventhal, Associate Professor of Medicine, UMDNJ-RWJMS; M.D., Wisconsin (Madison); Ph.D., Yale

Geriatrics: chronic and acute illnesses; occult malnutrition in the elderly

Sarah L. Raslon, Associate Professor of Animal Sciences, CC; Ph.D., V.M.D., Pennsylvania State

Equine clinical nutrition; stress and immune function; aging metabolism

Vincent A. Rufici, Assistant Professor of Medicine, UMDNJ-RWJMS; Ph.D., Rutgers

Lipoprotein metabolism and atherosclerosis

Programs

Graduate work in nutrition is supervised by faculty members from the departments of nutritional sciences, animal sciences, food science, human ecology, the College of Pharmacy, and the University of Medicine and Dentistry of New Jersey (UMDNJ). Areas of specialization include nutritional biochemistry; nutrient regulation of gene expression; nutrition and disease; sociological and behavioral aspects of nutrition; mineral, protein, and amino acid, and lipid metabolism; community nutrition; and developmental nutrition.

Applicants are expected to have an undergraduate major in a biological science, chemistry, or other field relevant to advanced training in nutritional sciences. The Graduate Record Examination must be taken. Prerequisites for admission include one year of general chemistry, one year of organic chemistry (or one term of organic chemistry and one term of biochemistry), and 12 additional credits of course work in advanced biology, chemistry, biochemistry, nutrition, food science, physics, or calculus.

The graduate program in nutritional sciences offers an M.S. with basic or applied emphasis and a Ph.D. in nutrition. All students complete course work that includes biochemical, physiological, molecular, and clinical aspects of nutrition. They also take seminars and electives in the advanced life sciences. Students in the applied-emphasis option also pursue advanced courses in community nutrition, public health, epidemiology, and psychology.

A joint program leading to an M.S./D.I. (dietetic internship) with the University of Medicine and Dentistry of New Jersey–New Jersey Medical School (UMDNJ–NJMS) is offered. This program provides students with the scientific knowledge and critical thinking skills to become leaders in the field of dietetics. The program is open only to students who have completed a Didactic Program in Dietetics approved by the Commission on Accreditation/Approval for Dietetics Education. Students must be accepted jointly and enrolled simultaneously in the dietetic internship at UMDNJ–NJMS and the M.S. program at Rutgers.

The M.S. degree requires 24 credits of course work and 6 credits of research, including a thesis. The Ph.D. program requires at least 34 credits of course work in biochemistry, physiology, and nutrition and 38 credits of research. Candidates for the Ph.D. degree must spend a minimum of twelve consecutive months (two terms and a summer session) in residence and register for at least 24 credits of course work and 6 credits of research. Requests for exceptions to this policy are reviewed by the curriculum committee of the program. There is no language requirement. The Master of Philosophy degree is available to doctoral candidates.

Graduate Courses

16:709:503. INTRODUCTION TO APPLIED NUTRITION RESEARCH (3) Pre- or corequisites 16:709:552,553, and statistics

16:709:504. SEMINAR IN NUTRITION EDUCATION (3) Prerequisites: 16:709:400,401 or equivalent Investigation, discussion, and evaluation of current research in nutrition education.
16:709:506. NUTRITIONAL ASPECTS OF DISEASE (3)
Prerequisites: 16:709:553, 554.
Advanced study of pathophysiological aspects of disease states and the relation to nutrition.

16:709:515. PRINCIPLES OF NUTRITION RESEARCH (3)
Prerequisites: 16:709:552, 553.
Advanced topics in metabolic regulation including principles of experimental design as applied to nutrition research.

16:709:521. (S) COMMUNITY NUTRITION (3)
Prerequisites: 11:709:400, 401, or equivalent.
Study of nutritional aspects of public health service and community agencies, and of programs designed to improve nutritional status of various population groups.

16:709:552,553. NUTRITION: A BIOCHEMICAL AND PHYSIOLOGICAL BASIS (4,4)
Prerequisites: 01:115:403; 16:709:511 or equivalent. Required of all students. Digestion, function, and metabolism of proteins and amino acids, carbohydrates, lipids, minerals, and vitamins. Regulatory mechanisms, developmental changes, and species differences that influence the requirements and metabolism of nutrients. Effect of nutrient supply on metabolism at the molecular, cellular, and systemic levels, including special metabolic needs during growth, reproduction, stress, and senescence in animals and man.

16:709:601,602. NUTRITIONAL SCIENCES SEMINAR (1,2)
Student, faculty, and guest speakers. Student presentation required.

16:709:603,604. ADVANCED STUDIES IN NUTRITION (BA,BA)

16:709:621. ADVANCED TOPICS: METABOLIC REGULATION (1)
Prerequisites: 16:709:552,553.
Informal, critical discussion and directed study of current literature and concepts in nutrient metabolism.

16:709:622. ADVANCED TOPICS IN MINERAL NUTRITION (1)
Prerequisites: 16:709:552,553.
Informal, critical discussion and directed study of current literature and concepts in mineral nutrition.

16:709:623. ADVANCED TOPICS: MOLECULAR NUTRITION (1)
Prerequisites: 16:709:552,553.
Informal, critical discussion and directed study of current literature and concepts in the nutritional control of gene expression.

16:709:624. ADVANCED TOPICS IN NUTRITIONAL SCIENCES (1)
Prerequisites: 16:709:552,553.
Informal, critical discussion and directed study in current areas of nutrition research.

16:709:625. RECENT ADVANCES IN NUTRITIONAL SCIENCES (1)
Prerequisites: 16:709:552,553, or permission of instructor. Informal, critical discussion and directed study in nutritional sciences, ranging from specialized research approaches and techniques to aspects of national and international nutrition policy.

16:709:687,688. INDEPENDENT STUDIES IN NUTRITIONAL SCIENCES (3,3)

16:709:701,702. RESEARCH IN NUTRITIONAL SCIENCES (BA,BA)

OCEANOGRAPHY 712

Degree Programs Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Professor Dale Haidvogel, Marine Sciences Building, Cook Campus (732/932-6555)
Associate Director: Professor Gary Taghon, Marine Sciences Building, Cook Campus (732/932-6555)

Members of the Graduate Faculty

Kenneth W. Able, Professor of Marine and Coastal Sciences, CC; Ph.D., William and Mary
Ecology and behavior of fishes
Gail Ashley, Professor of Geological Sciences, FAS–NB; Ph.D., British Columbia
Sedimentology; geomorphology; environmental ecology; modern processes
Peter C. Falkowski, Professor of Geological Sciences and Marine and Coastal Sciences, FAS–NB; Ph.D., British Columbia
Biogeochemical cycles; evolution; astrobiology
Scott M. Glenn, Professor of Marine and Coastal Sciences, CC; S.C.D., Massachusetts Institute of Technology/Woods Hole Oceanographic Institution
Physical oceanography; satellite remote sensing
J. Frederic Grassle, Professor of Marine and Coastal Sciences, CC; Ph.D., Duke
Marine ecology; oceanography
Judith P. Grassle, Professor of Marine and Coastal Sciences, CC; Ph.D., Duke
Population genetics; marine benthic ecology
Ximing Guo, Associate Professor of Marine and Coastal Sciences, CC; Ph.D., Washington (Seattle)
Research in cytogenetics; genetic manipulation; and genomic mapping in mulluscan aquaculture species
Dale B. Haidvogel, Professor of Marine and Coastal Sciences, CC; Ph.D., California Institute of Technology
Oceanography; physical oceanography; numerical ocean circulation modeling
Lee J. Kerkhof, Associate Professor of Marine and Coastal Sciences, CC; Ph.D., California (San Diego)/Scripps Institution of Oceanography
Marine microbiology; molecular biology; microbial population dynamics
Uwe Kils, Associate Professor of Marine and Coastal Sciences, CC; Ph.D., Kiel Behavior and microdistribution of juvenile fish; in-situ optics
Richard Lutz, Professor of Marine and Coastal Sciences, CC; Ph.D., Maine University
Marine ecology and paleoecology; shellfish ecology; biology of deep-sea hydrothermal vents
George R. McGhee, Professor of Geological Sciences, FAS–NB; Ph.D., Rochester
Marine paleoecology; evolutionary theory; mass extinction
James R. Miller, Professor of Marine and Coastal Sciences, CC; Ph.D., Maryland University
Air-sea interactions; remote sensing; climate modeling; earth system science
Kenneth G. Miller, Sr., Professor of Geological Sciences, FAS–NB; Ph.D., Massachusetts Institute of Technology/Woods Hole Oceanographic Institution
Cenozoic stratigraphy and paleoceanography; integrated biostatigraphy, isotopic stratigraphy, magnetostratigraphy, and seismic stratigraphy
Michael R. Muller, Professor of Mechanical and Aerospace Engineering, SE; Ph.D., Brown
Fluid mechanics; internal gravity waves and thermal
Karl F. Nordstrom, Professor of Marine and Coastal Sciences, CC; Ph.D., Rutgers
Geology and geophysics of the Atlantic continental margin
John R. Posner, Professor of Marine and Coastal Sciences, CC; Ph.D., Washington (Seattle)
Marine phytoplankton ecology; bio-optics; paleoceanography
Richard K. Nordstrom, Professor of Marine and Coastal Sciences, CC; Ph.D., Seattle
Geology; sedimentology
Robert Sherrell, Associate Professor of Geological Sciences and Marine and Coastal Sciences, CC; Ph.D., Massachusetts Institute of Technology/Woods Hole Oceanographic Institution
Biogeochemistry; paleoceanography
Oscar M.E. Schofield, Associate Professor of Marine and Coastal Sciences, CC; Ph.D., California (Santa Barbara)
Marine phytoplankton ecology; bio-optics; effects of ultraviolet radiation on phytoplankton
Sybil P. Searsing, Visiting Professor of Marine and Coastal Sciences, CC; Ph.D., Rhode Island
Nutrient dynamics in marine freshwaters and terrestrial ecosystems
Robert E. Sherard, Professor of Geological Sciences, FAS–NB; Ph.D., Columbia
Geology and geophysics of the Arctic continental margin
Robert Sherrell, Associate Professor of Geological Sciences and Marine and Coastal Sciences, CC; Ph.D., Massachusetts Institute of Technology/Woods Hole Oceanographic Institution
Trace metals in the oceanic water column; environmental chemistry
In addition to the central campus in New Brunswick, research opportunities are provided at three field stations. The Rutgers University Marine Field Station, connected to the northern entrance to Great Bay, is the site of a large tract of pristine marsh and a major estuary that retains most of its natural characteristics. An extensive program of long-term oceanographic and ecosystem research is underway at the station. Long-term ecosystem observatory sites (LEOs) have been established on the continental shelf, slope, and rise in conjunction with the New York Bight National Undersea Research Center. One of these sites (LEO-15) is connected to the Marine Field Station by electric/fiber optic cable, providing power and two-way communications with a variety of in-situ sensors.

The Rutgers University Haskin Shellfish Research Laboratory, located on Delaware Bay, has small boats and docking facilities. Research areas include microbiology, histopathology, shell structure, shellfish physiology, shellfish pathophysiology, analytical chemistry, cytogenetics, and biochemistry/physiology. Rutgers University Pineland Research Station, in Lebanon State Forest, is located near New Lisbon in the Pinelands National Reserve. It provides ready access to a diversity of upland and wetland habitats.

Graduate Courses

16:712:501. (F) PHYSICAL OCEANOGRAPHY (3)

Miller. Prerequisites One year of college calculus and college physics. Physical properties and basic equations for describing waves, tides, currents, and the large-scale wind-driven and thermohaline circulation. Ekman, geostrophic, and inertial flows. Gulf Stream; air-sea interactions; El Niño.

16:712:502. (S) LARGE-SCALE OCEAN DYNAMICS (3)

Haidvogel. Prerequisite 16:712:501 or permission of instructor. Offered in alternate years. Observational basis for large-scale ocean circulation; derivation of oceanic equations of motion; Kelvin, planetary, and topographic waves; wind-driven ocean circulation; simple models of abyssal circulation and thermocline; instabilities and mesoscale eddies.

16:712:521. (S) MARINE BENTHIC ECOLOGY (3)

Taghan. Prerequisites One year of college calculus and invertebrate zoology. Offered in alternate years. Emphasis on fauna living in soft sediments: roles in nutrient cycling and marine food webs; feeding biology, reproduction, and recruitment; community structure as influenced by physical and chemical properties of the environment.

16:712:522. (S) BIOLOGICAL OCEANOGRAPHY (3)

Taghan. Prerequisite One year of college biology. Offered in alternate years. Interactions among biological, physical, and chemical components of the marine environment, including primary production and secondary production, biogeochemical cycles, food web interactions, and ecosystem analysis of selected marine ecosystems. Habitats considered include the open ocean, coastal waters, kelp beds, coral reefs, estuaries, the deep sea, and hydrothermal vent environments.

16:712:523. (F) PRIMARY PRODUCTION IN AQUATIC ECOSYSTEMS (3)

Schofield. Prerequisite Permission of instructor. Offered in alternate years. Regulation of phytoplankton productivity in nature; physiological ecology of phytoplankton in dynamic environments; impact of phytoplankton on water column optical and chemical properties; new technologies being used in fieldwork.

16:712:524. EARLY LIFE HISTORY OF FISH (3)

Asil. Prerequisite Ichthyology or permission of instructor. Offered in alternate years. The phylogeny, morphology, life history, ecology, and behavior of fish during the egg, larval, and juvenile stages. Detailed treatments of representative estuarine marine and freshwater fish.
16:712:540. (S) CHEMICAL OCEANOGRAPHY (3) Prerequisite: One year of college chemistry; 16:712:501. Chemical description of the ocean and its major chemical cycles; salinity and the elements of seawater; nutrients; the carbonate system; marine organic matter; radioisotopes; hydrothermal processes and ocean evolution.

16:712:560. HISTORY OF THE EARTH SYSTEM (3) Falkowski. Prerequisites: Introductory chemistry, biology, and physics, or permission of instructor. Introduction to major processes that have shaped Earth’s environment, including climatic processes on geological time scales, the evolution of organisms, the cycling of elements, and the feedback between these processes.

16:712:603. (F) NUMERICAL MODELING OF THE ATMOSPHERE AND OCEAN I (3) Haidvogel. Prerequisites: 16:375:547, 16:712:502, or equivalent; proficiency in a high-level programming language. Offered in alternate years. Governing equations of atmospheric/oceanic motion; simplification and scaling; parameterization issues; numerical solution of the equations; Fourier and spectral methods; evaluation of atmospheric and oceanic models.

16:712:604. NUMERICAL MODELING OF THE ATMOSPHERE AND OCEAN II (3) Haidvogel. Offered in alternate years. Laboratory course for practical application of numerical approaches taught in 16:712:603, including literature review, problem formulation, model development, and synthesis and presentation of results.

OPERATIONS RESEARCH 711

Degree Programs Offered: Master of Science, Doctor of Philosophy Director of Graduate Program: Professor Peter L. Hammer, Center for Operations Research, RUTCOR Building, Brett and Bartholomew Roads, Busch Campus (732/445-4812)

Members of the Graduate Faculty

Susan L. Albin, Professor of Industrial and Systems Engineering, SE; D. E. Sc., Columbia Queuing simulation; quality control and reliability
Farid Alizadeh, Assistant Professor of Management Science and Information Systems, FM; Ph.D., Minnesota Combinatorial optimization; convex programming; computational biology
Tayfur Altinkop, Professor of Industrial and Systems Engineering, SE; Ph.D., North Carolina State Production planning; inventory systems; queueing networks
Ronald D. Armstrong, Professor of Management Science, FM/RUTCOR; Ph.D., Massachusetts Institute of Technology Network theory; integer programming and applications
Benjamin Avraham, Professor of Management and Operations Research, FM/RUTCOR; D.Sc., Israel Institute of Technology Stochastic models in operations research
Adi Ben-Israel, Professor of Operations Research, FM/RUTCOR; Ph.D., Northwestern University Matrix theory; convexity and optimization; mathematical programming; mathematical economics

Douglas H. Blair, Professor of Economics, FM/RUTCOR; Ph.D., Yale University Microeconomic theory; social choice theory
Endre Boros, Professor of Operations Research, RUTCOR/FM; Ph.D., Budapest Discrete and combinatorial optimization; integer programming
Michael Lee Bushnell, Professor of Electrical and Computer Engineering, SE; Ph.D., Carnegie Mellon University VLSI design; testing of logic circuits; computer-aided design
Vasek Chvatal, Professor of Computer Science, FAS–NB; Ph.D., Waterloo University Algorithms; combinatorics; graph theory; operations research
Jonathan Eckstein, Associate Professor of Management Science and Information Systems, FM/RUTCOR; Ph.D., Massachusetts Institute of Technology Mathematical programming; parallel computing; convex analysis; proximal methods; applied combinatorial optimization
Michael R. Goldberg, Professor of Urban Planning and Public Health, EJBSPPP; Ph.D., Columbia Environmental planning; public health
Michael D. Grigoriades, Professor of Computer Science, FAS–NB; Ph.D., Wisconsin Algorithms for network optimization
Peter L. Hammer, Professor of Mathematics and Computer Science Management and Director of the Center for Operations Research, RUTCOR/FM; Ph.D., Buchenau Boolean methods in operations research; discrete optimization
Ronald Harstad, Associate Professor of Management, FM; Ph.D., Pennsylvania State University Numerical optimization; dynamic systems; data mining
Stephen J. Hirschhorn, Assistant Professor of Management Science and Information Systems, FM/RUTCOR; Ph.D., California (Berkeley) Sequential decision making under uncertainty; stochastic modeling of economic systems
Alan Hoffman, Visiting Professor of Mathematics, RUTCOR; Ph.D., Columbia University Combinatorics and optimization; linear algebra
Douglas H. Jones, Associate Professor of Management, FM; Ph.D., Florida State University Geometric analysis; combinatorics; graph theory; operations research
Levitt Khachiyan, Associate Professor of Management, FM; Ph.D., Columbia University Dynamic programming; optimization; queueing; sequential decision theory
Levintan Khachiyan, Associate Professor of Management, FM; Ph.D., Columbia University Dynamic programming; complexity; discrete optimization
Alexander Kogan, Associate Professor of Accounting and Information Systems, FM/RUTCOR; Ph.D., USSR Academy of Sciences Expert systems; logical analysis of data; Boolean functions; combinatorial optimization; information systems
Cheng-few Lee, Professor of Finance, FM; Ph.D., SUNY (Buffalo) Mathematical finance; financial engineering; portfolio optimization
Paul Kantor, Professor of Computer Science, FAS–NB; Ph.D., Princeton University Information and decision systems; information economics; library and information systems; evaluation; system interfaces
Michael N. Katehakis, Associate Professor of Management, FM; Ph.D., Columbia University Dynamic programming; queuing; sequential decision theory; operations research
Emmanuel Khachiyan, Professor of Computer Science, FAS–NB; Ph.D., USSR Academy of Sciences Mathematical programming; complexity; discrete optimization
Alexander Kogan, Associate Professor of Accounting and Information Systems, FM/RUTCOR; Ph.D., USSR Academy of Sciences Expert systems; logical analysis of data; Boolean functions; combinatorial optimization; information systems
Cheng-few Lee, Professor of Finance, FM; Ph.D., SUNY (Buffalo) Mathematical finance; financial engineering; portfolio optimization
Paul Kantor, Professor of Computer Science, FAS–NB; Ph.D., Princeton University Information and decision systems; information economics; library and information systems; evaluation; system interfaces
Michael N. Katehakis, Associate Professor of Management, FM; Ph.D., Columbia University Dynamic programming; queuing; sequential decision theory; operations research
Emmanuel Khachiyan, Professor of Computer Science, FAS–NB; Ph.D., USSR Academy of Sciences Mathematical programming; complexity; discrete optimization
Alexander Kogan, Associate Professor of Accounting and Information Systems, FM/RUTCOR; Ph.D., USSR Academy of Sciences Expert systems; logical analysis of data; Boolean functions; combinatorial optimization; information systems
Cheng-few Lee, Professor of Finance, FM; Ph.D., SUNY (Buffalo) Mathematical finance; financial engineering; portfolio optimization
Paul Kantor, Professor of Computer Science, FAS–NB; Ph.D., Princeton University Information and decision systems; information economics; library and information systems; evaluation; system interfaces
Michael N. Katehakis, Associate Professor of Management, FM; Ph.D., Columbia University Dynamic programming; queuing; sequential decision theory; operations research
Emmanuel Khachiyan, Professor of Computer Science, FAS–NB; Ph.D., USSR Academy of Sciences Mathematical programming; complexity; discrete optimization
Alexander Kogan, Associate Professor of Accounting and Information Systems, FM/RUTCOR; Ph.D., USSR Academy of Sciences Expert systems; logical analysis of data; Boolean functions; combinatorial optimization; information systems

Students pursuing studies leading to the M.S. degree in operations research prepare for positions in industry and government that apply methods of operations research to practical problems. Students in the M.S. program are encouraged to take as many practically oriented interdisciplinary operations research courses as possible and to participate in various operations research programs at RUTCOR that are aimed at industrial and government applications.

The major requirements for the Ph.D. involve course work (48 credits), research work (24 credits), a Ph.D. qualifying examination, and a dissertation. There also is a seminar requirement.

The major requirements for the M.S. involve course work (30 credits), an essay, and a final examination. The essay can be expository, or it may involve the development of new theoretical results, software, computer implementation of algorithms, modeling, or a related topic. There also is a seminar requirement.

A wide variety of courses related to operations research are given by the programs participating in RUTCOR and other departments at the university. In addition, students in the Ph.D. and M.S. programs may sign up for independent-study courses for credit toward the 48-credit or 30-credit requirements. All students are expected to participate extensively in RUTCOR’s seminars and colloquia.

Admission to the M.S. and Ph.D. programs is awarded selectively by the admissions committee. Applicants to the M.S. program should have an undergraduate degree in a field related to operations research. Applicants to the Ph.D. program should have either a bachelor’s or a master’s degree in one of these fields. Both programs, which are intended to be small, are aimed at a high-quality group of students. Applications should include transcripts, three letters of recommendation, and scores from the Graduate Record Examination, both the general test and a subject test in a field related to operations research. Foreign students should supply a score on the TOEFL. The official deadline for application is May 1, although this deadline is waived whenever possible for qualified students.

Students entering the programs in operations research are expected to have knowledge of undergraduate probability, statistics, advanced calculus, linear algebra, and introductory computer science.

Financial support for graduate study in operations research at Rutgers is coordinated through RUTCOR. Students are supported through teaching, graduate and research assistantships in the participating departments of RUTCOR or in RUTCOR itself, research on faculty members’ research projects, fellowships, and adjunct teaching jobs. Applications for financial support should be included with the application for admission. They are due by March 1 for the following academic year (beginning in September). Late applications for financial support are accepted as long as support is available.

Graduate Courses

16:711:512. (S) DISCRETE OPTIMIZATION (3)

Prerequisite: 16:198:521 or equivalent. Develops the mathematical foundation of linear and nonlinear optimization procedures for problems in which the variables can take on values only in a finite set, usually \((0,1)\). A variety of algorithms are presented, along with numerous applications.

16:711:517. (F) COMPUTATIONAL PROJECTS IN OPERATIONS RESEARCH (3)

Staff. Prerequisite: 01:640:350 or 354. Individual and group assignments; intensive computer practice; coding; programming.

16:711:525. (S) STOCHASTIC MODELS OF OPERATIONS RESEARCH (3)

16:711:531. (F) ACTUARIAL MATHEMATICS (3)
Prereq: Prerequisite 01:960:381.
Economics of insurance, life tables, life insurance, life annuities, benefit premiums and reserves, multiple-life theory, multiple-decrement models, risk theory, and population theory.

16:711:547,548. CASE STUDIES IN APPLIED OPERATIONS RESEARCH (3,3)
Prerequisite: Linear programming, probability, and computer programming. Applications in operations research. Investigates the modeling process as it deals with economic uncertainties, missing information, risk, and priorities. Case study approach used, with students writing "recommendation to management" reports. Guest lecturers from industry describe actual projects.

16:711:553. BOOLEAN AND PSEUDO-BOOLEAN FUNCTIONS (3)
Prerequisite: Permission of instructor. Recommended: 16:198:521, 16:642:581, or equivalent.
Theory and applications of Boolean functions and of set (or pseudo-Boolean) functions. Important classes of such functions (e.g., threshold functions) examined. Applications to graph theory, integer programming, and decision making.

16:711:555. (F) STOCHASTIC PROGRAMMING (3)
Prereq: Prerequisite 16:198:521, 01:960:381.
Decision principles in stochastic programming: penalty models, probabilistic constrained models, dynamic type models. Convexity theory and solutions of the relevant optimization problems by mathematical programming techniques. Applications in economics, business, and engineering.

16:711:556. (S) QUEUING THEORY (3)
Avi-Itzhak. Prerequisite: 16:960:680.

16:711:601,602. SEMINAR IN OPERATIONS RESEARCH (0,0)
Prerequisite: Permission of instructor.
Regular participation in the colloquia and seminars run by RUTCOR required of all M.S. and Ph.D. students.

16:711:611,612,613,614. SELECTED TOPICS IN OPERATIONS RESEARCH (BA,BA,BA,BA)
Prerequisite: Permission of instructor.
Topics of current interest relevant to operations research.

16:711:631. (S) FINANCIAL MATHEMATICS II (3)
Prereq. Prerequisites: 16:198:521, 01:960:381.
Options, futures and other derivatives, arbitrage pricing, Black-Scholes theory, exotic options, interest-rate models, stochastic programming models, and their applications to financial planning.

16:711:695,696,697,698,699. INDEPENDENT STUDY IN OPERATIONS RESEARCH (BA,BA,BA,BA)
Prerequisite: Permission of instructor.
Focusses on a specialized topic in operations research individually designed with a supervising faculty member.

16:711:701,702. RESEARCH IN OPERATIONS RESEARCH (BA,BA)
See also courses listed under computer science, economics, industrial and systems engineering, statistics, and mathematics (applied mathematics), and in the doctoral program in management at the Graduate School–Newark, including the following courses:

16:198:503. DATA STRUCTURES AND ALGORITHMS (3)
16:198:510. NUMERICAL ANALYSIS (3)
16:198:513,514. DESIGN AND ANALYSIS OF DATA STRUCTURES AND ALGORITHMS I,II (3,3)
16:198:521. LINEAR PROGRAMMING (3)
16:198:522. NETWORK AND COMBINATORIAL OPTIMIZATION ALGORITHMS (3)
16:198:524. NONLINEAR PROGRAMMING (3)
16:198:526. ADVANCED NUMERICAL ANALYSIS (3)
16:198:528. PARALLEL NUMERICAL ALGORITHMS (3)
16:198:535. PATTERN RECOGNITION THEORY AND APPLICATION (3)
16:198:538. COMPLEXITY OF COMPUTATION (3)
16:198:541. DATABASE SYSTEMS (3)
16:220:500. MATHEMATICAL METHODS FOR MICROECONOMICS (3)
16:220:501,502. MICROECONOMIC THEORY I,II (3,3)
16:220:503. MATHEMATICAL METHODS FOR MACROECONOMICS (3)
16:220:507,508. ECONOMETRICS I,II (3,3)
16:220:545. UNCERTAINTY AND IMPERFECT INFORMATION (3)
16:220:546. TOPICS IN GAME THEORY (3)
16:540:510. DETERMINISTIC MODELS IN INDUSTRIAL ENGINEERING (3)
16:540:515. STOCHASTIC MODELS IN INDUSTRIAL ENGINEERING (3)
16:540:520. DESIGN AND PHYSICAL DISTRIBUTION SYSTEMS (3)
16:540:530. FORECASTING AND TIME SERIES ANALYSIS (3)
16:540:555. SIMULATION OF PRODUCTION SYSTEMS (3)
16:540:560. PRODUCTION ANALYSIS (3)
16:540:565. FACILITIES PLANNING AND DESIGN (3)
16:540:568. AUTOMATION AND COMPUTER INTEGRATED MANUFACTURING (3)
16:540:585. SYSTEM RELIABILITY ENGINEERING (3)
16:540:655. PERFORMANCE ANALYSIS OF MANUFACTURING SYSTEMS (3)
16:540:660. INVENTORY CONTROL (3)
16:540:665. THEORY OF SCHEDULING (3)
16:642:573,574. NUMERICAL ANALYSIS (3,3)
16:642:577,578. SELECTED MATHEMATICAL TOPICS IN SYSTEM THEORY (3,3)
16:642:581. GRAPH THEORY (3)
16:642:582,583. COMBINATORICS I,II (3,3)
16:642:585. MATHEMATICAL MODELS OF SOCIAL AND POLICY PROBLEMS (3)
16:642:586. THEORY OF MEASUREMENT (3)
16:642:587. SELECTED TOPICS IN DISCRETE MATHEMATICS (3)
16:642:588. INTRODUCTION TO MATHEMATICAL TECHNIQUES IN OPERATIONS RESEARCH (3)
16:642:599. TOPICS IN MATHEMATICAL TECHNIQUES IN OPERATIONS RESEARCH (3)
16:960:540,541. STATISTICAL QUALITY CONTROL I,II (3,3)
16:960:542. LIFE DATA ANALYSIS (3)
16:960:563. REGRESSION ANALYSIS (3)
16:960:567. APPLIED MULTIVARIATE ANALYSIS (3)
16:960:586,587. INTERPRETATION OF DATA I,II (3,3)
16:960:590. DESIGN OF EXPERIMENTS (3)
16:960:591. ADVANCED DESIGN OF EXPERIMENTS (3)
16:960:593. THEORY OF STATISTICS (3)
16:960:652,653. ADVANCED THEORY OF STATISTICS I,II (3,3)
16:960:654. STOCHASTIC PROCESSES (3)
16:960:663. REGRESSION THEORY (3)
16:960:680,681. ADVANCED PROBABILITY THEORY I,II (3,3)
16:960:689. SEQUENTIAL METHODS (3)
26:390:571. SURVEY OF FINANCIAL THEORY (3)
26:390:682. INVESTMENT ANALYSIS AND PORTFOLIO THEORY (3)
26:711:561. FUNDAMENTALS OF OPTIMIZATION (3)
26:711:585. CONTROL MODELS IN OPERATIONS MANAGEMENT (3)
26:711:586. PLANNING MODELS IN OPERATIONS MANAGEMENT (3)
26:711:652. NONLINEAR PROGRAMMING (3)
26:711:676. STATISTICAL ASPECTS OF STOCHASTIC SIMULATION (3)
26:960:580. STOCHASTIC PROCESSES (3)

PACKAGING SCIENCE AND ENGINEERING

Programs

Academic and research training in the area of packaging science and engineering for master's candidates is available at Rutgers in the following programs of the Graduate School–New Brunswick: ceramic science and engineering, food science, industrial and systems engineering, materials science and engineering, and pharmaceutical science.

Degree requirements are set in accordance with the student's graduate program. The student electing this option enrolls in an interdisciplinary program that includes core courses in business, science, and engineering and a concentration in one of the six participating disciplines. Coordination among the five faculties sponsoring the packaging option provides maximum flexibility and variety in the arrangement of individual degree programs.

For a Master of Science degree, a student must be admitted to, and meet the requirements of, one of the following programs of the Graduate School–New Brunswick: ceramic science and engineering, food science, industrial and systems engineering, mechanics and materials science, or pharmaceutical science. This program requires a minimum of 18 credits involving courses in the degree program unrelated to packaging. The student also must meet the following common core requirements: the courses in packaging engineering, 16:150:571, 572, the seminars in packaging, 16:150:581, 582, the materials design in packaging, 16:150:571, 572, and either the special problems in packaging courses, 16:150:587, 588, or the research thesis on packaging as approved through the departmental specialization.

The interaction of packaging and the environment is a broad subject of common concern underlying all programs that feature the option in packaging. Within this area, students are expected initially to indicate which one of the following three concentrations they wish to explore: packaging science and technology, packaging and production engineering, or packaging and marketing/management. For further information, the interested student should contact the director of one of the above programs or Professor James D. Idol, School of Engineering, Busch campus (732/445-3224).

PHARMACEUTICAL SCIENCE 720

Degree Programs Offered: Master of Science, Doctor of Philosophy

Director of Graduate Program: Professor Joseph E. Rice, College of Pharmacy, William Levine Hall, Busch Campus (732/445-5382)

Members of the Graduate Faculty in the Pharmaceutical Science Track

Edward Arnold, Professor of Chemistry, FAS-NB; Ph.D., Cornell
Antiviral drug design, molecular recognition, X-ray crystallography
Leonard C. Bailey, Professor Emeritus of Pharmaceutical Chemistry, CP; Ph.D., Rutgers
Pharmaceutical analysis
Chi-Tang Ho, Professor of Food Science, CC; Ph.D., Washington (St. Louis)
Separation and structural elucidation of bioactive compounds in foods, spices, and herbs

Longqin Hu, Assistant Professor of Medicinal Chemistry, CP; Ph.D., Kansas
Design and synthesis of enzyme inhibitors and peptidomimetics, prodrugs
Leslie Jimenez, Associate Professor of Chemistry, FAS-NB; Ph.D., California (Los Angeles)
Natural product synthesis and new synthetic methodology
John E. Kerrigan, Assistant Professor of Medicinal Chemistry, CP; Ph.D., Georgia Institute of Technology
Serine protease inhibitors, molecular modeling, and computational chemistry
Edmond J. LaVoie, Chairman and Professor of Medicinal Chemistry, CP; Ph.D., SUNY (Buffalo)
Metabolism and structure-activity studies of pharmaceutical agents
Thomas Medwick, Professor Emeritus of Pharmaceutical Chemistry, CP; Ph.D., Wisconsin
Pharmaceutical analysis
Joseph E. Rice, Associate Professor of Medicinal Chemistry, CP; Ph.D., Polytechnic Institute of New York
Synthetic organic chemistry as applied to problems of biological interest
Robert T. Rosen, Associate Director, CAFT, CC; Ph.D., Rutgers
Analytical and natural products chemistry
Eric H. Weyand, Associate Professor of Pharmaceutical Chemistry, CP; Ph.D., Virginia Polytechnic Institute
Vivo and in vitro metabolism of drugs and xenobiotics

Associate Member of the Graduate Faculty in the Medicinal Chemistry Track

S. David Kimball, Associate Director, Oncology Chemistry, Bristol-Myers Squibb Pharmaceutical Research Institute Ph.D., SUNY (Stony Brook)
Inhibition of cyclin-dependent kinases: discovery of mechanism-based anticancer drugs

Members of the Graduate Faculty in the Pharmaceutics Track

John L. Colaizzi, Professor of Pharmacy and Dean of the College of Pharmacy; Ph.D., Purdue
Applied pharmacokinetics and biopharmaceutics
Thomas J. Cook, Assistant Professor of Pharmaceutics, CP; Ph.D., Michigan
Drug/vaccine delivery systems, mechanisms of drugantigen transport
Gregory T. Knipp, Assistant Professor of Pharmaceutics, CP; Ph.D., Kansas
Drug transport and delivery
Joseph Kohn, Professor of Chemistry, FAS-NB; Ph.D., Weizmann Institute of Science and biomaterials, development of new degradable polymers
Nicholas G. Lordi, Professor Emeritus of Pharmaceutics, CP; Ph.D., Purdue
Pharmaceutics
Bozena Michniak, Laboratory for Drug Delivery, New Jersey Center for Biomaterials
Newark; Ph.D., Leicester Polytechnic
Topical and transdermal drug delivery
Tamaras Minke, Assistant Professor of Pharmaceutics, CP; Ph.D., Ukrainian Academy of Science

Patrick J. Sinko, Chairperson and Associate Professor of Pharmaceutics, CP; Ph.D., Michigan
Biopharmaceutics, intestinal absorption mechanism; peptide drug analogs and anti-HIV drug metabolism
Kathryn Uhrisch, Associate Professor of Chemistry, FAS-NB; Ph.D., Cornell
Design, synthesis, and characterization of novel organic polymers for medicinal use
Chung S. Yang, Professor of Pharmacognosy, CP; Ph.D., Cornell
Pharmaceutics, peptide/nucleic acid conjugates, and protein delivery
Joel L. Zaltz, Professor of Pharmaceutics, CP; Ph.D., Columbia
Pharmaceutics, receptor-mediated and topical drug delivery

Associate Members of the Graduate Faculty in the Pharmaceutics Track

Albert Cuitino, Assistant Professor of Mechanical and Aerospace Engineering, SE; Ph.D., Brown
Computational solid mechanics
Fernando Muzzio, Associate Professor of Chemical and Biochemical Engineering, SE; Ph.D., Massachusetts (Amherst)
Mixing, chaos and randomness transport phenomena

Programs

The program offers courses leading to the Master of Science and Doctor of Philosophy degrees in pharmaceutical science. Most applicants have undergraduate degrees in biochemistry, biology, chemistry, pharmacy, or other physical or biological sciences. It is strongly recommended that applicants have completed 6 credits of physical chemistry before admission. Students entering the program are required to choose either the medicinal chemistry track or the pharmaceutics track. Areas of research within the medicinal chemistry track include drug discovery, natural-product synthesis, prodrugs, peptidomimetics, enzyme inhibitors, computational chemistry, molecular modeling, metabolism, and DNA binding of
drugs and xenobiotics. Within the pharmaceutics track, some areas of research include drug delivery, controlled drug-release technology, design of new biomaterials, biopharmaceutics, metabolism, and percutaneous drug absorption.

Degree requirements for the M.S. degree include a minimum of 24 credits of course work and completion of an original research problem and thesis (6 credits).

The Ph.D. degree requirements include a minimum of 40 credits of course work and 32 credits of original research in the medicinal chemistry track, or 38 credits of course work and 34 credits of original research in the pharmaceutics track. All students are required to prepare and defend an original research proposal. A residence requirement of one academic year must be satisfied, preferably after completion of most of the required course work.

For a more detailed account of degree requirements, courses, facilities, faculty research interests, and application procedures, please visit the Graduate Program in Pharmaceutical Science home page at http://web.rutgers.edu/pharmsci.

Graduate Courses

16:720:507. ADVANCED PHARMACEUTICS I (3)
Sinko. Prerequisites: Physical chemistry and associated math requirements. Application of physical-chemical principles to the study and evaluation of pharmaceutical systems: solubility phenomena, equilibria, complexation, phase transitions, and pharmaceutical stability, and the fundamentals of pharmokinetics.

16:720:509. ADVANCED PHARMACEUTICS II (3)
Sinko. Kinetics aspects of the pharmaceutical sciences. Quantitative and mechanistic approaches to pharmokinetics, dissolution rate, and chemical kinetics.

16:720:510. ADVANCED PHARMACOKINETICS (3)
Sinko. Prerequisite: 01:160:327,328. Kinetics of drug absorption, distribution, and elimination; clearance concepts; compartmental, noncompartmental, and physiological models.

16:720:511,512. PHARMACEUTICAL FORMULATIONS (4,4)
Lec. 2 hrs., con. 1 hr., lab. 3 hrs. Prerequisites 16:720:507, 516. Design and development of pharmaceutical dosage forms.

16:720:515,516. PHARMACEUTICAL PROCESSES AND EQUIPMENT (2,2)
Lec. 2 hrs., lab. 3 hrs. Various processes utilized in pharmaceutical manufacturing, including the basic principles involved and the equipment used.

16:720:517,518. PHARMACEUTICAL PROCESSES AND EQUIPMENT LABORATORY (1,1)

16:720:520. THERAPEUTIC PEPTIDES AND DELIVERY SYSTEMS (3)
Prerequisites 01 or 11:155:301; 30:721:301,302; 400,404; or permission of instructor. Study of biochemical, biopharmaceutical, and pharmacologic bases of peptide- and protein-based macromolecular drugs, and application of multidisciplinary approaches to their formulation, development, and systemic delivery.

16:720:522. CONTROLLED DRUG DELIVERY TECHNOLOGY (3)
Prerequisites 16:720:507, 515,516. Multidisciplinary approaches to concepts, fundamentals, and biomedical assessments in the research and development of novel drug delivery systems.

16:720:523. DERMACEUTICS (3)
Zatz. Prerequisite: 16:720:507 or permission of instructor. Design of topical drug-delivery systems; theoretical and practical considerations in development of topical disperse systems; skin permeation of drugs and its optimization; dermatologic and cosmetic applications.

16:720:525. INTRODUCTION TO EXPERIMENTAL SURGERY (3)
Wagand. Prerequisite: Permission of instructor. Experimental surgical techniques commonly used in research laboratories. Emphasis on aseptic surgery techniques, survival surgery, and chronic cannulation procedures.

16:720:540. INDEPENDENT RESEARCH PROPOSAL (3)
Enrollment limited to Ph.D. candidates with approval of their advisor. Develop a written research proposal using the standard HHS/NIH format as part of the Ph.D. degree requirements. Proposal is evaluated as to its originality, scientific merit, and quality.

16:720:583. DRUGS: STRUCTURE AND FUNCTION (3)

16:720:591. ADVANCED MEDICINAL CHEMISTRY I (3)
Kimball, Rice, Wagand. For students preparing to do research in medicinal chemistry. Topics include information management, computer methods, basic laboratory techniques, bioassey techniques, metabolism, prodrugs, and quantitative structure-activity relationships.

16:720:592. ADVANCED MEDICINAL CHEMISTRY II (3)
Hu, Kerrigan. Principles of drug design. Topics include identifying new drug leads, drug absorption and distribution, pharmacomodulation, enzymes and receptors as targets, peptidomimetics, computer-aided drug design, and combinatorial chemistry.

16:720:594. ADVANCED MEDICINAL CHEMISTRY III (3)

16:720:601,602. SEMINAR IN PHARMACEUTICAL SCIENCE (1,1)
Presentation and discussion of recent developments in the pharmaceutical sciences.

16:720:607,608. SPECIAL TOPICS (3,3)
Selected topics in pharmaceutical science.

16:720:610,611. INDEPENDENT STUDY IN PHARMACEUTICAL SCIENCE (BA,BA)
No more than 3 credits may be taken as part of a student's program. Independent library and/or laboratory research into special aspects of pharmaceutical science; arranged under the supervision of a specific faculty member.

16:720:612,613. CURRENT TOPICS IN PHARMACEUTICAL SCIENCE (1,1)
Seminar with lectures by scientists from the pharmaceutical industry on advanced topics within a particular area of pharmaceutical science, such as medicinal chemistry, pharmaceutical analysis, and pharmacetics.

16:720:701,702. RESEARCH IN PHARMACEUTICAL SCIENCE (BA,BA)

PHARMACOLOGY, CELLULAR AND MOLECULAR 718

Degree Programs Offered: Doctor of Philosophy
Director of Graduate Program: Professor Tariq Rana, Department of Pharmacology, University of Medicine and Dentistry of New Jersey–Robert Wood Johnson Medical School (732/235-4737)
Members of the Graduate Faculty

Charles O. Brostrom, Professor of Pharmacology, UMDNJ–RWJMS; Ph.D., Illinois
Intracellular signaling systems regulation of protein synthesis
Margaret A. Brostrom, Professor of Pharmacology, UMDNJ–RWJMS; Ph.D., Illinois
Stress responses of excitable cells
Khe-von Chin, Assistant Professor of Pharmacology, UMDNJ–RWJMS; Ph.D., Rutgers
Drug resistance; gene amplification; regulation of gene expression
Allan H. Connolly, Professor of Pharmacology, CP; Ph.D., Wisconsin
Cytotoxins P-450 and drug metabolism; chemical carcinogenesis
Marc R. Gartenberg, Associate Professor of Pharmacology, UMDNJ–RWJMS; Ph.D., Yale
Nuclear organization of DNA; chromosome structure; yeast plasmid segregation
Herbert M. Geller, Professor of Pharmacology and Neurology, UMDNJ–RWJMS; Ph.D., Case Western Reserve
Developmental and cellular neurobiology
William N. Hais, Professor of Medicine and Pharmacology, UMDNJ–RWJMS; M.D., Ph.D., Medical College of Pennsylvania
Calcium-calmodulin-mediated signal transduction and drug resistance; cancer pharmacology
Barton A. Kamen, Professor of Pediatrics, CINJ; M.D., Ph.D., Case Western Reserve
Chemotherapy of cancer in children
Frederick C. Kauffman, Professor of Pharmacology, CP; Ph.D., Illinois
Influence of intermediary metabolism on xenobiotic metabolism; neurotoxicity
Jeffrey D. Laskin, Professor of Environmental and Community Medicine, UMDNJ–RWJMS; Ph.D., SUNY (Buffalo)
Carcinogenesis and differentiation in cell culture
John Lenard, Professor of Physiology, UMDNJ–RWJMS; Ph.D., Cornell
Enzymed RNA viruses; transcription, replication, entry, and assembly
Fang Liu, Assistant Professor of Chemical Biology, CP; Ph.D., Harvard
Signal transduction and gene regulation; growth and differentiation control
Leroy F. Liu, Professor and Chairperson of Pharmacology, UMDNJ–RWJMS; Ph.D., California (Berkeley)
DNA topoisomerases and control of cell division; cancer pharmacology
Peter Lobel, Professor of Pharmacology, UMDNJ–RWJMS; Ph.D., Columbia
Molecular mechanisms responsible for targeting lysosome in mammalian cells
Randall D. McKinnon, Assistant Professor of Neurosurgery, UMDNJ–RWJMS; Ph.D., M.D. Chatzer
The role of polypeptide growth factors in oligodendrocyte development
N. Ronald Morris, University Distinguished Professor of Pharmacology, UMDNJ–RWJMS; M.D., Yale
Molecular genetics of nuclear migration, mitosis, and microtubules
Robert G. Nagel, Associate Professor of Pediatrics, UMDNJ–SOM; Ph.D., Rutgers
Structural-functional organization of the cell nucleus
Jerome Parmess, Associate Professor of Anesthesia, Pharmacology, and Pediatrics, UMDNJ–RWJMS; M.D., Ph.D., Febbia (Einstein)
Regulation of intracellular calcium pools
Nicola Partridge, Professor and Chairperson of Physiology, UMDNJ–RWJMS; Ph.D., Western Australia
Signal transduction; molecular endocrinology; transcriptional regulation; and metalloproteinases
Daniel S. Pitch, Assistant Professor of Pharmacology, UMDNJ–RWJMS; Ph.D., California (Berkeley)
Mechanism of action of topoisomerase poisoning drugs; structure and energetics of specific DNA recognition by drugs and proteins
Larissa A. Pohorecky, Professor of Neuropharmacology, CAS; Ph.D., Chicago
Alcohol and psychological stress on brain monoamines and behavior
Tariq M. Rana, Associate Professor of Pharmacology, UMDNJ–RWJMS; Ph.D., California (Berkeley)
Drug design; artificial proteolysis; RNA-protein interactions in HIV
Eric H. Rubin, Associate Professor of Medicine and Pharmacology, UMDNJ–RWJMS; M.D., South Florida
Clinical and molecular approaches to inhibition of DNA topoisomerases
Alexey G. Ryazanov, Associate Professor of Pharmacology, UMDNJ–RWJMS; D.Sc., Moscow State
Regulation of protein synthesis and the cell cycle
Maritn M. Sanders, Professor of Pharmacology, UMDNJ–RWJMS; Ph.D., Washington
Fungal topoisomerases; stress-attuned translation and gene expression
Stephen M. Shea, Professor of Pathology, UMDNJ–RWJMS; M.D., National University of Ireland (Galway)
Transport systems of endothelial surfaces; glomerular filtration
Tetsuo Shimamura, Professor of Pathology, UMDNJ–RWJMS; M.D., Yokohama
Structure and function of the renal medulla; urine-concentrating mechanisms
Patricia K. Sonnala, Associate Professor of Neurology, Psychiatry, and Pharmacology, UMDNJ–RWJMS; Ph.D., Utah
Neurotoxicology; monoamines and CNS function
Kevin S. Sweeder, Assistant Professor of Chemical Biology, CP; Ph.D., California Institute of Technology
Repair of DNA damage
Nancy C. Walworth, Associate Professor of Pharmacology, UMDNJ–RWJMS; Ph.D., Yale
Control of cell cycle progression in yeast
Shu-ying Caroline Wei, Associate Professor of Chemical Biology, CP; Ph.D., Johns Hopkins
Molecular mechanisms of carcinogenesis/mutation by environmental pollutants
Donald J. Wolff, Professor of Pharmacology, UMDNJ–RWJMS; Ph.D., Wisconsin
Pharmacology of nitric oxide synthase: calcium/calmodulin dependent processes
Chung S. Yang, Professor of Pharmacognosy, CP; Ph.D., Cornell
Nitroimidazoles, carcinogenesis, molecular biology of cytochrome P-450
Peter D. Yurchenco, Professor of Pathology and Laboratory Medicine, UMDNJ–RWJMS; M.D., Albert Einstein
Extracellular matrix
Wenping Zhou, Assistant Professor of Chemical Biology, CP; Ph.D., California (Berkeley)
Molecular mechanisms of neural development

Programs

The study of pharmacology involves several disciplines, using the methods of biochemistry, cell biology, chemistry, molecular biology, and physiology. The graduate program, which is research-oriented, has faculty members from several departments at UMDNJ–Robert Wood Johnson Medical School and Rutgers University. Faculty research covers a range of specialties, including cancer pharmacology, drug design and metabolism, neuropharmacology, and signal transduction. The graduate program also participates in a combined M.D./Ph.D. program.

Applicants who have completed a bachelor’s degree in biology, chemistry, or neuroscience are viewed as optimal candidates for admission. However, those with undergraduate training in related areas are also acceptable candidates, provided deficiencies are eliminated during the first year of study.

The Ph.D. program requires a minimum of 72 credits, including 32 credits of course work. At least 24 credits of advanced research must be conducted during one year of residence. Admission to candidacy for the Ph.D. requires the satisfactory completion of course work and a qualifying examination that includes the defense of a detailed research proposal. The doctoral dissertation is based on original laboratory research.

Joint Ph.D. degrees are awarded in this program. See related information at the beginning of this chapter.

In addition to the courses listed below, students draw upon courses offered in other graduate programs, such as biochemistry and molecular biology, computer science, microbiology, neuroscience, physiology, and toxicology. Students are encouraged to participate in seminar programs and journal clubs.

Except for transfer students and M.D./Ph.D. candidates, most students enter the program as recruits from the core curriculum in molecular biosciences. Upon completing the requirements of the core (one year), students opting to specialize in cellular and molecular pharmacology must select a faculty adviser from the program.

Graduate Courses

16:718:562. Advanced Pharmacology Laboratory (3)
Prerequisite: Permission of instructor.

16:718:565, 566. Advanced Problems in Pharmacology (BA,BA)
Prerequisites: Permission of graduate director and instructor. Independent research with a faculty member on some aspect of a research problem. With minimum supervision, students are expected to analyze, interpret, and report the experimental data.

16:718:574. Neuropharmacology (2)
Geller. Prerequisite: Permission of instructor.

Seminar presentations consider the mechanisms of synaptic transmission in the nervous system, role of voltage- and ligand-gated ion channels, and G-protein coupled receptors in information transmission. Material includes the regulation of the synthesis, storage, release, and destruction of neurotransmitters.
16:718:578. **Drug Metabolism (2)**

Conrey, Kaufman. Prerequisite: Permission of instructor. Readings, seminars, and discussions emphasize selected papers from the primary literature pertaining to the metabolism of foreign chemicals. Critical discussions of publications that describe the properties and regulation of foreign compound-metabolizing enzymes in microorganisms, plants, insects, lower mammals, and humans. Consideration of the significance of these enzymes for the metabolism and action of foreign chemicals and endogenous substrates in intact cells and organisms.

16:718:601. **Genetics in Pharmacology (2)**

Morris Walworth. Prerequisite: Permission of instructor. Genetic strategies in understanding drug mechanisms and in the search for new pharmaceutically active agents. Some familiarity with genetics advisable.

16:718:602. **Seminar in Pharmacology (1)**

Faculty and student presentations.

16:718:603. **Cancer Pharmacology (2)**

Chin. Prerequisite: Permission of instructor. Pharmacological aspects of oncogenes and tumor-suppressor genes, regulation of gene expression, carcinogenesis and tumorigenesis, drug-target interaction and the consequential development of resistance to cytotoxic chemotherapeutic drugs in cancer.

16:718:604. **Signal Transduction (2)**

Ryzanov. Prerequisite: Permission of instructor. Biology, pharmacology, and molecular biology of the cell cycle.

16:718:605. **Drug-Target Interactions (2)**

Gantert, Rana. Prerequisite: Permission of instructor. Basic principles of the secondary and tertiary structures of nucleic acids used to explore aspects of nucleic acid biology such as protein-nucleic acid interactions, RNA-catalyzed reactions, and nucleic acid pharmacology.

Sanders. Prerequisites: Permission of graduate director and instructor. Molecular basis of pharmacologic selectivity, drug targets, adaptive responses to drugs, disposition of drugs, and genetic and molecular approaches to drug therapy.

16:718:701, 702. **Research in Pharmacology (BA, BA)**

PHARMACY

(See the catalog of the College of Pharmacy for information about programs leading to the professional Doctor of Pharmacy [Pharm.D.] degree. For further information about the Pharm.D. degree, contact Dr. Joseph Barrone at 732/445-3285.)

PHILOSOPHY 730

Degree Programs Offered: Master of Arts, Doctor of Philosophy

Director of Graduate Program: Professor Frank Arntzenius, Davison Hall, Douglass Campus (732/932-9181)

Members of the Graduate Faculty

Frank Arntzenius, Associate Professor of Philosophy, FAS-NB; Ph.D., London
School of Economics

Philosophy of science; metaphysics; philosophy of physics

Martha Bolton, Professor of Philosophy, FAS-NB; Ph.D., Michigan

Early modern philosophy

Robert H. Bolton, Professor of Philosophy, FAS-NB; Ph.D., Michigan

Ancient philosophy, philosophy of language, metaphysics

Martin R. Bunzel, Professor of Philosophy, FAS-NB; Ph.D., Minnesota

Philosophy of science

Ruth Chang, Assistant Professor of Philosophy, FAS-NB/SL-C; J.D., Harvard;

D.Phil., Oxford

Philosophy of law; ethics

Frances Egan, Associate Professor of Philosophy, FAS-NB; Ph.D., Western Oregon

Philosophy of psychology; philosophy of mind; philosophy of science

Seymour Feldman, Professor Emeritus of Philosophy, FAS-NB; Ph.D., Columbia

Medieval and seventeenth-century philosophy; philosophy of religion

Jerry A. Ford, Professor of Philosophy, FAS-NB; Ph.D., Princeton

Philosophy of mind; cognitive psychology

Mary B. Gibbons, Associate Professor of Philosophy, FAS-NB; Ph.D., Princeton

Social/political/feminist/analytic philosophy; reproductive practices; autonomy

Richard Henson, Professor Emeritus of Philosophy, FAS-NB; Ph.D., Yale

Ethics; social and political philosophy

Nancy Holmstrom, Associate Professor of Philosophy, FAS-NB; Ph.D., Michigan

Social and political philosophy; Marxism; feminist theory

Douglas N. Husak, Professor of Philosophy, FAS-NB; Ph.D., J.D., Ohio State

Philosophy of law; social and political philosophy; ethics

Peter Kivy, Professor of Philosophy, FAS-NB; Ph.D., Columbia

Aesthetics; early modern philosophy

Peter D. Klein, Professor of Philosophy, FAS-NB; Ph.D., Yale

Epistemology

Ernest P. LePore, Professor of Philosophy, FAS-NB; Ph.D., Minnesota

Philosophy of language

Brian Loar, Professor of Philosophy, FAS-NB; D.Phil., Oxford

Philosophy of mind; philosophy of language; metaphysics

Barry M. Loewer, Professor of Philosophy, FAS-NB; Ph.D., Stanford

Philosophy of science; logic; philosophy of mind

Robert Matthews, Professor of Philosophy, FAS-NB; Ph.D., Cornell

Philosophy of psychology and language; theoretical psycholinguistics

Tim Maudlin, Professor of Philosophy, FAS-NB; Ph.D., Pittsburgh

Philosophy of science; ancient philosophy; epistemology

Howard McGary, Jr., Professor of Philosophy, FAS-NB; Ph.D., Minnesota

Social and political philosophy; ethics; Afro-American philosophy

Colin McGinn, Professor of Philosophy, FAS-NB; B.Phil., Oxford

Philosophy of mind; metaphysics; Wittgenstein

Brian P. McLaughlin, Chairperson and Professor of Philosophy, FAS-NB; Ph.D.,

North Carolina

Metaphysics; epistemology

Stephen Neale, Professor of Philosophy, FAS-NB; Ph.D., Stanford

Logic philosophy of language

Kenneth J. Searle, Professor of Linguistics, FAS; Ph.D., Massachusetts Institute

of Technology

Learnability theory

Frederic Schick, Professor Emeritus of Philosophy, FAS-NB; Ph.D., Columbia

Decision theory; social and political philosophy

Fadiou A. Shehabi, Professor Emeritus of Philosophy, FAS-NB; Ph.D., Princeton

Islamic philosophy; aesthetics; phenomenology and existentialism

Ernest Sosa, Professor of Philosophy, Brown University, and Professor of Philosophy, FAS-NB; Ph.D., Pittsburgh

Epistemology; metaphysics

Laurent Stern, Professor of Philosophy, FAS-NB; Ph.D., Zurich

Aesthetics; phenomenology, modern philosophy

Stephen P. Stich, Professor of Philosophy, FAS-NB; Ph.D., Princeton

Epistemology; philosophy of psychology

Albert Sweet, Professor Emeritus of Philosophy, FAS-N; Ph.D., Emory

Logic philosophy of science

Larry Temkin, Professor of Philosophy, FAS-NB; Ph.D., Princeton

Normative ethics; metaethics; social and political philosophy

Simon Thomas, Professor of Mathematics, FAS-NB; Ph.D., London

Model theory; infinite groups

Phenice S. Wiada, Professor of Philosophy, FAS-N; Ph.D., New York

Philosophy of religion; theory of knowledge

Renée Weber, Professor Emerita of Philosophy, FAS-NB; Ph.D., Columbia

Existentialism; interdisciplinary and comparative philosophy

Bruce Wilshire, Professor of Philosophy, FAS-NB; Ph.D., New York

Aesthetics; American philosophy; phenomenology and existentialism

John W. Yolton, Professor Emeritus of Philosophy, FAS-NB; Ph.D., Oxford

Epistemology; early modern philosophy

Associate Members of the Graduate Faculty

Pierre Pellegrini, Visiting Professor of Philosophy, FAS-NB; Professor of Philosophy, CREA (France); Ph.D., Paris

Ancient philosophy

Michael D. Rohr, Associate Professor of Philosophy, FAS-N; Ph.D., Stanford

Ancient philosophy; theory of knowledge

Andrew von Hirsch, Professor of Criminal Justice, SCJ; LL.B., Harvard

Philosophy of criminal law; criminal sentencing theory and policy

Robert L. Woolfolk, Professor of Psychology, FAS-NB; Ph.D., Texas (Austin)

Behavioral therapy
Programs

The faculty in philosophy offers a comprehensive program of doctoral studies covering the principal branches of the subject. The program is organized to give students breadth of background before they specialize. The curriculum, which provides a wide range of options in the later stages of study, is complemented by related advanced-study courses in other disciplines at the Graduate School–New Brunswick. The program leading to the Ph.D. requires 48 credits, or sixteen courses, taken at the rate of four courses a term. Teaching assistants take only three courses a term. In addition, the program requires 24 credits of research. There is no residency requirement.

Applicants with distinguished undergraduate records who lack certain prerequisites for graduate study in philosophy may be accepted if they remedy these deficiencies by taking undergraduate courses without graduate credit.

There are five requirements in the doctoral program in philosophy. The first, the course requirement, specifies that the student must pass sixteen courses (worth 48 credits) that have been approved by the department. The second, the distribution requirement, ensures that students have a broad background in philosophy. To meet this standard, students must earn a grade of B or better in one designated 500-level course in each of six areas of the subject. In addition, they must earn a B or better in another two 500- or 600-level courses taken in four of the six specialty areas. These areas of distribution are:

1. ancient/medieval philosophy (up to 1600 A.D.)
2. modern philosophy
3. logic and philosophy of language
4. epistemology and philosophy of science
5. metaphysics and philosophy of mind
6. ethics and value theory

Successful completion of the next two requirements constitutes passing the qualifying examination. These two requirements are the literature review and the area-of-concentration requirement, which measures a student’s specialized knowledge. To complete the area-of-concentration requirement, students must pass a comprehensive examination in one of the six specialty areas listed above.

As soon as possible after passing the area examination, the student chooses a predissertation adviser and then meets with the graduate director to begin satisfying the predissertation requirements. The graduate director, in consultation with the student, appoints a predissertation committee of three members of the graduate faculty, including the adviser. The predissertation requirements are a predissertation paper (“proto-chapter”), a dissertation proposal, and a predissertation oral examination.

By successfully completing the predissertation requirements, the student qualifies to advance to the candidacy stage. After a student has met the first four requirements, the final requirement is the dissertation. To be accepted, the dissertation must be judged publishable as measured by style, scholarship, and originality.

When a student has reached the dissertation stage, the director of the graduate program, in consultation with the student, appoints a dissertation committee, with one member designated as dissertation adviser, to direct the student’s work on the dissertation. This committee must approve formally the dissertation proposal, and all members of the committee must approve the completed dissertation.

To obtain a Master of Arts degree, a student must: a) satisfy all of the master’s degree area-distribution course requirements; b) pass with grades of B or better 30 credits of courses approved by the philosophy department; and c) pass the area-of-concentration requirement. The latter requirement constitutes the comprehensive examination.

Normally, the Master of Arts in Philosophy is not offered as a terminal degree and is taken only by students enrolled in the Ph.D. program.

Graduate Courses

16:730:510. (F) Mathematical Logic (3)
Introduction to the basic results of mathematical logic, including completeness, incompleteness, and Godel’s theorems.

16:730:513. (F) Logic and Natural Language (3)
Prerequisite 16:730:510.
Logic as a tool in the semantic analysis of natural language; relation between symbolic and natural languages.

16:730:520. Seminar in Plato (3)
Study of representative works from the main periods of Plato’s thought.

16:730:521. Seminar in Aristotle (3)
Study of some main works of central importance in the Aristotelian Corpus.

16:730:526. Seminar in Medieval Philosophy (3)
Medieval metaphysics; philosophy of nature and epistemology; time and eternity; the infinite; creation; causality; skepticism.

16:730:530. Seminar in Seventeenth-Century Philosophy (3)
Examination of a major philosopher, work, or topic of the period. Emphasis on metaphysics and epistemology; connections with other problems in philosophy and the natural sciences.

16:730:533. Seminar in Eighteenth-Century Philosophy (3)
Examination of a major philosopher, work, or topic of the period. Emphasis on metaphysics and epistemology; connections with other problems in philosophy and the natural sciences.

16:730:536. Seminar in Nineteenth-Century Philosophy (3)
From post-Kantian idealism to the early stages of phenomenology.

16:730:550. Seminar in Epistemology (3)
Nature of justification, belief, and truth; rival accounts of knowledge; traditional and contemporary perspectives on empiricism, rationalism and pragmatism, and skepticism.

16:730:553. Seminar in Metaphysics (3)
The problem of universals. Theories of the infinite, time, causality, notions of possibility and necessity, and counterfactuals.

16:730:556. Seminar in Philosophy of Science (3)
Philosophical problems connected with modern science.

16:730:570. Seminar in Philosophy of Language (3)
The nature and varieties of linguistic meaning; signs and symbols; speech acts criteria of meaningfulness.

16:730:575. Seminar in Philosophy of Mind (3)
Contemporary discussions of cognitive and noncognitive mental activities and their influences on behavior; analyses of self-knowledge and self-deception; theories of mind-body identity.

16:730:580. Seminar in Ethics (3)
Typically concerned with several philosophers (e.g., Aristotle, Hume, Kant, Mill) or problems, such as rights, justice, virtue, relativism, nihilism, utilitarianism.

16:730:583. Seminar in Social and Political Philosophy (3)
Some recent philosophical theories and their relevance to contemporary issues in social science and politics.

16:730:585. Seminar in Philosophy of Law (3)
The concept of law and criteria of legal validity. Relation of these issues to questions of political obligation and the limits of judicial discretion.

16:730:590. Seminar in Aesthetics (3)
Study of representation, interpretation, and evaluation. The definition and the ontology of art. Expressive properties, artistic qualities, metaphorical expressions.
16:730:595. **SEMINAR ON TEACHING (N3)**
Techniques and problems of teaching philosophy to undergraduates.

16:730:601,602. **SPECIAL STUDIES IN PHILOSOPHY (BA,BA)**

16:730:620. **ADVANCED TOPICS IN PLATO (3)**
Intensive study of selected dialogues or topics in Plato’s philosophy.

16:730:621. **ADVANCED TOPICS IN ARISTOTLE (3)**
Intensive study of selected works or topics in Aristotle’s philosophy.

16:730:624. **ADVANCED TOPICS IN ANCIENT PHILOSOPHY (3)**
Detailed examination of selected central issues or writers, such as Parmenides and the early pluralists, theories of language, early Stoics, ancient Scepticism.

16:730:626. **ADVANCED TOPICS IN MEDIEVAL PHILOSOPHY (3)**
Detailed examination of selected central topics in metaphysics, philosophy of nature, and epistemology. Readings in translations from original sources.

16:730:630. **ADVANCED TOPICS IN SEVENTEENTH-CENTURY PHILOSOPHY (3)**
Detailed examination of a problem, such as Descartes’ theory of method, Spinoza’s doctrine of substance and attributes, or controversies about the nature of time and space.

16:730:633. **ADVANCED TOPICS IN EIGHTEENTH-CENTURY PHILOSOPHY (3)**
Detailed examination of a problem (e.g., Berkeley’s and Hume’s attack on abstract ideas, Kant’s refutation of idealism, issues in the theory of perception).

16:730:636. **ADVANCED TOPICS IN NINETEENTH-CENTURY PHILOSOPHY (3)**
Post-Kantian philosophy from Fichte to Nietzsche. The new social sciences; theories of interpretation; anticipations of twentieth-century philosophy.

16:730:640. **ADVANCED TOPICS IN AMERICAN PHILOSOPHY (3)**
Reception and transformation of European world views by American philosophers from Peirce to Dewey. Emphasis on notions of meaning, truth, freedom, and education.

16:730:645. **ADVANCED TOPICS IN CONTINENTAL PHILOSOPHY (3)**

16:730:648. **ADVANCED TOPICS IN ANALYTIC PHILOSOPHY (3)**
Writings of such authors as Russell, Moore, Carnap, Wittgenstein, Ryle, and Strawson.

16:730:650. **ADVANCED TOPICS IN EPistemology (3)**
Detailed examination of selected central issues or writers, such as scepticism, causal theories of perception and knowledge, epistemic rationality, Wittgenstein’s Of Certainty.

16:730:653. **ADVANCED TOPICS IN Metaphysics (3)**
Intensive examination of one or two selected issues in contemporary metaphysics.

16:730:656. **ADVANCED TOPICS IN PHILOSOPHY OF SCIENCE (3)**
Intensive examination of one or two selected issues in contemporary philosophy of science.

16:730:658. **ADVANCED TOPICS IN PHILOSOPHY OF PHYSICS (3)**
Philosophical issues related to particular areas of both classical and modern physics. Discussions of relativity and quantum theory.

16:730:660. **ETHICS AND LITERATURE (3)**
Examination of ethical issues as they arise within literary texts, focusing on the nature of evil, questions of character and motivation, and the way such matters are treated by literary works.

16:730:664. **ADVANCED TOPICS IN PHILOSOPHY OF SOCIAL SCIENCE (3)**
Intensive examination of one or two selected issues in contemporary philosophy of social science.

16:730:667. **ADVANCED TOPICS IN PHILOSOPHY OF HISTORY (3)**
Conceptions of historical knowledge from the early nineteenth century to the present; explanation and understanding; narration and description in historical writings; limits of historical understanding.

16:730:670. **ADVANCED TOPICS IN PHILOSOPHY OF LANGUAGE (3)**
Intensive examination of one or two selected issues in contemporary philosophy of language.

16:730:675. **ADVANCED TOPICS IN PHILOSOPHY OF MIND (3)**
Intensive examination of one or two selected issues in contemporary philosophy of mind.

16:730:676. **ADVANCED TOPICS IN THE PHILOSOPHY OF PSYCHOLOGY (3)**
Examination of selected topics in the philosophy of psychology, focusing especially on issues in the foundations of cognitive/computational psychology. Topics include representationalism, learnability theory, the innateness controversy.

16:730:678. **ADVANCED TOPICS IN DECISION THEORY (3)**
The logic of choice and of action; valuation and probability; risk and uncertainty; coherence and rationality. Survey of current theories and of outstanding problems.

16:730:679. **TOPICS IN LOGIC (3)**
Survey of a variety of topics in logic.

16:730:680. **ADVANCED TOPICS IN ETHICS (3)**
Intensive examination of one or two selected issues in contemporary ethics.

16:730:683. **ADVANCED TOPICS IN SOCIAL AND POLITICAL PHILOSOPHY (3)**
Intensive examination of one or two selected issues in contemporary social and political philosophy.

16:730:685. **ADVANCED TOPICS IN PHILOSOPHY OF LAW (3)**
Limits of state authority in the context of criminal law. Conduct beyond criminal sanction. Discussions of paternalism, obscenity, negligence, strict liability, mistake, excuses, justifications, harm.

16:730:690. **ADVANCED TOPICS IN INTERPRETATION AND HISTORY (3)**
Study of representation, interpretation, and evaluation. The definition and ontology of art. Expressive properties, artistic qualities, metaphorical expressions.

16:730:692. **ADVANCED TOPICS IN INTERPRETATION: THEORY AND PRACTICE (3)**
Development of our notions of interpretation since the late eighteenth century. The search for a theory supporting interpretive decisions. Sceptical challenges raised against such theories.

16:730:695. **ADVANCED TOPICS IN PHILOSOPHY OF RELIGION (3)**
Detailed examination of a problem in the contemporary literature, such as divine omniscience, religion and morality, problem of evil, the nature of religious belief.

16:730:695. **PROSEMINAR IN PHILOSOPHY (3)**
Open only to upper-level Ph.D. students in philosophy. Advanced seminar in which students present their dissertation research.

16:730:701,702. **RESEARCH IN PHILOSOPHY (BA,BA)**
PHYSICS AND ASTRONOMY 750

Degree Programs Offered: Master of Science, Master of Science for Teachers, Master of Philosophy, Doctor of Philosophy
Director of Graduate Program: Professor Jolie A. Cizewski, Serins Physics Laboratories, Busch Campus (732/445-2502)
Email: graduate@physics.rutgers.edu
Web Site: http://www.physics.rutgers.edu

Members of the Graduate Faculty

Elihu Abrahams, Bernard Serin Professor of Physics and Astronomy, FAS–NB; Ph.D., California (Berkeley)

Theoretical condensed-matter physics

Eva Y. Andrei, Professor of Physics and Astronomy, FAS–NB; Ph.D., Rutgers

Experimental condensed-matter physics

Natanel Andrei, Professor of Physics and Astronomy, FAS–NB; Ph.D., Princeton

Theoretical condensed-matter and particle physics

Thomas Banks, Professor of Physics and Astronomy, FAS–NB; Ph.D., Massachusetts Institute of Technology

Theoretical elementary particle physics

Robert A. Bartsch, Professor of Physics and Astronomy, FAS–NB; Ph.D., Pennsylvania

Experimental condensed-matter physics

John B. Bronzan, Professor of Physics and Astronomy, FAS–NB; Ph.D., Princeton

Theoretical elementary particle physics

Kieran Burke, Associate Professor of Chemistry, FAS–C; Ph.D., California (Santa Barbara)

Theoretical condensed matter, surface, and chemical physics

Hermin Y. Carr, Professor Emeritus of Physics and Astronomy, FAS–NB; Ph.D., Harvard

Experimental condensed-matter physics

Sang-Wook Cheong, Professor of Physics and Astronomy, FAS–NB; Ph.D., California (Los Angeles)

Experimental condensed-matter physics and material science

Jolie A. Cizewski, Associate Chairperson and Professor of Physics and Astronomy, FAS–NB; Ph.D., SUNY (Stony Brook)

Experimental nuclear physics

Piers Coleman, Professor of Physics and Astronomy, FAS–NB; Ph.D., Princeton

Theoretical condensed-matter physics

John Conway, Associate Professor of Physics and Astronomy, FAS–NB; Ph.D., Chicago

Experimental elementary particle physics

Patrick Couto, Assistant Professor of Physics and Astronomy, FAS–NB; Ph.D., M. D. at;tor (Canada)

Observational astronomy and astrophysics

Mark C. Croft, Professor of Physics and Astronomy, FAS–NB; Ph.D., Rochester

Experimental condensed-matter physics

Thomas J. Devlin, Professor of Physics and Astronomy, FAS–NB; Ph.D., California (Berkeley)

Experimental elementary particle physics

Michael R. Douglas, Professor of Physics and Astronomy, FAS–NB; Ph.D., California Institute of Technology

Theoretical elementary particle physics

Laura Ferrarese, Research Assistant Professor of Physics and Astronomy, FAS–NB; Ph.D., Johns Hopkins

Observational astronomy and astrophysics

Daniel Friedan, Professor of Physics and Astronomy, FAS–NB; Ph.D., California (Berkeley)

Theoretical elementary particle physics

Eric Garfunkel, Professor of Chemistry, FAS–NB; Ph.D., California (Berkeley)

Experimental surface science

Michael E. Gershenson, Associate Professor of Physics and Astronomy, FAS–NB; Ph.D., Institute of Radio Engineering and Electronics (Moscow)

Experimental condensed-matter physics

Ronald Gillman, Associate Professor of Physics and Astronomy, FAS–NB; Ph.D., Pennsylvania

Experimental nuclear physics

Charles M. Goldstein, Professor of Physics and Astronomy, FAS–NB; Ph.D., Princeton

Experimental nuclear physics

Sheldon Goldstein, Professor of Mathematics, FAS–NB; Ph.D., Yeshiva

Foundations of quantum mechanics, mathematical physics

Torgny Gustafsson, Professor of Physics and Astronomy, FAS–NB; D.Sc., Chalmers (Sweden)

Experimental condensed-matter physics

David R. Harrington, Professor of Physics and Astronomy, FAS–NB; Ph.D., Carnegie Institute of Technology

Theoretical nuclear physics

B. Jane Hinch, Associate Professor of Chemistry, FAS–NB; Ph.D., Cambridge

Surface studies using atomic and molecular scattering

Petr Horava, Associate Professor of Physics and Astronomy, FAS–NB; Ph.D., Czechoslovak Academy of Sciences

Theoretical high-energy physics

George K. Horton, Professor of Physics and Astronomy, FAS–NB; Ph.D., Birmingham

Theoretical condensed-matter physics

John Hughes, Associate Professor of Physics and Astronomy, FAS–NB; Ph.D., Columbia

Observational astrophysics

Lev Ioffe, Associate Professor of Physics and Astronomy, FAS–NB; Ph.D., Landau Institute for Theoretical Physics

Condensed-matter theory

Raul Jimenez, Assistant Professor of Physics and Astronomy, FAS–NB; Ph.D., Copenhagen

Theoretical astrophysics and astrophysics

Charles L. Joseph, Assistant Research Professor of Physics and Astronomy, FAS–NB; Ph.D., Colorado

Experimental astronomy and detector development

Mohsen K. Kalekari, Associate Chairperson and Professor of Physics and Astronomy, FAS–NB; Ph.D., Columbia

Experimental elementary particle physics

Valery Kiryukhin, Assistant Professor of Physics and Astronomy, FAS–NB; Ph.D., Princeton

Experimental condensed-matter physics

William M. Kloet, Professor of Physics and Astronomy, FAS–NB; Ph.D., Utrecht

Theoretical condensed-matter physics

Haruo Koijima, Professor of Physics and Astronomy, FAS–NB; Ph.D., California (Los Angeles)

Experimental condensed-matter physics

Noëlle Koller, Professor of Physics and Astronomy, FAS–NB; Ph.D., Columbia

Experimental nuclear physics

Arthur Kosowsky, Assistant Professor of Physics and Astronomy, FAS–NB; Ph.D., Chicago

Theoretical astrophysics

B. Gabriel Kovlax, Professor of Physics and Astronomy, FAS–NB; Ph.D., Princeton

Theoretical condensed-matter physics

David C. Langreth, Professor of Physics and Astronomy, FAS–NB; Ph.D., Illinois

Theoretical condensed-matter physics

Amitabha Lath, Assistant Professor of Physics and Astronomy, FAS–NB; Ph.D., Massachusetts Institute of Technology

Experimental high-energy physics

Paul L. Leath, Chairperson and Professor of Physics and Astronomy, FAS–NB; Ph.D., Missouri

Theoretical condensed-matter physics

Joel L. Lebowitz, George William Hill Professor Emeritus of Mathematics and Physics and Astronomy, FAS–NB; Ph.D., Syracuse

Mathematical physics and statistical mechanics

Ronald Levy, Professor of Chemistry, FAS–NB; Ph.D., Harvard

Biophysical chemistry, chemical physics, dynamics of macromolecules

Peter Lindenhof, Professor Emeritus of Physics and Astronomy, FAS–NB; Ph.D., Columbia

Experimental condensed-matter physics

Claud W. Lovelace, Professor of Physics and Astronomy, FAS–NB; B.S., Capetown

Theoretical elementary particle physics

Sergei Lukyanov, Assistant Professor of Physics and Astronomy, FAS–NB; Ph.D., Landau Institute for Theoretical Physics (Moscow)

Quantum field theory and statistical mechanics

Theodore E. Mathew, State of New Jersey Professor of Surface Science and Director of the Laboratory for Surface Modification, FAS–NB; Ph.D., Notre Dame

Experimental surface science

Terry A. Mattiske, Associate Professor of Physics and Astronomy, FAS–NB; Ph.D., Princeton

Observational astrophysics

Aaron Z. Mekjian, Professor of Physics and Astronomy, FAS–NB; Ph.D., Maryland

Theoretical nuclear physics

David R. Merritt, Professor of Physics and Astronomy, FAS–NB; Ph.D., Princeton

Theoretical astrophysics

Andrew J. Mills, Professor of Physics and Astronomy, FAS–NB; Ph.D., Massachusetts Institute of Technology

Theoretical condensed-matter physics

Gregory Moore, Professor of Physics and Astronomy, FAS–NB; Ph.D., Harvard

Theoretical high-energy physics

Daniel E. Murnick, Professor of Physics and Astronomy, FAS–NB; Ph.D., Massachusetts Institute of Technology

Experimental nuclear and atomic physics

Herbert Neuberger, Professor of Physics and Astronomy, FAS–NB; Ph.D., Tel Aviv

Theoretical elementary particle physics

Wilma K. Olson, Mary I. Bunting Professor of Chemistry, FAS–NB; Ph.D., Stanford

Theoretical studies of nuclear acid structure and properties
Joe Pifer, Professor of Physics and Astronomy, FAS–NB; Ph.D., Illinois
 Experimental condensed-matter physics
Richard J. Plano, Professor of Physics and Astronomy, FAS–NB; Ph.D., Chicago
 Experimental elementary particle physics
Carlton P. Pryor, Associate Professor of Physics and Astronomy, FAS–NB; Ph.D., Harvard
 Observational astrophysics
Karin Rabe, Professor of Physics and Astronomy, FAS–NB; Ph.D., Massachusetts Institute of Technology
 Theoretical condensed-matter and surface physics
Ronald D. Ransome, Professor of Physics and Astronomy, FAS–NB; Ph.D., Texas (Austin)
 Experimental nuclear physics
Andrei E. Ruckenstein, Professor of Physics and Astronomy, FAS–NB; Ph.D., Cornell
 Theoretical condensed-matter physics
Joseph V. Sak, Professor of Physics and Astronomy, FAS–NB; Ph.D., Institute of Solid State Physics (Prague)
 Theoretical condensed-matter physics
Stephen R. Schuetzle, Professor of Physics and Astronomy, FAS–NB; Ph.D., California (Berkeley)
 Experimental elementary particle physics
Nathan Seiberg, Professor of Physics, Institute for Advanced Study; Ph.D., Weizmann Institute of Science
 Theoretical elementary particle physics
Jeremy Sellwood, Professor of Physics and Astronomy, FAS–NB; Ph.D., Manchester
 Theoretical astrophysics
Joel A. Shapiro, Professor of Physics and Astronomy, FAS–NB; Ph.D., Cornell
 Theoretical elementary particle physics
Earl D. Shaw, Professor of Physics, FAS–N; Ph.D., California (Berkeley)
 Experimental laser physics
Sumil Somalwar, Associate Professor of Physics and Astronomy, FAS–NB; Ph.D., Chicago
 Experimental particle physics
Michael J. Stephen, Professor of Physics and Astronomy, FAS–NB; Ph.D., Oxford
 Theoretical condensed-matter physics
Gordon Thomson, Professor of Physics and Astronomy, FAS–NB; Ph.D., Harvard
 Experimental elementary particle physics
David Vanderbilt, Professor of Physics and Astronomy, FAS–NB; Ph.D., Massachusetts Institute of Technology
 Theoretical condensed-matter physics
Russell E. Walters, Distinguished Visiting Scientist in Physics and Astronomy, FAS–NB; Ph.D., California (Berkeley)
 Experimental condensed-matter physics
Terence I. Watts, Professor of Physics and Astronomy, FAS–NB; Ph.D., Yale
 Experimental elementary particle physics
Theodore Williams, Professor of Physics and Astronomy, FAS–NB; Ph.D., California Institute of Technology
 Experimental astrophysics
Larry Zanick, Professor of Physics and Astronomy, FAS–NB; Ph.D., Massachusetts Institute of Technology
 Theoretical nuclear physics
Alexander Zamolodchikov, Professor of Physics and Astronomy, FAS–NB; Ph.D., Institute of Theoretical and Experimental Physics (Moscow)
 Theoretical elementary particle physics
Harold S. Zappeisky, Professor of Physics and Astronomy, FAS–NB; Ph.D., Cornell
 Theoretical astrophysics and plasma physics
Frank M. Zimmermann, Associate Professor of Physics and Astronomy, FAS–NB; Ph.D., Cornell
 Experimental surface-science physics

Associate Members of the Graduate Faculty
Gerald Goldin, University Director, Science and Mathematics Partnerships, and Professor of Mathematics and Physics Education, GSE; Ph.D., Princeton
 Theoretical astrophysics and plasma physics
Ken-Ichi Nishikawa, Research Assistant Professor of Physics and Astronomy, FAS–NB; Ph.D., Nagoya (Japan)
 Theoretical astrophysics and plasma physics
George H. Sigel, Jr., Professor of Ceramics, and Director, Fiber Optics Materials Research Program, SE; Ph.D., Georgetown
 Optic materials; infrared transmitting materials; radiation resistant materials

Programs
The research activities of the program are both theoretical and experimental and cover the main areas of interest in contemporary physics, including astrophysics, condensed matter and statistical physics, surface physics, elementary particle physics, and nuclear physics. Experimental facilities are located on campus in Serin, a modern research laboratory. The surface modification and interface dynamics laboratory houses 1.7 MeV tandetron and 400-keV ion accelerators as well as scanning tunneling microscopes and other surface analytical equipment. There also are several mK-range dilution refrigerators available that are used in low-temperature physics studies. Nuclear structure experiments are carried out at accelerators at Yale University and the Argonne; Oak Ridge, TN; and Lawrence Berkeley National Laboratories in Berkeley, CA. Intermediate experiments are done at the continuous electron beam facilities at Mainz, Germany, and at the Thomas Jefferson National Accelerator Facility in Newport News, VA. Elementary-particle physics experiments are carried out at the Fermi National Accelerator Laboratory in Batavia, IL, and at the Stanford Linear Accelerator Center in Menlo Park, CA. Rutgers astrophysicists use the Kitt Peak Observatory in Arizona and the Cerro-Tololo facilities in Chile. The Rutgers faculty also is involved in a consortium that is constructing the SALT telescope in South Africa.

The program for the master’s degree requires a minimum of 30 credits and includes either a critical essay or a thesis on a research problem.

The program for the Ph.D. degree requires a dissertation and an appropriate combination of course work and research credits. The qualifying examination is given in two parts, written and oral. With the approval of the graduate director, courses in other programs may be added to those conducted by the graduate program in physics and astronomy. Ph.D. candidates normally are expected to spend at least one year in full-time residence, although this requirement may be waived by the graduate studies committee. There is no language requirement. The Master of Philosophy degree is available to doctoral candidates.

Teaching assistantships or research fellowships are available for both first-year and advanced graduate students, and virtually all students receive financial support. Assistants spend no more than fifteen hours per week on their duties and normally take 6 to 10 credits of graduate courses each term. Fellowships normally do not entail special duties, and those who hold fellowships can devote their entire time to course work and to research for their Ph.D. dissertation.

Applications should include the results of the general aptitude test and the advanced physics test of the Graduate Record Examination. Applicants whose native language is not English are required to take the TOEFL or the IELTS examinations. Further information about these and other matters may be found in the Graduate Program in Physics, a brochure available from the program director or at the program’s web site.

Graduate Courses
16:750:501, 502. QUANTUM MECHANICS (3,3,3)
 Calman. Prerequisite: 01:750:417 or equivalent.
 Historical introduction; waves and wave packets; one-dimensional problems; representation theory; angular momentum and spin; time-dependent and time-independent perturbation theory, the WKB approximation; atomic and molecular systems; theory of scattering; semiclassical theory of radiation; Dirac equation.
16:750:503. (F) ELECTRICITY AND MAGNETISM I (3,3,3)
 Sak. Prerequisite: 01:750:386 or equivalent.
16:750:504. (S) ELECTRICITY AND MAGNETISM II (3,3,3)
 Sak. Prerequisite: 16:750:503.
 Radiation. Detailed discussion of special relativity, including space-time diagrams, covariance and invariance, twin paradox, uniform acceleration, motion of a charged particle, stress-energy tensors. Radiation by moving charges, bremsstrahlung, multipole fields, radiation damping.
16:750:505. (S) QUANTUM ELECTRONICS (3)
Prerequisite: 01:750:417 or equivalent.
Modern optics; atomic and solid-state phenomena; masers, lasers, theory of amplification, oscillation, coherence; photon correlations; nonlinear optics. Electron and nuclear magnetic resonance. Tunneling phenomena.

16:750:506. (S) MODERN EXPERIMENTAL TECHNIQUES (4)
Prerequisite: 01:750:326, 388, or equivalent.
Modern instruments and techniques in experimental physics. Topics include passive network theory and transient and steady-state response analysis; transmission lines; operational amplifiers; digital circuits; a detailed study of noise; phase sensitive detection, including lock-in amplifiers and signal averagers; low-level measurement techniques, including quantum interference devices; particle detection techniques.

16:750:507. (F) CLASSICAL MECHANICS (3)
Lukyanov. Prerequisite: 01:750:382 or equivalent.

16:750:509. (S) PHYSICS APPLICATION OF COMPUTERS (3)
Kadi. Lec. 2 hrs, lab. 3 hrs. Prerequisite Programming experience.

16:750:511. (F) MATHEMATICAL PHYSICS (3)
Zapolsky. Prerequisite: 01:640:403, 423, or equivalent.
Physical applications of linear algebra, the exterior calculus, differential forms, complexes, and cohomology. Applications include Hamiltonian dynamics, normal-mode analysis, Markov processes, thermodynamics, Schrödinger’s equation, special relativity, electrodynamics, magnetostatics, Maxwell’s equations, and wave equations.

16:750:523. (F) TECHNIQUES IN EXPERIMENTAL PHYSICS (3)
Prerequisite Elementary physics laboratory. Not intended for students in the Ph.D. program.
Electronics as it is used in experimental physics. Transistors and their equivalent circuits, amplifiers, networks, digital logic, light and particle detectors, low-level measurements, including quantum interference devices.

16:750:524. (S) TOPICS IN PHYSICS (3)
Not intended for students in the Ph.D. program.
Self-paced course in which the student studies independently and the faculty act as tutors, providing help as needed and administering examinations. Subject matter divided into units, covering a wide range of subjects drawn from classical and modern physics. Units chosen in consultation with an adviser, taking into account the background and interests of each student.

16:750:541. (S) INTRODUCTORY ASTROPHYSICS (3)
Matilsky. Prerequisite: 01:750:382, 386, or equivalent.
Introduction to stellar astrophysics and modern astronomy. Stellar interiors, nucleosynthesis, energy transport, stellar evolution, white dwarfs, neutron stars, and black holes. Other topics of current interest from astrophysics.

16:750:601,602. (F) SOLID-STATE PHYSICS (3,3)
N. André. Prerequisite: 01:750:351 and 16:750:502, or equivalent.
Introduction to crystal lattices, scattering of radiation, lattice dynamics, electron bands, interaction among elementary excitations, disordered systems, transport properties, superconductivity and superfluidity, magnetism, crystal-field effects, phase transitions, optical properties.

16:750:603. (S) SOLID-STATE PHYSICS (3)
Millis. Prerequisite: 16:750:601 or equivalent.
Advanced treatment of the areas surveyed in 16:750:601 and their extension to topics of current interest in solid-state physics.

16:750:605. (S) NUCLEAR PHYSICS (3)
Klotz. Prerequisite: 16:750:502 or equivalent.
Survey of essential topics: properties of ground states, shell model, collective model, electromagnetic properties, sample excitations, compound-nucleus and direct reactions, beta decay. Additional topics may include alpha decay, fission, applications of nuclear physics, topics of current interest.

16:750:606. (S) NUCLEAR PHYSICS (3)
Advanced treatment of some topics discussed in 16:750:605, together with additional topics chosen in consultation with students.

16:750:607. (F) GALACTIC DYNAMICS (3)
Merritt. Prerequisite: 01:750:341,342, 16:750:507, or equivalents.
Equilibrium and stability of stellar systems and the dynamical evolution of galaxies. Modern approach to dynamics with a few practical examples of chaotic systems.

16:750:608. (F) COSMOLOGY (3)
Kowalsky. Prerequisite: 01:750:341,342 or equivalent.
Models of the universe, their fundamental parameters, and their estimation from observations. Evolution of the universe from soon after its formation to the present. Growth of structure and the formation of galaxies.

16:750:609. (F) FLUID AND PLASMA PHYSICS (3)
Stephen. Prerequisite: 16:750:501 or equivalent.
Fundamental physical properties of liquids, gases, and ionized systems. Includes selected topics from compressible and incompressible flow, electromagnetic interactions, instabilities, turbulence, nonequilibrium phenomena, kinetics, superfluid mechanics, related experimental techniques, and other topics of current interest in fluid and plasma research.

16:750:610. (S) INTERSTELLAR MATTER (3)
Sellwood. Prerequisite: 16:750:541 or equivalent.
Structure of the interstellar medium: its molecular, neutral atomic, and plasma phases. Radiative transfer, dust, particle acceleration, magnetic fields, and cosmic rays. Effects of supernovae, shock fronts, and star formation.

16:750:611. (S) STATISTICAL MECHANICS (3)
Ioffe. Prerequisite: 16:750:501 and 507.
Statistical methods and probability; the statistical basis for irreversibility and equilibrium; ensemble theory; statistical thermodynamics; classical and quantum statistics; the density matrix; applications of statistical mechanics to nonideal gases, condensed matter, nuclei and astrophysics; fluctuations, nonequilibrium statistical mechanics; kinetic theory.

16:750:612. (S) HIGH-ENERGY ASTROPHYSICS (3)
Hughes. Prerequisite: 01:750:341-342 or equivalent.
Origin and detection of high-energy photons and particles in the universe. Radiation processes in low-density media. Sites of high-energy phenomena in astrophysics, such as supernovae, pulsars, active galactic nuclei and quasars, and processes, such as accretion and shocks.

16:750:613. (S) PARTICLES (3)
Naberger. Prerequisite: 16:750:502 or equivalent.
Semiconductors, as well as solid-solid and solid-liquid interfaces.

Excitations; magnetic properties. Surfaces of metals, oxides, and

Kinetics and dynamics of processes at surfaces; structure and

SURFACE

mental bases of modern experimental methods.

Description of geometrical structure, surface morphology, elec-

crystals, and molecules on surfaces, and interfaces. Topics include atomistic

16:750:627. (F) SURFACE SCIENCE I (3)

M adey

Introduction to structure and dynamics of clean surfaces, atoms and

molecules on surfaces, and interfaces. Topics include atomistic
description of geometrical structure, surface morphology, elec-

tronic structure, surface composition, and theoretical and experi-

mental bases of modern experimental methods.

16:750:628. (S) SURFACE SCIENCE II (3)

M adey

Kinetics and dynamics of processes at surfaces; structure and

reactivity of molecules at surfaces; thermal and nonthermal

excitations; magnetic properties. Surfaces of metals, oxides, and

semiconductors, as well as solid-solid and solid-liquid interfaces.

16:750:629. (S) OBSERVATIONAL TECHNIQUES (3)

Williams Prerequisite: 16:750:541 or equivalent.

Introduction to tools and techniques of modern observational

astronomy. Survey of instruments and capabilities at current
telescope sites around the world and in space. Data reduction

methods. Practical experience with Serin Observatory.

16:750:633,634. SEMINAR IN PHYSICS (1,1)

Ciezewski. Prerequisite permission of instructor.

Seminars in fields of investigations of current interest.

16:750:636,637. BASICS OF TEACHING PHYSICS (1,1)

Prerequisite permission of instructor. Concurrent teaching assignment in physics

or astronomy recommended.

Intended for graduate students interested in improving their skills

for teaching physics. Topics include teaching goals, results of

recent research, lecturing, demonstrations, teaching problem

solving, testing, active learning, course development, and teaching

difficult concepts in selected areas of physics. Instructor observes the

students teaching.

The following courses may be taken in any order. Offered in

alternate years.

16:750:681,682. ADVANCED TOPICS IN SOLID-STATE PHYSICS

I,II (3,3)

16:750:685,686. ADVANCED TOPICS IN NUCLEAR PHYSICS I,II (3,3)

16:750:689,690. ADVANCED TOPICS IN ASTROPHYSICS I,II (3,3)

16:750:693,694. ADVANCED TOPICS IN HIGH ENERGY PHYSICS

I,II (3,3)

16:750:695. ADVANCED TOPICS IN MATHEMATICAL PHYSICS (3)

16:750:699. NONTHESIS STUDY (1)

16:750:701,702. RESEARCH IN PHYSICS (BA,BA)

PHYSIOLOGY AND NEUROBIOLOGY 761

Degree Program Offered: Doctor of Philosophy

Director of Graduate Program: Professor Ira B. Black, Room 342, CABM, Busch Campus (732/235-5388)

Members of the Graduate Faculty

Cory Abate-Shen, Associate Professor of Neuroscience and Cell Biology, UMDNJ-RWJMS/CABM; M.D., Harvard Medical School

Protein kinase pathway in neuronal development; synaptic plasticity

Patrizia Cascassa-Bonnerhi, Assistant Professor of Neuroscience and Cell Biology, UMDNJ-RWJMS; M.D., Ph.D., SUNY (Health Science Center at Brooklyn)

Cell cycle regulation and apoptosis signaling in progenitor cells in CNS

Timothy M. Casey, Professor of Entomology, CC; Ph.D., California (Los Angeles)

Respiration; biochemical thermoregulation

Kuang-Yu Chen, Professor of Chemistry, FAS-NB; Ph.D., Yale

Protein kinase pathway in neuronal development; neuroblastoma differentiation

Daniel S. Cowen, Assistant Professor of Psychiatry, UMDNJ-RWJMS; M.D., Ph.D., Case Western Reserve

Coupling of S-HT receptors to cellular signals for protein synthesis

Robin L. Davis, Associate Professor of Biological Sciences, FAS-NB; Ph.D., Stanford

Regeneration and electrophysiology of peripheral auditory neurons

Emanuel M. DiCicco-Bloom, Associate Professor of Neuroscience and Cell Biology, UMDNJ-RWJMS/CABM; M.D., Cornell Medical College

Cellular and molecular regulation of neurogenesis in vivo and in vitro
Cheryl F. Dreyfus, Associate Professor of Neuroscience and Cell Biology, UMDNJ–RWJMS; Ph.D., Harvard. Role of developmental factors in brain neuron ontogeny.

Monica Driscoll, Associate Professor of Molecular Biology and Biochemistry, FAS–NB/CABM; Ph.D., Harvard. Molecular genetics of neurodegeneration: mechanotransduction.

Isaac Edey, Assistant Professor of Molecular Biology and Biochemistry, FAS–NB/CABM; Ph.D., McGill. Molecular mechanism underlying biological clocks.

M. David Egger, Professor of Neuroscience and Cell Biology, UMDNJ–RWJMS; Ph.D., Yale. Neurophysiology; neuroanatomy; neurogenetics.

Julie M. Fagan, Associate Professor of Animal Sciences, CC; Ph.D., Arizona. Muscle growth mechanisms of protein breakdown in mammalian cells in health and disease.

Allahverdi Farmanfarmaian, Professor of Biological Sciences, FAS–NB; Ph.D., Stanford. Membrane transport; comparative physiology.

Bonnie Firestein, Assistant Professor of Cell Biology and Neuroscience, FAS–NB; Ph.D., California (San Diego). Targeting of neuronal proteins.

Herbert M. Gillier, Professor of Pharmacology and Neurology, UMDNJ–RWJMS; Ph.D., Case Western Reserve University. Developmental and molecular neurobiology.

Bijan K. Ghosh, Professor of Physiology and Biophysics, UMDNJ–RWJMS; D.Sc., Calcutta. Protein membrane; membrane permeation.

Lindsey Grandison, Associate Professor of Physiology and Biophysics, UMDNJ–RWJMS; Ph.D., Michigan State University. Neuroendocrine functions.

Martin Grumet, Professor of Cell Biology and Neurosciences, FAS–NB; Ph.D., Johns Hopkins. Molecular mechanisms of cell adhesion in the nervous system.

Shu-Chan Hsu, Assistant Professor of Cell Biology and Neuroscience, FAS–NB; Ph.D., British Columbia. Molecular mechanisms of synaptic development and function.

Arnold G. Hyndman, Professor of Biological Sciences, FAS–NB; Ph.D., California (Los Angeles). Development of CNS neurons.

William G. Johnson, Professor of Neurology, UMDNJ–RWJMS; M.D., Columbia. Locating and defining genes for human nervous system traits and disorders.

Bela Julesz, Professor of Psychology, FAS–NB; Ph.D., Hungarian Academy of Sciences. Visual perception.

Joseph Kedem, Associate Professor of Physiology and Biophysics, UMDNJ–RWJMS; Ph.D., Hebrew (Jerusalem). Quantitative relation between cardiac function and metabolism.

George M. Krauthamer, Professor of Neuroscience and Cell Biology, UMDNJ–RWJMS; Ph.D., New York. Neurophysiology; neuroanatomy.

John Lenard, Professor of Physiology and Biophysics, UMDNJ–RWJMS; Ph.D., Cornell. Insulin actions in fungi; virus membrane assembly and disassembly.

John K.-J. Li, Professor of Biomedical Engineering, SE; Ph.D., Pennsylvania State University. Cardiovascular dynamics and hypertension; instrumentation.

Gordon J. Macdonald, Professor of Neuroscience and Cell Biology, UMDNJ–RWJMS; Ph.D., Rutgers. Reproductive endocrine functions.

Sasha Malamed, Professor of Neuroscience and Cell Biology, UMDNJ–RWJMS; Ph.D., Columbia. Ultrastructure and function of endocrine cells.

Michael Matise, Assistant Professor of Neuroscience and Cell Biology, UMDNJ–RWJMS; Ph.D., Pittsburgh. Molecular mechanisms of vertebrate nervous system development.

Randall D. McKinnon, Associate Professor of Surgery, UMDNJ–RWJMS; Ph.D., M.D.aster. Growth factors and gliia.

Gary F. Merrill, Professor of Biological Sciences, FAS–NB; Ph.D., Michigan State University. Regulation of coronary blood flow.

James Milling, Assistant Professor of Neuroscience and Cell Biology, UMDNJ–RWJMS; Ph.D., Princeton. Vertebrate CNS development.

Judith A. Neuhaus, Associate Professor of Medicine, UMDNJ–RWJMS; Ph.D., Rutgers. Neurobiology of respiratory control: neural responses to hypoxia and CO2.

Richard S. Nowakowski, Associate Professor of Neuroscience and Cell Biology, UMDNJ–RWJMS; Ph.D., Harvard. Development of central nervous system.

Timothy Otto, Associate Professor of Psychology, FAS–NB; Ph.D., New Hampshire. Neurobiology of memory; synaptic plasticity; rodent olfactory learning.

Richard Padgett, Associate Professor of Molecular Biology and Biochemistry, FAS–NB; Ph.D., North Carolina. TGF-beta signaling in Drosophila and C. elegans; developmental biology.

Charles H. Page, Professor of Biological Sciences, FAS–NB; Ph.D., Illinois. Cellular neurophysiology and motor control.

Thomas V. Papathomas, Associate Professor of Biomedical Engineering, FAS–NB; Ph.D., Columbia. Mechanisms and models for stress, motion, and texture perception.

Nicola Partridge, Professor and Chairperson of Physiology and Biophysics, UMDNJ–RWJMS; Ph.D., Western Australia. Signal transduction mediating hormone action; matrix metalloproteases.

Claudio W. Pikielny, Assistant Professor of Neuroscience and Cell Biology, UMDNJ–RWJMS; Ph.D., Brandeis. Molecular genetics of olfaction in Drosophila.

John E. Pintar, Assistant Professor of Neurobiology and Cell Biology, UMDNJ–RWJMS; Ph.D., Oregon. Role of insulin growth factor family during embryogenesis; development biology of the pharyngeal gland.

Mark R. Plummer, Associate Professor of Biological Sciences, FAS–NB; Ph.D., Stanford. Development and regulation of calcium channels in mammalian CNS neurons.

Jamshid Rahi, Associate Professor of Biological Sciences, FAS–NB; Ph.D., California (San Francisco). Neuroendocrine regulation of prolactin, LH, and other pituitary hormones.

David J. Riley, Professor of Medicine, Adjunct Professor of Physiology and Biophysics, UMDNJ–RWJMS; M.D., Maryland. Respiratory physiology.

Christopher Stouffer, Associate Professor of Genetics, FAS–NB; Ph.D., Massachusetts Institute of Technology. Formation and plasticity of synapses in the central nervous system.

Dipak Sarkar, Professor and Chairperson of Animal Sciences, CC; Ph.D., Oxford. Molecular mechanisms of neuroendocrine cell growth and differentiation.

Michael M. Shen, Assistant Professor of Pediatrics, UMDNJ–RWJMS; CINJ; Ph.D., Cambridge. Analysis of growth factor signaling in vertebrate neural development.

Tetsuo Shimamura, Professor of Pathology, UMDNJ–RWJMS; M.D., Ph.D., Yokohama. Rinal structure and function.

Arabinda K. Sinha, Associate Professor of Physiology and Biophysics, UMDNJ–RWJMS; Ph.D., California (San Francisco). Metabolic alterations between sleep and wakefulness.

Judith M. Steen, Professor of Psychology, FAS–NB; Ph.D., Rutgers. Sexual and maternal behaviors in animals and women.

Nancy R. Stevenson, Associate Professor of Physiology, UMDNJ–RWJMS; Ph.D., Rutgers. Digestive absorptive functions: gut enterostatistical theory.

Mark Takahashi, Associate Professor of Physiology, UMDNJ–RWJMS; Ph.D., Wisconsin. Enzymology; signal transduction mechanisms in cytokine-induced differentiation.

Carlo M. Tozzi, Assistant Professor of Medicine, UMDNJ–RWJMS; Ph.D., Rutgers. Hypertension; matrix turnover; signaling factors in vascular remodeling.

William G. Wadsworth, Assistant Professor of Pathology, UMDNJ–RWJMS; Ph.D., M.D. Extracellular matrix and axonal guidance in C. elegans.

James W. Wagner, Professor of Pathology, FAS–NB; Ph.D., Chicago. Neurochemical mechanisms underlying behavior.

Harvey R. Weiss, Professor of Physiology and Biophysics, UMDNJ–RWJMS; Ph.D., Duke. Circulatory and cardiac physiology.

Mark O. West, Professor of Psychology, FAS–NB; Ph.D., Bowman Gray School of Medicine. Basal ganglia and thalamic circuits in the rat during behavior and in electrophysiological response to drugs.

Kuo Wu, Associate Professor of Neuroscience and Cell Biology, UMDNJ–RWJMS; CINJ; Ph.D., SUNY (Brooklyn). Elucidation of molecular mechanisms that regulate synaptic structure.

Wise Young, Professor of Cell Biology, Developmental Biology, and Neurobiology, FAS–NB; Ph.D., Iowa; M.D., Stanford. Spinal cord nerve regeneration.

Edward J. Zambraski, Professor of Biological Sciences, FAS–NB; Ph.D., Iowa. Receptors and endocyclic signaling.

James Q. Zheng, Associate Professor of Neuroscience and Cell Biology, UMDNJ–RWJMS; Ph.D., Tsinghua. Molecular/cellular mechanisms underlying the formation of neuronal circuits.

Renping Zhou, Associate Professor of Chemical Biology, CP; Ph.D., California (Berkeley). Development of the brain: function of growth factors and their receptors.

Associate Members of the Graduate Faculty:

Juan P. Advis, Associate Professor of Animal Sciences, CC; Ph.D., Texas D.V.M., Austral (Chile). Neuroendocrinology of reproduction.
Program

This graduate program is administered in a cooperative, integrated fashion by faculties in animal sciences, biological sciences, neuroscience and cell biology, pharmacology, physiology, and psychology. Areas of specialization include gene action in the brain; biophysics; mechanisms and regulatory controls of learning and memory; developmental neurobiology; organ system responses to exercise and other stresses; cardiac and circulatory function; and endocrine/neuroendocrine responses to diet, growth, and environment.

The program selects students on the basis of their academic records, Graduate Record Examination scores, and references. A student must have an undergraduate cumulative grade-point average of at least 3.5 to be considered for admission. Prerequisite courses include biology, general and organic chemistry, calculus, and physics. Applications are accepted throughout the year, but normally are completed by March 1 for admission to study for the fall term. Financial aid is provided to highly qualified students. Financial aid typically includes a stipend to cover living expenses and remission of tuition fees. Three classes of direct support are available: 1) fellowships, 2) graduate assistantships provided through research grants held by individual professors, and 3) teaching assistantships associated with individual teaching units of the program.

While doctoral requirements vary with the area of specialization, at least 28 course credits are required, of which 24 must be at the 500 level or above. Because students must pass a qualifying examination in physiology or neurobiology for acceptance into the doctoral program, those concentrating in physiology should be knowledgeable in the areas of biochemistry and cellular, comparative, mammalian, and environmental physiology, while those concentrating in neurobiology should be knowledgeable in neural anatomy, neurophysiology, neural chemistry, neuropharmacology, neuroendocrinology, neural development, and the neural bases of behavior. The program has no foreign language requirement.

To meet the residence requirements in the program, a student must be registered for 24 credits of course work or research or some combination of both within one period of twelve consecutive months during his or her doctoral training.

For more information about joint Ph.D. degrees available in this program, see the beginning of this chapter.

Graduate Courses

16:761:501. MAMMALIAN PHYSIOLOGY (3,3)
Prerequisite: Physiology. Prerequisite to 16:761:502, 16:761:501.
Functions of organs and organ systems in the mammal.

16:761:507. (F) COMPARATIVE PHYSIOLOGY (3)
Casey, Farmanfarmaian, Page. Prerequisite: Physiology. Offered in alternate years.
Topics of current interest in physiology from a comparative point of view using subject matter derived entirely from recent, original papers.

16:761:508. (S) MOLECULAR AND CELL PHYSIOLOGY (3)
Prerequisites: Course in physiology or cell biology, and biochemistry, or permission of instructor.
Lectures on membrane structure, transport phenomena, muscle, nerve, and cell organelles.

16:761:511. (S) HISTORY OF NEUROSCIENCE (2)
Krauthamer. Prerequisite: Interest in neuroscience.
The origins of neuroscience from antiquity to the current era. Changing concepts of brain function, the development of the neuron theory, localization of function, and the role of instrumentation in the development of neuroscience.

16:761:513. (S) CARDIOVASCULAR PHYSIOLOGY (3)
Merrill. Offered in odd-numbered years.
Comprehensive study of the cardiovascular system in mammals. Special consideration given to coronary circulation, myocardial-oxygen consumption, and cardiac arrhythmias.

16:761:515. (S) MEDICAL PHYSIOLOGY (7)
Stevenson. Prerequisite: Permission of instructor.
Study of human physiology from the molecular to the systems level. Emphasis on the integration of the systems within the healthy individual. Teaching modalities include lectures, small discussion groups, and laboratories in pulmonary and cardiovascular physiology.

16:761:517. (S) MOLECULAR NEUROTRANSMISSION (2)
Wu. 2 hrs., 15 weeks Prerequisite: 16:761:557.
Emphasis on current topics on molecular mechanisms that govern neuron-to-neuron communication through chemical pathways in the mammalian brain; pharmacological and pathological conditions.

16:761:520. (F) ENVIRONMENTAL PHYSIOLOGY (3)
Casey
Physiological mechanisms of homeostasis in vertebrate animals and the limitations that the environment places on normal functions, with emphasis on energetics, oxygen uptake and transport, thermoregulation, and water balance.

16:761:537. (F) EXERCISE PHYSIOLOGY (4)
Zambraski. Lec. 3 hrs., lab. 3 hrs Prerequisite: 16:761:501. Offered in alternate years.
Examination of the physiological responses associated with acute exercise stress, in addition to the effects of repeated exercise or training. Emphasis on the control mechanisms involved in these processes. Laboratory involves students making measurements on themselves at rest and during exercise. Experiments utilizing animals conducted to demonstrate muscle-neural and endocrine functions during exercise.

16:761:540. (S) TROPHIC MECHANISMS IN THE NERVOUS SYSTEM (2)
DiCicco-Bloom. Prerequisites: Neurobiology, molecular biology of cells. Offered in even-numbered years.
Introduction to neurotropic factor field. In particular, the critical nature of trophic agents in the establishment and maintenance of a functioning nervous system.

16:761:544. (F) MOLECULAR REGULATION OF NEUROGENESIS (2)
DiCicco-Bloom. Prerequisites: Neurobiology, molecular biology of cells. Offered in even-numbered years.
Discussion of current literature, explores concepts and mechanisms regulating neuronal generation, and specification from undifferentiated precursors in invertebrates and vertebrates examined, including cell lineage, homoeotic genes, neurotransmitters, and growth, trophic, and transcription factors.

16:761:545. (F) REPRODUCTION (3)
Sukhdeo

16:761:546. (S) NEUROENDOCRINOLOGY (3)
Rabi. Prerequisites: Mammalian physiology and permission of instructor. Recommended: General endocrinology.
Principles of neurosecretion and neuroendocrine regulation. The CNS control of hormone secretion and function.

16:761:554. (F) GENE REGULATION IN NEURAL DEVELOPMENT (2)
Abate-Shen. Offered in odd-numbered years. See also 16:115:554.
Survey of recent literature regarding the regulation of gene expression in the nervous system. Emphasis on the molecular mechanisms involved in gene regulation during neuronal development.
PLANT BIOLOGY 765

Degree Programs Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Professor James White, Foran Hall, Cook Campus (732/932-9375, ext. 358)
Web Site: http://aesop.rutgers.edu/~plantbio/

Members of the Graduate Faculty

Faith C. Belanger, Associate Professor of Plant Pathology, CC; Ph.D., Illinois
Plant molecular biology; hormone-induced secretion

Tseh An Chen, Professor of Plant Pathology, CC; Ph.D., New Hampshire
Plant mycopathology and plant biotechnology; plant nematology; nematode ultrastructure

Xuemei Chen, Assistant Professor of Genetics, WIM; Ph.D., Cornell
Identity specification and morphogenesis of stamens and carpels in Arabidopsis flowers

Chee-kok Chin, Professor of Plant Sciences, CC; Ph.D., Alberta
Plant cell and tissue culture

Bruce B. Clarke, Associate Professor of Plant Pathology and Associate Extension Specialist in Plant Pathology, CC, and Director, Center for Turfgrass Science, Ph.D., Rutgers

Turfgrass pathologies; soilborne diseases; disease forecasting and control; mycology

Bill D. Davis, Associate Professor of Biological Sciences, FAS-NB; Ph.D., Purdue
Tissue culture cell and developmental physiology

Peter Rodney Day, University Professor of Genetics and Director of the Biotechnology Center for Agriculture and the Environment; Ph.D., London
Genetic engineering; genetics of host-pathogen interaction

Hugo K. Dooner, Professor of Genetics, WIM; Ph.D., Wisconsin
Transgenic gene tagging molecular analysis of medicinal recombination in plants

Edward F. Durkee, Associate Research Professor of Plant Sciences, CC; Ph.D., North Carolina State
Low-temperature stress resistance in tree fruit

Joan G. Ehrenfeld, Professor of Ecology, Evolution, and Natural Resources, CC; Ph.D., CUNY
Plant community ecology; ecosystems ecology; pollution impacts

Joseph A. Fiola, Associate Extension Specialist in Plant Sciences, CC; Ph.D., Maryland
Tissue culture; breeding and cultural practice studies of small fruits

James C. French, Associate Professor of Biological Sciences, FAS-NB; Ph.D., Cornell
Comparative and developmental anatomy; experimental morphology

Chaim Frenkel, Professor of Plant Sciences, CC; Ph.D., Washington State
Postharvest biology; senescence; fruit ripening; and stress

Cyril R. Funk, Research Professor of Plant Sciences, CC; Ph.D., Rutgers

Stephen A. Garrison, Professor of Plant Sciences, CC; Ph.D., Illinois
Production techniques for vegetables

Randy Gaugler, Professor of Entomology, CC; Ph.D., Wisconsin
Invertebrate pathology; nematology; biological control

Thomas J. Gianfagna, Associate Research Professor of Plant Sciences, CC; Ph.D., Cornell
Plant growth regulators; physiology of fruit crops

Joseph C. Godfrey, Associate Professor of Plant Sciences, CC; Ph.D., Cornell
Genetics and breeding; pest resistance in solanaceous crops

Ann B. Gould, Associate Extension Specialist in Plant Pathology, CC; Ph.D., Kentucky
Ornamental pathology

Steven N. Handel, Professor of Ecology, Evolution, and Natural Resources, CC; Ph.D., Cornell
Plant population ecology; pollination biology; ecological genetics

Stephen E. Hart, Assistant Extension Specialist in Plant Sciences, CC; Ph.D., Michigan State
Weed management in turfgrass and ornamentals

Jean Marie Hartman, Associate Professor of Landscape Architecture, CC; Ph.D., Connecticut
Plant ecology; community ecology; restoration ecology; land planning

Joseph R. Heckman, Associate Extension Specialist in Soil Fertility, CC; Ph.D., North Carolina
Plant nutrition

Melvin R. Henninger, Professor of Plant Sciences, CC; Ph.D., Pennsylvania State
Intra- and interspecific hybridization of trees and shrubs

Bradley I. Hillman, Associate Research Professor of Plant Pathology, CC; Ph.D., California (Berkeley)
Viral infections of plants and fungi

Harry W. Janes, Research Professor of Plant Sciences, CC; Ph.D., Rutgers
Photosynthetic efficiency and source-sink relationships

Gyorgy Jelenkovic, Professor of Plant Sciences, CC; Ph.D., California (Davis)
Genetic manipulation of plants

Stephen A. Johnston, Associate Extension Specialist in Plant Pathology, CC; Ph.D., Rutgers

Vegetable crop pathology

Edward G. Kirby, Associate Professor of Botany, FAS-N; Ph.D., Florida
Developmental physiology; tissue culture

Donald Y. Kobayashi, Associate Professor of Plant Pathology, CC; Ph.D., California (Riverside)
Plant bacteriology; host-pathogen interaction; molecular biology

John E. Kusner, Professor of Ecology, Evolution, and Natural Resources, CC; Ph.D., Oregon State
Genecological variant; provenance and progeny testing; forest tree propagation

Eric Lann, Associate Professor of Plant Sciences, CC; Ph.D., California (Berkeley)
Gene regulating mechanisms in plants; development and photomorphogenesis

Michael A. Lawton, Associate Professor of Plant Sciences, CC; Ph.D., Oxford
Genetic manipulation of plants

Thomas Leustek, Associate Professor of Plant Sciences, CC; Ph.D., Rutgers
Expression and regulation of lipid biosynthetic genes

Bradley A. Majek, Associate Professor of Plant Sciences, CC; Ph.D., Cornell
Plant nutrition

Pal Maliga, Professor of Genetics, WIM; Ph.D., Hungarian Academy of Sciences
Molecular biology; plastid genetics

Charles Martin, Professor of Biological Sciences, FAS-NB; Ph.D., Florida State
Expression and regulation of lipid biosynthetic genes

David R. Mears, Professor of Bioresource Engineering, CC; Ph.D., Rutgers
Environmental and physiological factors affecting crop production in greenhouses

Joachim W. Messing, University Professor of Molecular Biology and Director of the Waksman Institute of Microbiology, Ph.D., Munich

Molecular biology of higher plants M13 cloning; sequencing gene synthesis

William A. Meyer, Professor of Plant Sciences, CC, and Associate Director, Center for Turfgrass Science, Ph.D., Illinois
Turfgrass breeding; disease resistance, endophytes

James Murphy, Associate Extension Specialist in Turfgrass Management, CC; Ph.D., Michigan State
Development of management systems that minimize stress and improve turf performance

Elwin R. Orton, Jr., Research Professor of Ornamental Horticulture, CC; Ph.D., Wisconsin
Fungal plant diseases; population biology of fungi

James J. Polashock, Assistant Research Director, Blueberry/Cranberry Research Center; Ph.D., Rutgers
Intra- and interspecific hybridization of trees and shrubs

Peter Oudemans, Associate Professor of Plant Pathology, CC; Ph.D., California (Riverside)

Population ecology; species interactions; evolutionary biology
Students in the molecular- and cellular-biology track may specialize in photosynthesis, carbon metabolism and partitioning, developmental physiological biochemistry and genetics, growth regulation, nitrogen metabolism, ion uptake and electrophysiology, molecular biology of subcellular organelles, regulation of gene expression, genetic transformation of plants, senescence, ripening of fruit, seed germination, water relations, tissue culture, comparative or developmental anatomy and morphology, or ultrastructure. Students in the organismal and population biology track may emphasize physiological ecology, population ecology, species interactions, community organization and dynamics, ecosystem dynamics, pollination and reproductive biology, and evolutionary biology. The horticulture and plant technology track focuses on course work and research activity associated with plant biology as it relates to agriculture. A wide diversity of student interests is served by this track, from fundamental investigations of plant function at the molecular level to studies of how environment and biotic stress affect crop production. Students with interests in agricultural biotechnology, plant breeding and genetics, plant physiology, growth and development, and plant interaction with the environment are supported by this track. Among the issues that students in the plant pathology track may address are host/pathogen interactions, epidemiology and control of plant disease, plant virology, bacteriology, mycology, molecular biology of plant pathogenic or endophytic microorganisms, and biotechnology.

The master’s degree without thesis requires 31 course credits and 1 credit for a paper. The master’s degree with thesis requires 26 course credits, 6 research credits, and a research thesis. For the doctoral degree, 72 credits with a minimum of 32 course credits and a minimum of 34 research credits, a research thesis, and one academic year in residence are required. There is no language requirement. Prospective students are invited to visit the program’s web site or to write the program director for the Guide to Graduate Study in Plant Biology and the Faculty Research Interests. Both books provide additional information.

In addition to the graduate courses described below, consult those courses listed under biochemistry, ecology and evolution, environmental sciences, microbiology and molecular genetics, and statistics. Many advanced undergraduate courses (400 level) listed in the New Brunswick Undergraduate Catalog, the Camden Undergraduate Catalog, and the Newark Undergraduate Catalog may be used for graduate credit.

Graduate Courses

16:765:501. (F) **INTRODUCTION TO PLANT BIOLOGY** (3)
Survey of research topics in plant biology related to faculty research programs.

16:765:502. (S) **PLANT PHYSIOLOGY** (3)
Prerequisites: Undergraduate plant physiology or equivalent; organic chemistry. Survey of modern aspects of plant physiology with emphasis on recent literature. Topics covered include mineral nutrition, development, stress physiology, crop physiology, photosynthesis, light responses, water relations, and plant growth regulators.

16:765:506. (S) **ELECTRON MICROSCOPY FOR CELL AND MOLECULAR BIOLOGY** (3)
Pre or co-requisites: Molecular biology of cells, cell biology, or equivalent. Principles and techniques of biological electron microscopy. Use and operation of the transmission electron microscope in studying macromolecules, viruses, cells, and tissues.

16:765:507. (F) **PLANT-WATER RELATIONS** (3)
Prerequisite: 16:765:501 or equivalent. Whole plant and cell response to water deficits from a physiological perspective. Focus on agronomic plants. Topics include movement of water in the soil-plant-air continuum, water-deficit effects on transpiration, photosynthesis, osmotic adjustment, ion and nitrogen metabolism, hormones, and growth. Techniques involve thermocouple psychrometry, gas exchange, and porometry.
16:765:510. (F) ADVANCED PLANT GENETICS (3)
Doeon, J. Emphasis on the critical levels in plants, yield formation, and crop development, ecology of highly specialized angiosperms.

16:765:512. (S) ANGIOSPERM DIVERSITY (3)
Prerequisite Introductory botany course. Cladistics and phylogeny, vegetative structure, physiology, diversity, emphasis on the critical levels in plants, yield formation, and crop development, ecology of highly specialized angiosperms.

16:765:513. (S) PLANT MOLECULAR BIOLOGY (3)
Prerequisite Undergraduate genetics or equivalent. Fundamental and applied aspects of plant molecular biology, including isolation, structure, and regulation of nuclear and organellar genes, molecular biology of plant-microbe interactions, molecular biology of plant development, and plant biotechnology.

16:765:514. (F) PLANT DEVELOPMENTAL AND CELL BIOLOGY (3)
Lawton, Raskin. Prerequisites Undergraduate courses in plant physiology, molecular biology, or cell biology. Genetic and cellular aspects of plant development. Regulation of cell division and differentiation; hormones and signaling mechanisms; stress physiology and cell architecture.

16:765:517. (F) SECONDARY METABOLISM IN PLANTS (2)

16:765:518. (S) TOPICS IN PLANT MICROBE INTERACTIONS (2)
Prerequisite General biology. Recommended: Microbiology. Comprehensive examination of the interactions between plants and microorganisms at the molecular, cellular, and organismal levels in both pathogenic and beneficial interactions.

16:765:520. (S) PLANT BIOCHEMISTRY AND METABOLISM (3)
Prerequisite Plant physiology or equivalent. Physiological significance of principal metabolic systems, including photosynthesis, photorespiration, sulfate and nitrate reduction, hexose metabolism; synthesis of lipids and lipid pigments, photosynthetic and hormonal controls, chloroplast development, and biochemistry of secondary plant products.

16:765:522. (F) APPLIED PLANT SCIENCE STATISTICS (3)
Statistical methods such as experimental design, regression, ANOVA, covariance, field plot techniques, sampling, factorial experiments, treatment comparisons, and estimates of effects.

16:765:523. GENETICS OF SEXUALITY (4)
Prerequisites Introductory genetics and cytology. Sex-determining mechanisms in selected plant and animal species; incompatibilities and sterilities; developmental and evolutionary aspects.

16:765:524. (S) PLANT GROWTH REGULATORS IN AGRICULTURE (3)

16:765:525. (S) PLANT MINERAL NUTRITION (3)
Role of essential nutrients in plant growth and development, with emphasis on the critical levels in plants, yield formation, and crop quality.

16:765:526. (S) FRUIT RIPENING AND PLANT SENESCENCE (3)
Measurements of plant senescence manifestations, including fruit ripening.

16:765:528. (F) ADVANCED PLANT BREEDING (3)
Prerequisite A course in general genetics. Breeding, self-pollinated, cross-pollinated, and apomictic plants; role of mutation, polyploidy, and interspecific hybridization in plant improvement; inheritance of adaptive plant characters; developing and maintaining improved varieties.

16:765:531. (F) PRINCIPLES OF PLANT PATHOLOGY (3)
Lec. 3 hrs., lab. 3 hrs Prerequisite Biochemistry or microbiology. Fundamental concepts elucidating the nature, cause, diagnosis, dissemination, and control of plant diseases. Includes an overview of all plant disease agents.

16:765:532. (S) ADVANCED PLANT PATHOLOGY (3)
Prerequisite 16:765:531 or equivalent. Control and epidemiology of plant disease. Properties, activities, and physical considerations of fungicides and nematocides and their application and labeling.

16:765:533. (F) ADVANCED MYCOLOGY (3)
Lec. 2 hrs., lab. 3 hrs Prerequisite General mycology or equivalent. Detailed study of the filamentous and fleshy fungi, with emphasis on identification, mycological literature, reproduction, and other special topics.

16:765:535. (F) PLANT ViroLOGY (3)
Lec. 2 hrs., lab. 3 hrs Prerequisite 16:765:531 or equivalent. Current concepts concerning the history, transmission, detection, identification, biochemistry, classification, ecology, epidemiology, and control of plant viruses. Special topics or techniques covered.

16:765:536. PLANT DISEASE CLINIC (3)
Lec./lab. 6 hrs Prerequisite General plant pathology or equivalent. Offered only during the Summer Session. Workshop in diagnosing both pathogenic and nonpathogenic plant disorders, isolation and identification of causal organisms, and current disease control measures.

16:765:537. PLANT PATHOGENIC BACTERIA (3)
Lec. 2 hrs., lab. 3 hrs Prerequisite General plant pathology. Basic concepts of phytopathology, including diagnosis and identification of plant bacterial diseases, ecology and control of bacteria, pathogenicity, disease physiology, and molecular biology of pathogenicity factors.

16:765:538. (S) PLANT PATHOGENESIS (3)
Prerequisite 16:765:531 or equivalent. Mechanisms of pathogenesis; responses of plants to pathogens in terms of structural, functional, and metabolic disease resistance, mechanisms, and genetics of pathogenesis.

16:765:601,602. PROBLEMS IN PLANT BIOLOGY (BA,BA)
Prerequisite Permission of instructor. Laboratory and conference course for special problems.

16:765:603,604. SELECTED TOPICS IN PLANT BIOLOGY (BA,BA)
Application of basic concepts of plant growth and development to the understanding of production problems and their in-depth study for selected significant topics.

16:765:609,610. SEMINAR IN PLANT BIOLOGY (1,1)
Required of all graduate students. Advanced topics investigated and presented by students.

16:765:699. NONTHESIS STUDY (1)
For students writing their essays for a nonthesis master's degree.

16:765:701,702. RESEARCH IN PLANT BIOLOGY (BA,BA)
For students working on an experimental research problem for their dissertation.
PLANT PATHOLOGY
(See Plant Biology 765)

PLANT SCIENCE AND TECHNOLOGY
(See Plant Biology 765)

POLITICAL SCIENCE 790

Degree Programs Offered: Master of Arts, Doctor of Philosophy
Director of Graduate Program: Professor Milton Heumann,
Hickman Hall, Douglass Campus (732/932-9261)
Vice Chairperson, Graduate Studies: Professor P. Dennis Bathory,
Hickman Hall, Douglass Campus (732/932-9261)

Members of the Graduate Faculty

Myron J. Aronoff, Professor of Political Science and Anthropology, FAS-NB; Ph.D., Brandeis; Ph.D., California (Los Angeles)
Comparative politics (Middle East); political anthropology

Ross A. Baker, Professor of Political Science, FAS-NB; Ph.D., Pennsylvania
Political institutions; Congress; U.S. foreign policy

Benjamin R. Barber, Walt Whitman Professor of Political Science, FAS-NB; Ph.D., Harvard
Political theory; democratic institutions

P. Dennis Bathory, Associate Professor of Political Science, FAS-NB; Ph.D., Harvard
American political institutions; political economy

Stephen E. Bremner, Professor of Political Science, FAS-NB; Ph.D., California (Berkeley)
Political theory; political economy

Phil H. Burch, Jr., Research Professor of Public Policy, EJBSPPP; Ph.D., Rutgers
American political institutions; political economy

Pedro A. Canvás, Associate Professor of Political Science, FAS-NB; Ph.D., Columbia
State formation; alternative economic growth models; role of multinational corporations; multilateral financial institutions in the Caribbean and Central America

Barbara J. Callaway, Professor of Political Science, FAS-NB; Associate Provost for Academic Affairs in the Social Sciences; Ph.D., Boston
Comparative politics (Africa); women and politics

Susana J. Carroll, Professor of Political Science, EIP; Ph.D., Indiana
Women and politics; mass politics

Drucilla Cornell, Professor of Political Science, FAS-NB; J.D., California (Los Angeles)
Political theory; women and politics

Cynthia R. Daniels, Associate Professor of Political Science, FAS-NB; Ph.D., Massachusetts (Amherst)
Women and public policy; productive politics; political economy of gender

Eric Davis, Associate Professor of Political Science, FAS-NB; Ph.D., Chicago
Comparative politics (Middle East); political economy

Yale H. Ferguson, Professor of Political Science, FAS-NB; Ph.D., Columbia
International relations; the Middle East; Latin America

Leela Fernandes, Associate Professor of Political Science and Women's and Gender Studies, FAS-NB; Ph.D., Chicago
Women's studies; comparative politics; political economy; cultural studies

Frank Fischer, Professor of Political Science, FAS-NB; Ph.D., New York
Policy analysis

Mary Hawkesworth, Professor of Political Science and Director of the Center for the American Woman and Politics, CAWP/FAS-NB; Ph.D., Georgetown
Feminist theory, women and politics; contemporary political philosophy; social policy

Milton Heumann, Professor of Political Science, FAS-NB; Ph.D., Yale
Public law; legal processes; criminal justice and civil liberties

Jan Juhn, Associate Professor of Political Science, FAS-NB; Ph.D., Chicago
Methodology

Robert F. Kaufman, Professor of Political Science, FAS-NB; Ph.D., Harvard
Comparative politics (Latin America); political economy

Jan Kubik, Associate Professor of Political Science, FAS-NB; Ph.D., Columbia
East European politics; transitions from communism; politics and culture; local politics; forms of social protest

Richard R. Lau, Professor of Political Science, FAS-NB; Ph.D., California (Los Angeles)
Mass politics

Susan E. Lawrence, Associate Professor of Political Science, FAS-NB; Ph.D., Johns Hopkins
Public law

C. Richard Lehane, Professor of Political Science, FAS-NB; Ph.D., Syracuse
American political institutions

Jack S. Levy, Professor of Political Science, FAS-NB; Ph.D., Wisconsin (Madison)
International relations; foreign policy; decision making; causes of war

Barbara C. Lewis, Associate Professor of Political Science, FAS-NB; Ph.D., Northwestern
Comparative politics (Africa); women and politics

Roy E. Licklider, Professor of Political Science, FAS-NB; Ph.D., Yale
International relations; foreign policy; military policy

Wilson C. McWilliams, Professor of Political Science, FAS-NB; Ph.D., California (Berkeley)
Political theory; American political thought

Manuel S. Maldonado, Professor of International Peace and Conflict Resolution, FAS-NB; Ph.D., Northwestern
International relations with emphasis on causes of political violence, including war and revolution

Kenneth E. Miller, Professor of Political Science, FAS-NB; Ph.D., Johns Hopkins
Comparative politics (Western Europe, Canada)

Gerald M. Pompe, Professor of Political Science, FAS-NB; Ph.D., Princeton
American political institutions; mass politics

Edward Rhodes, Associate Professor of Political Science, FAS-NB; Ph.D., Princeton
International relations; national security policy; deterrence theory

Alan Rosenthal, Professor of Public Policy, EJBSPPP; Ph.D., Princeton
American political institutions; state politics and legislatures

Gordon J. Schochet, Professor of Political Science, FAS-NB; Ph.D., Minnesota
Political science; British political thought

D. Michael Shaver, Professor of Political Science, FAS-NB; Ph.D., Harvard
International relations; political economy

Roberta Sigel, Emeritus Professor of Political Science, FAS-NB; Ph.D., Clark
American political institutions; mass politics; women and politics

Jay A. Sigler, Professor of Political Science, FAS-NB; Ph.D., Rutgers
Public law

Carl Edward Van Horn, Professor of Public Policy, EJBSPPP; Ph.D., Ohio State
American political institutions; public policy

Harvey Waterman, Associate Professor of Political Science, FAS-NB; Associate Dean, Graduate School—New Brunswick; Ph.D., Chicago
Comparative politics (Western Europe); domestic sources of foreign policy

Richard W. Wilson, Professor of Political Science, FAS-NB; Ph.D., Princeton
Comparative politics (China); mass politics

Cliff Zuckin, Associate Professor of Public Policy, EJBSPPP; Ph.D., Ohio State
American political institutions; mass politics

Associate Members of the Graduate Faculty

Kerry L. Haynie, Assistant Professor of Political Science, FAS-NB; Ph.D., North Carolina (Chapel Hill)
African-American politics; American government and politics

James Turner Johnson, Professor of Religion, FAS-NB; Ph.D., Princeton
International relations; just war

Daniel Kelemen, Assistant Professor of Political Science, FAS-NB; Ph.D., Stanford
Comparative politics (Europe); political economy

Arthur Jay Klinghofer, Professor of Political Science, FAS-C; Ph.D., Columbia
Comparative politics (Soviet)

Beth Leech, Assistant Professor of Political Science, FAS-NB; Ph.D., Harvard
American political institutions; public policy

Jonathan Mallamud, Professor of Law, SL-C; J.D., Harvard
Public law; judicial behavior; law and politics

Ruth B. Mandel, Board of Governors Professor of Politics, EIP; Ph.D., Connecticut
Women's participation in American politics

Michael Paris, Assistant Professor of Political Science, FAS-NB; J.D., Columbia
Public law; social reform movements and politics

Daniel J. Tichenor, Assistant Professor of Political Science, FAS-NB; Ph.D., Brandeis
American political institutions

Programs

The graduate program in political science is designed for students who are seeking a Ph.D. While some students enter the program after getting a master's degree, exceptional students can win admittance directly after obtaining a bachelor's degree. Each case is considered individually, but applicants are more likely to gain admittance to the program if they have a cumulative grade-point average of 3.5 or better, particularly in the social sciences. Applicants also should have high scores on the Graduate Record Examination and strong letters of recommendation. In awarding financial aid to entering students, preference is given to those students who have been admitted directly to the Ph.D. program.
Applications for September admission should be submitted no later than February 1 by students seeking financial assistance. For everyone else, the deadline is March 1. Transcripts, Graduate Record Examination scores, three letters of recommendation, and a writing sample are required.

The graduate program offers six areas of concentration: political theory, international relations, comparative politics, women and politics, public law, and American politics. Candidates for the Ph.D. select a major area of study from among the six concentrations. To qualify in the major area of study, a student must first pass a written and an oral examination. The written examination is a take-home, open-book examination, and each student has twenty-four hours to complete it. In addition to the major field, Ph.D. students must work in two minor fields. To qualify in the first minor field, a candidate must pass a written exam. In the second minor field, students must attain a cumulative grade-point average higher than 3.5 in at least three courses. Individual fields may require more than three courses and may designate further specific requirements. Having successfully passed all examinations, the candidate must submit a dissertation proposal within six months.

Typically, students take proseminars in their major and minor areas (9 credits). Grading in proseminars is based mainly on written examinations, as there are no assigned research papers. Ph.D. candidates must take a two-term methods sequence 16:790:532-533 Research Design in Political Science. These courses include elements of research design, quantitative methods, and epistemology of the social sciences. In addition, students must complete three or four research courses (9 to 12 credits) with at least two instructors and take seven to eight electives (21 to 24 credits) inside or outside the program. Before students take their qualifying Ph.D. examinations, they must complete a total of 48 credits of course work and have submitted a significant research paper.

A full description of the program may be found in the brochure Graduate Program in Political Science, which is available from the department.

Graduate Courses

16:790:501. PROSEMINAR IN AMERICAN POLITICS (3)
Overview of American politics. Topics include individual and institutional levels, the relationship between citizens and institutions, and the relationships between institutions.

16:790:503. PROSEMINAR: APPROACHES TO COMPARATIVE ANALYSIS (3)
Scope and practice of the field: nature of comparison; approaches to comparison; examples of current research on selected topics.

16:790:505. CONSTITUTIONALISM AND JUDICIAL POLITICS (3)
Role of the federal courts in the American system of democracy. Normative and empirical assessments of the foundations of judicial review and the alleged counter-majoritarian problem; interactions between courts and the other electorally accountable branches; the role of litigants and mobilization processes in the judicial development of doctrine and policy.

16:790:506. (S) CONTEMPORARY CONSTITUTIONAL ISSUES (3)
Current public policy questions explored in the judicial forum, both national and state. A variety of research methods employed.

16:790:507. (S) COMPARATIVE STATE POLITICS (3)
Comparative analysis of the problems of all fifty states. Major factors and political processes that shape the outcomes of state politics. A variety of approaches used in comparative analysis.

16:790:510. PUBLIC POLICY (3)
Introduction to the formulation and implementation of public policy with an emphasis on federal policy making, models for policy choice, and intergovernmental policy problems. A major portion of the course devoted to student projects that analyze the formulation and implementation of a governmental program.

16:790:511,512. PROSEMINAR IN POLITICAL THOUGHT: PLATO TO J.S. MILL (3,3)
Intensive study of the history of Western political thought from Plato to J.S. Mill.

16:790:513. PHILOSOPHY OF POLITICAL INQUIRY (3)
Prerequisites 16:790:511,512, or permission of instructor.
Introduction to major issues in political and social inquiry in the broad perspective of the philosophy of the social sciences. Epistemology, methodology, and historiography in political theory and political science.

16:790:514. AMERICAN POLITICAL THOUGHT (3)
Corequisites 01:790:375,376, or permission of instructor.
Major themes in American political thought from the seventeenth century to the present; emphasis on contemporary movements and ideas, including the new left, the new right, and black thought.

16:790:517. DEMOCRACY, VALUES, AND PUBLIC POLICY: THEORETICAL FOUNDATIONS (3)
Theoretical foundations of public policy in a democracy. Complementarity and conflict between such fundamental values as liberty, equality, justice, security, efficiency, quality (of life), planning, community, fraternity, individuality, and privacy; theoretical implications of distinctions between public and private goods, interests, and values.

16:790:521. PROSEMINAR: THEORIES OF INTERNATIONAL POLITICS (3)
Contemporary approaches to the study of international systems and the behavior of their national subsystems.

16:790:522. THEORIES OF WAR AND PEACE (3)
Survey of the existing theories and explanations of the causes of war and the conditions of peace.

16:790:523. POLITICS OF AFRICA (3)
Problems particular to African political development; colonial experience, one-crop economies, traditional social arrangements, ethnic particularism, and party organization.

16:790:524. MASS MEDIA AND POLITICS (3)
The role, structure, and effects of mass media. Topics include models of mass communication, government regulation, the media as information sources and agents of socialization, media influence on candidate evaluation and voting.

16:790:527. ANCIENT AND MEDIEVAL POLITICAL PHILOSOPHY (3)
Representative primary texts and significant secondary literature, emphasizing major controversies in the interpretation of classical or medieval political philosophy. Readings selected from the works of Plato, Aristotle, Cicero, Augustine, Aquinas, and their respective contemporaries.

16:790:530. EXPLANATIONS OF FOREIGN POLICY (3)
Systematic analysis of factors influencing the foreign policies of states; patterns of relationships.

16:790:531. PROBLEMS IN AMERICAN POLITICS (3)
Selected specific problems in American politics, currently emphasizing state and local elections and campaigning.

16:790:532-533. RESEARCH DESIGN IN POLITICAL SCIENCE (3,3)
Research techniques, an introduction to probability and statistics, the logic of political inquiry, and the philosophy of the social sciences.

16:790:534. THE PRESIDENCY (3)
Introduction to the historical development of the presidency, as well as significant dimensions of contemporary presidential politics. Contending approaches to studying the presidency. Topics include presidential selection; popular leadership; party politics; interest groups and social movements; and relations with Congress, the courts, and the bureaucracy.
16:790:578. Feminism in Postmodernity (3)
Political strategies for achieving gender equality in the context of contemporary feminist debates about the category of women, foundationalism, humanism, identity politics, and essentialism.

16:790:579. The Enlightenment: The Philosophers and Their Critics (3)
Prerequisites: 16:790:511,512, or permission of instructor.
Political thought of Kant, Rousseau, and their contemporaries. Emphasis on Enlightenment responses to the political, educational, and moral problems of modernity.

16:790:580. The Nineteenth Century: Continental Political Thought from Hegel to Marx to Nietzsche (3)
Prerequisites: 16:790:511,512, or permission of instructor.
Topics in the political thought of selected theorists from sequences, including Hegel, Herder, Marx, and Nietzsche; and de Maistre, Bonald, Comte, and Fourier.

16:790:581. Transnational Public Policy (3)
New phenomena that defy the basic assumptions of the dominant realist, state-centric model of the global system, including nonstate actors, transnational issues, and new forms of influence.

16:790:582. Public Opinion (3)
Sources and consequences of public knowledge, beliefs, and attitudes about politics. The measurement of public opinion. Political ideology. Linkages between public opinion and public policy.

16:790:584. (S) Themes in Feminist Theory in Politics (3)
In-depth study of a particular tradition or key debate within contemporary feminist theory. Themes vary.

16:790:585. Social Class and Ideology (3)
Effects of changes in the organization of work and labor markets on political behavior and consciousness. Consequences of race, gender, and ethnicity for class formation.

16:790:586. Psychology of Political Behavior (3)
Introduction to basic explanatory theories at the individual level of analysis. Topics may include personality, attitudes, political cognition, group influences, political socialization, and behavioral decision theory.

16:790:587. Proseminar in Women and Politics (3)
Introduction to approaches, methods, and debates in interdisciplinary feminist scholarship that are useful in analyzing politics.

16:790:588. Gender and Mass Politics (3)
Gender-related political questions on the political attitudes, voting, behavior, and other forms of political participation. Effects of feminist consciousness on attitudes and behavior.

16:790:589. Women and Political Leadership (3)
History, background, recruitment, and performance of women in leadership positions. Women leaders' relationship to power and their impact on public policy and public institutions.

16:790:590. Gender and Political Theory (3)
Analysis of political theory as a signifying practice. The discursive uses of gender in delineating the public sphere, constituting the citizen-subject, and articulating the relations of nation and class.

16:790:591. Gender and Public Policy (3)
Theoretical and policy questions raised by issues related to gender inequality, including welfare and poverty, reproductive rights, violence against women, women and work, health policy, and women and militarism.

16:790:592. Politics, Development, and Women (3)
Political, social, and cultural impact of developmental processes on women. Theories of development and feminist critiques.

16:790:594. Women's Movements in Comparative Perspective (3)
Development and impact of women's movements in cross-cultural perspective. Analysis of the conditions and implications of women's participation in movements such as nationalist, labor, and independent women's movement.

16:790:595. Advanced Survey Research (3)
Sample design, questionnaire construction, interviewer training and evaluation, analysis of survey data, and preparation of proposals for potential users.

16:790:596. Advanced Topics in Women and Politics (3)
Seminars offered on occasion on topics of special interest to students of women and politics.

16:790:597,598. Emerging Trends in Political Science (1,1)
Seminars by eight visiting scholars, each presenting an unpublished paper. Topics vary, but papers are chosen for their empirical and theoretical contributions to the field.

16:790:599. Research Seminar in Political Science Applications of Quantitative Methods (3)
Intensive study and research application of selected methods.

16:790:605. Philosophy of Law and Jurisprudence (3)
The nature of law and its relation to other normative systems; major legal philosophies. Other topics include legal reasoning, the enforcement of morality, and the justification of punishment.

16:790:607. Contemporary Philosophy and Politics (3)
Recent developments in philosophy and their implications for politics and political theory.

16:790:610. Research Topics in Political Philosophy (3)
Intensive research seminar for advanced students. Topics vary from year to year.

16:790:611. Advanced Research in Political Economy (3)
Working faculty-graduate student seminar. Presentations of original research.

16:790:612. Seminar in Law and Politics (3)
Intensive study of selected problem areas that may include issues in criminal justice, law and society, and judicial decision making.

16:790:613. Law, Courts, and the Politics of Social Reform (3)
The role of law and courts in the politics of social reform in the U.S. Various ways of understanding and investigating the interplay of law and politics in reform projects, with an emphasis on recent developments in the legal academy (e.g., feminist legal theory, critical race theory), as well as in political science.

16:790:614. Advanced Topics in Public Law (3)
Open only to upper-level Ph.D. candidates. Advanced research seminar in public law provides an opportunity for the design of doctoral research projects and the investigation of their feasibility.

16:790:616. The United States Congress (3)
Introduces students to the major components of Congress: congressional elections; the committees; congressional leadership; the legislative process, interest groups, and the relations of Congress with the president and the courts.

16:790:623. Seminar in Constitutional Law (3)
Advanced seminar with emphasis on individual research projects assessing judicial craftsmanship and doctrinal lines of inquiry.
16:790:626. Morality and War (3)
The realism-moralism debate, explored through such authors as Niebuhr, Morgenthau, and Osgood; the role of moral considerations in international affairs examined through cases such as the use of force across national borders and the human rights issue.

16:790:627. Topics in International Politics (3)
Open only to advanced students.
Specialized studies and research in international politics. Topics include mathematical models in international politics and peace research methods and literature.

16:790:630. International Political Economy (3)
Topics that develop the theory of the structure and dynamic of the global political economy. Current emphasis on the development of the post-Depression World War II international economy, especially relations among OECD countries.

16:790:633. Multivariate Techniques (3)
Focus on multiple regression, but also may include categorical regression, factor analysis, causal modeling, and analysis of variance. Heavy emphasis on computer applications.

16:790:634. Game Theory for Political Scientists (3)
Introductory course in game theory for political science graduate students.

16:790:635. French Feminist Theory (3)
Prerequisite Permission of instructor.

16:790:640. Research Seminar on War and Peace (3)
Original research conducted in the area of war and peace.

16:790:651. Seminar in Public Administration and Policy Analysis (3)
Readings in the specialized literature on bureaucracy, followed by the presentation and discussion of individual design for research on a special topic.

16:790:654. Quantitative Approaches to International Relations (3)
Major current attempts to build an empirically based theory of international politics. Data-generation techniques, methods of testing, and substantive findings.

16:790:667. Research Seminar in Political Psychology (3)
Advanced seminar examining in depth, through individual research, selected topics in political psychology.

16:790:670. Independent Study in International Relations (3)

16:790:671. Independent Study in Public Law (3)

16:790:672. Independent Study in Women and Politics (3)

16:790:673. Independent Study in Political Theory (3)

16:790:674. Independent Study in Political Economy (3)

16:790:676. Independent Study in American Institutions and Policy (3)

16:790:677. Independent Study in Comparative Politics (3)

16:790:678. Independent Study in Methodology (3)

16:790:680. Advanced Topics in International Relations (3)
Open only to upper-level Ph.D. students.
Advanced research seminar in international relations, intended to provide an opportunity for the design of doctoral research projects and the investigation of their feasibility.

16:790:701, 702. Research in Political Science (BA, BA)
Designed to provide students working on M.A. and Ph.D. theses with credit for their research.

PSYCHOLOGY 830

Degree Programs Offered: Master of Science,* Doctor of Philosophy
Director of Graduate Program: Professor G. Terence Wilson,
Psychology Building, Busch Campus (732/445-2556)
Vice Chair, Graduate Studies: Professor Louis Matzel,
Psychology Building, Busch Campus (732/445-2555)

Members of the Graduate Faculty

John R. Aiello, Professor of Psychology, FAS–NB; Ph.D., Michigan State
Organizational psychology; privacy; interpersonal processes; nonverbal behavior
Clayton P. Alderfer, Professor of Psychology, GSAPP; Ph.D., Yale
Group and intergroup relations; organizational diagnosis; race relations leadership
Phelps Arabie, Professor of Marketing, GSM; Ph.D., Stanford
Multivariate database analysis; social networks
Richard D. Ashmore, Professor of Psychology, FAS–NB; Ph.D., California (Los Angeles)
Intergroup relations; female and male relations; person perception; identity and personal problems
George E. Atwood, Professor of Psychology, FAS–NB; Ph.D., Oregon
Theories of personality; psychobiography and psychotherapy
Sidney B. Auerbach, Associate Professor of Biological Sciences, FAS–NB; Ph.D., Wisconsin (Madison)
Sermotonin; biochemistry; electrophysiology and behavior
Marsha Bates, Associate Research Professor of Psychology, CAS; Ph.D., Rutgers
Neurocognitive functioning and alcohol
Nicholas J. Belkin, Professor of Library and Information Studies, SCILS;
Ph.D., London
Information science and technology
David M. Brodzinsky, Associate Professor of Psychology, FAS–NB; Ph.D., SUNY (Buffalo)
Behavioral psychology; child clinical, sociomotor, development
Breanna H. Bry, Professor of Psychology, GSAPP; Ph.D., Pennsylvania (Columbia)
Behavior analysis of adolescent substance use, including family variables
J. Douglas Carroll, Board of Governors' Professor of Management, GSM;
Ph.D., Princeton
Theory and methods of multidimensional scaling and related techniques
Gretchen Chapman, Associate Professor of Psychology, FAS–N
Medical decision making; physician reasoning; patient preferences and preventive health behavior
George H. Collier, Professor Emeritus of Psychology, FAS–N;
Ph.D., Indiana
Ecological and nutritional analyses of learning, motivation, and regulation
Richard J. Condrada, Professor of Psychology, FAS–NB; Ph.D., CUNY
Psychosocial factors in physical disease; psychophysiology; stress, self-regulation
Richard DeLisi, Professor of Educational Psychology, GSE; Ph.D., Catholic University
Cognitive development
M. David Egger, Professor of Neuroscience and Cell Biology, U M D N J–R W J M S;
Ph.D., Yale
Neuropharmacology; neuranatomy; neurogenetics
Maurice Elias, Professor of Psychology, FAS–N; Ph.D., Connecticut
School-based interventions; prevention, social-emotional intelligence
Yakov Epstein, Professor of Psychology, FAS–N; Ph.D., Columbia
Effects of environment on behavior; communication patterns
John L. Falk, Professor of Psychology, FAS–N; Ph.D., Illinois
Operant and schedule-induced behavior; psychopharmacology
Jacob Feldman, Associate Professor of Psychology, FAS–N; Ph.D., Massachusetts Institute of Technology
Theory of categorization; computational vision
Hans Fisher, Professor of Nutritional Sciences; CC; Ph.D., Illinois
Alcoholism and neurotransmitter metabolism
Charles P. Flaherty, Jr., Professor of Psychology, FAS–N; Ph.D., Wisconsin
Mechanisms of anticipation; psychopharmacology of reward sensitivity; drug interactions

*The department does not offer a terminal master's program, although a Master of Science degree must be completed as part of the doctoral program.
Melvin Lee Cary, Associate Professor of Psychology, FAS-NB; Ph.D., Ohio State
Psychiatric: cognitive styles and social perception; culture and ethnicity
William K. Hallman, Associate Professor of Human Ecology, FAS-N; Ph.D.,
South Carolina
Risk perception; risk communication; individual and community responses
Jan S. Handleman, Educational Director of Douglas Developmental Disabilities
Center, FAS-NB; E.D., Rutgers
Education and treatment of autistic persons
Deanne F. Johnson, Research Associate in Psychology, FAS-NB; Ph.D.,
Oregon (Portland)
Development and ecological and social modulation of foraging behavior
Ilona Kovacs, Assistant Professor of Psychology, FAS-NB; Ph.D., Eotvos
Lorand (Budapest)
Visual perception, development, and plasticity
Sandra Leiblum, Professor of Psychiatry, UMDNJ-RWJMS; Ph.D., Illinois
Female sexuality; menopause; infertility
Robert Matthews, Professor of Philosophy, FAS-NB; Ph.D., Cornell
Psycholinguistics: formal models of language acquisition
James T. Walkup, Associate Professor of Psychology, GSAPP; Ph.D., New School
for Social Research
Serious mental illness; combined mental and physical disorders; disability
Michael Wogan, Associate Professor of Psychology, FAS-C; Ph.D., North Carolina
Group psychotherapy
John Worobey, Associate Professor of Nutritional Sciences, CC; Ph.D.,
Pennsylvania State
Sociomotorial development: infant nutrition and behavior

Adjunct Members of the Graduate Faculty
James E. Barrett, Assistant Vice President, CNS Research, Wyeth-Ayerst Research;
Ph.D., Pennsylvania State
Behavioral and neurochemical research on drug abuse; anxiety, depression;
neurochemical correlates of behavioral processes
April Benashich, Assistant Research Professor of Neuroscience, FAS-NICMIBN;
Ph.D., New York
Infant perception and cognition: developmental neuroepistemology
Elizabeth E. Epstein, Associate Research Professor of Alcohol Studies, CAS;
Ph.D., Connecticut
Individual differences among substance abusers, including family history, personality, and comorbid psychopathology; marital therapy for alcoholic males
and their spouses children of alcoholics
Richard Smith-Carliss, Principal Scientist, Shering-Plough; Ph.D., Northwestern
Modulation of the affective component of nociception by neuromodulators

Programs

Areas of specialization include biopsychology and behavioral neuroscience, clinical psychology (APA approved), cognitive psychology, social psychology, intradisciplinary developmental psychology, and intradisciplinary health psychology.

Part-time students are not accepted into the program. New graduate students must have had an undergraduate course in experimental psychology with laboratory and a course in statistics. There is no language requirement.

Specific course requirements and options normally are established by each area. To the greatest extent possible, students’ programs are tailored to their career goals. A minimum of 48 course credits and 24 research credits are required in the Ph.D. program.

In addition to the Ph.D. program in clinical psychology, a Doctor of Psychology (Psy.D.) degree in clinical or school psychology is offered by the Graduate School of Applied and Professional Psychology. This program is described in the graduate school’s catalog.

Graduate Courses

16:830:505. THEORIES AND ISSUES IN DEVELOPMENTAL PSYCHOLOGY (3)
Models and theory in developmental psychology. Emphasis upon metatheoretical and theoretical issues, including theories of cognitive, social, and emotional development.

16:830:506. SOCIAL PSYCHOLOGY (3)
Critical survey of concepts and current research in social psychology. Social perception, attitudes and attitude change, groups.

16:830:507. DEVELOPMENTAL RESEARCH METHODOLOGY (3)
Survey of descriptive and explanatory research methods for the study of behavioral change and development.

16:830:508. RESEARCH METHODS IN SOCIAL PSYCHOLOGY (3)
Critical examination of methodological problems in research involving human subjects, including personality, social psychology, and health psychology. Topics include measurement, experimental and quasi-experimental design, operationalization, and threats to validity. Applications to students’ research problems.

16:830:509. PRACTICUM: FIELD AND APPLIED RESEARCH (3)
Practical issues encountered in nonlaboratory settings; procedures and statistical analyses useful when true experimental designs cannot be employed; developing research proposals to meet needs of an organization; issues involved in consultation.

16:830:510. INTRODUCTION TO INDUSTRIAL/ORGANIZATIONAL PSYCHOLOGY (3)
Overview of topics in personnel psychology (predictors, criteria, personnel decisions, interviews, training) and organizational psychology (motivation, job satisfaction, supervision, organizational structure).

16:830:511, 512. ADVANCED TOPICS IN DEVELOPMENTAL PSYCHOLOGY (3,3)
Selected topics in developmental psychology, emphasizing theory and research. Offered by different faculty members as a special course in their particular area of expertise.

16:830:513. NEUROLINGUISTICS (3)
Prerequisite: Graduate student in psychology, linguistics, neuroscience, or philosophy; or permission of instructor.
Topics include functional neuroimaging studies of language (PET, fMRI, MEG), acquired and developmental language disorders, the relationship between language development and neural development, language acquisition after the critical period.

16:830:514. SENSATION AND PERCEPTION (3)
Theoretical and experimental approaches to the perception of form, motion, depth, texture, and color.

16:830:515. COMPUTATIONAL VISION (3)
Introduction to algorithms for computing environmental shape-from-stimulus cues and regularization procedures for choosing optimally economic solutions as related to the perception of surfaces and objects.

16:830:516. HUMAN INFANCY (3)
Current theory and research in infant’s socioemotional, motor, perceptual, cognitive, and language development.

16:830:517. INTERPERSONAL BEHAVIOR AND GROUP PROCESSES (3)
Observations of the development of an undergraduate self-analytic group used as the basis for the investigation of issues in the psychology of personality, interpersonal behavior, social structure, and the formation of group cultures.

16:830:518. PERSONALITY ASSESSMENT I (3)
Survey of the logic and rationale of self-report personality assessment procedures and of experimental research procedures. Informati

181
16:830:520. Principles of Biopsychology (3)
Survey of current theory and data from the fields of neurobiology, Pavlovian and operant learning, neuropharmacology, and developmental psychobiology.

16:830:521. Research Design and Analysis I (3)
Review of basic statistical theory, experimental design, and statistical techniques. Topics include descriptive statistics, probability, z-scores, t-tests, correlation, bivariate regression, one- and two-way analysis of variance, and elementary nonparametric analyses.

16:830:522. Research Design and Analysis II (3)
Review of advanced topics in design and analysis, with emphasis on one or more of the following: multiple regression, multi-way analysis of variance, including mixed designs and repeated measures, analysis of covariance, factor analysis, cluster analysis, and bootstrapping techniques.

16:830:523. Computer Applications in Psychology (3)
Designed to introduce psychologists to the use of the computer in the control of experiments, simulation, and complex data analysis.

16:830:524. Sensory Processes (3)
Theory and data on the senses treated behaviorally and psychologically.

16:830:525,526. Developmental Survey (1,1)
Three classes taught each term in 1-credit units. These may be elected independently.
Comprehensive review of theory, data, and methods in developmental psychology.

16:830:534. Psychology of Decision Making (3)
Contrasts how decisions are actually made (descriptive theories) with optimal methods for decision making (normative theories); covers psychological research on judgments of uncertainty and individual and group decision making.

16:830:535. Language and Communication (3)
Structural properties and processing of language.

16:830:537. Adult Descriptive and Experimental Psychopathology (3)
Systematic consideration of descriptive and experimental psychopathology, consisting of class discussion, student presentations, and research critiques.

16:830:538. Child Descriptive and Experimental Psychopathology (3)
Descriptive and experimental psychopathology of childhood, covering neurotic, psychotic, and antisocial behavior, learning disabilities, child abuse, and mental retardation. Systematic observation of parent and child interviews and evaluations.

16:830:540. Mathematical Models of Learning, Perception, Cognition (3)
Historical and current status of mathematical models of learning, perception, and cognition.

16:830:541. Personality Theory (3)
Nature, development, and role of theory in personality; major contemporary theories and relevant evidence.

16:830:542. Attitude Organization and Change (3)
Theories and research data on the formation, structure, and alteration of attitude.

16:830:543. Conditioning and Learning (3)
Principles and applications of Pavlovian conditioning, instrumental learning, and stimulus control. Topics include conditioned drug tolerance, learned helplessness, and cognitive processes in animal behavior.

16:830:546. Memory and Attention (3)
Survey of current theories and research in memory and attention.

16:830:547. Computational Models of Cognition (3)
Computational approaches to cognition. Historical development of approach; formalisms, tools, and methodological challenges.

16:830:550. Language Development (3)
Theory and research on the acquisition of speech and language by young children.

16:830:551. Personality and Social Development (3)
Theory and research on personality and social development.

16:830:552. Perceptual Development (3)
Effects of early rearing conditions, phylogenetic development, and development of children’s and infants’ perception of objects, persons, spatial arrays, pictures, and symbols.

16:830:553. Strategies in Cognitive Behavior Therapy (3)
Research on and applications of a number of behavioral strategies in psychotherapy. Concentrates on individual, adult, outpatient psychotherapy, treatment of couples, families, and the use of small groups.

16:830:554. Development of Cognitive Processes (3)
Cognitive development, including memory, language, and thinking.

16:830:556. Human and Animal Aggression (3)
Attempt to define aggressive behavior and to examine its function.

Neural, neurochemical, and behavioral bases of psychopharmacology. Peripheral and central nervous neurotransmission mechanisms, animal experimental methods. The application of these methods to human problem areas in the behavioral effects of drugs, including learning, activity, dyskinesia, psychosis, tolerance, abuse, aggression, anxiety, and behavioral toxicology.

16:830:560. Emotion and Motivation (3)
Biological, cognitive, and social aspects of the nature and basis of emotions and emotion-related behaviors.

16:830:567,568. Nervous System and Behavior I,II (3,3)
Neural bases of reinforcement, motor behavior, and ingestive behavior.

16:830:572. Clinical Proseminar I (3)
Open only to clinical psychology students. Major approaches to personality (psychodynamic, social cognitive) and issues in the field (the unconscious, the self, motivation, personality change). Introduction to the clinical context and the practice of cognitive-behavioral psychotherapy using discussion, demonstrations, and role-playing of techniques such as systematic desensitization, cognitive restructuring, and hypnosis.

16:830:577. Health Psychology (3)

16:830:579. Developmental Neuroscience (3)
Underlying processes that determine the course of behavioral and physiological development.
16:830:580. **History and Systems of Psychology (3)**
Philosophical and scientific antecedents of modern psychology. Psychological systems of psychology, including structuralism, fundamentalism, behaviorism, gestalt, psychoanalysis. Recurrent issues in the history of psychology.

16:830:591. **Current Topics in Psychology (BA)**
Prerequisite: Permission of instructor.
Review of recent developments within psychology.

16:830:602. **Psycholinguistics (3)**
Language comprehension and production, including syntactic and semantic analyses.

16:830:610. **Social Psychology of Organizations (3)**
Social psychological analysis of major approaches to organizations, (e.g., classical and open systems), and roles, environment, decision making, leadership, communications, health, conflict, and change.

16:830:611. **Seminar: Perception (3)**
Selected topics on theory and research in perception.

16:830:612. **Seminar: Social Psychology (3)**
Prerequisite 16:830:506, 508, or permission of instructor.
Each section reviews an area of current research interest in social psychology. Topics vary and may include cardiovascular health psychology, health and social behavior, stress and illness, and social cognition.

16:830:613. **Seminar: Conflict and Conflict Resolution (3)**
Prerequisite 16:830:506, 508, or permission of instructor.
Critical examination of major theoretical and empirical approaches to the study of conflict.

16:830:615. **Topics in Social Cognition (3)**
Prerequisite 16:830:506, 546, or permission of instructor.
Examination of current theoretical and empirical approaches to social behavior from a cognitive orientation.

16:830:616. **Seminar: Personality (3)**
Prerequisite 16:830:541 or permission of instructor.
Critical examination of theories of personality, with particular attention to the relationship between emotion and thought.

16:830:620. **Seminar: The Dynamics of Small Groups (3)**
Examination of the processes operating in several types of groups, including families, work groups, adult-psychotherapy groups, and children’s groups. Includes participation in an experiential group, lectures, and the opportunity to plan and practice consultation and intervention skills with an ongoing group.

16:830:622. **Introduction to Survey Research (3)**
Explores all stages in the survey process (e.g., research design, question construction and survey layout, sampling, interviewing, coding, analysis, and report writing). Covers face-to-face interviews and mail and telephone surveys.

Analysis of the theoretical and clinical foundations of cognitive behavior theory (CBT); clinical practice of CBT with adult disorders.

16:830:627,628. **Developmental Laboratory I, II (3,3)**
Intensive consideration of problems, methods, data, and theory in selected areas of development.

Critical examination of the literature on a relatively circumscribed topic of current research interest in experimental psychology.

16:830:635. **Seminar: Selected Topics in Learning (3)**
Detailed examination of limited research problem areas in learning.

16:830:636. **Neuroendocrine Responses to Stress (3)**
Psychological factors initiating stress, physiological correlates of stress, and pathological consequences of stress.

16:830:637,638. **Seminar: Cognition (3,3)**
Selected topics in cognition and cognitive science, including language, memory, attention, problem solving, thinking, and learning.

16:830:639. **Cognitive Assessment (3)**
Integration of various means of assessment and communication of assessment findings; recent theory, research, principles of measurement, and sociocultural factors relevant to individual cognitive assessment; administration and scoring of individual intelligence tests, interpretation of findings, and use of findings for intervention.

16:830:641. **Seminar: Thinking (3)**
Treats in-depth the literature of circumscribed topics in thinking.

16:830:646. **Seminar: Problems in Behavioral Neuroscience (3)**
Current problems in the physiological determinants of behavior. Preparation and presentation of student papers.

16:830:651,652. **Practicum in Clinical Psychology I,II (3,3)**
Second-year students in the clinical Ph.D. program see clients in the program’s Psychological Clinic.

16:830:653. **Seminar: Problems in Clinical Psychology (3)**
Current issues relevant to the technical, as contrasted with the professional, aspects of clinical psychology.

16:830:655,656. **Practicum in Clinical Psychology III,IV (3,3)**
Third-year students in the clinical Ph.D. program participate one day a week at a mental health or other human service agency.

16:830:657,658. **Internship in Clinical Psychology (0,0)**
Prerequisites: 16:830:655,656, and permission of instructor.
Required of candidates for the Ph.D. in clinical psychology. Eleven months of supervised clinical experience in an approved psychological installation.

16:830:660. **Practicum in Developmental Psychology (3)**
Application of the principles of developmental psychology to a practical problem of development.

16:830:661. **Neuroscience Internship (3)**
Wagner Supervised research experience in an industrial setting.

16:830:701,702. **Research in Psychology (BA,BA)**

Psychology, Applied and Professional
(See the catalog of the Graduate School of Applied and Professional Psychology for information about programs that lead to Psy.D. degrees in clinical, school, and organizational psychology.)
PUBLIC HEALTH 832

Degree Program Offered: Doctor of Philosophy

Director of Graduate Program: Dr. George Rhoads, EOHSI, 170 Frelinghuysen Road, Busch Campus (732/445-0195)
Codirector: Dr. Michael Greenberg, Civic Square Building, Busch Campus (732/932-0387, ext. 673) or EOHSI, 170 Frelinghuysen Road, Busch Campus (732/445-0200)

Application and General Information: 732/445-0199

Members of the Graduate Faculty

Michael A. Gallow, Professor of Environmental and Community Medicine, UMDNJ-RWJMS; Ph.D., Albany Medical College
Metabolism of xenobiotics; hormone carcinogenic receptor action
Michael Cochran, Clinical Professor of Environmental and Community Medicine, UMDNJ-RWJMS; M.D., Albert Einstein, Ph.D., New York
Medical surveillance, biomonitoring
Audrey K. Gotch, Professor of Health Education and Behavioral Science and Interim Dean, UMDNJ-SPH; Director, Public Education and Risk Communication Division, EOHSI; Ph.D., Columbia
Attitudes and practices regarding health risks evaluating the training needs of special target groups; environmental health-science education
Lois A. Grau, Associate Professor of Health Education and Behavioral Science, UMDNJ-SPH; Ph.D., Wisconsin (Milwaukee)
Gerontology; long-term care health services utilization
Michael R. Greenberg, Professor of Urban Studies and Community Health, EJSBPP; Ph.D., Columbia
Geography of mortality, morbidity, and risk factors; hazardous waste management
Howard Kipen, Professor of Environmental and Community Medicine and Director of Occupational Medicine, UMDNJ-RWJMS; M.D., California (San Francisco), M.P.H., Columbia
Clinical epidemiologic studies of occupational asthma and disease diagnosis
Paul J. Llovi, Professor of Environmental and Community Medicine, UMDNJ-RWJMS; Ph.D., Rutgers
Human exposure to toxic substances from single and multiple media; health effects of ozone
Richard M. Lynch, Assistant Professor of Urban Studies and Community Health, EJSBPP; Ph.D., C.I.H., UMDNJ-RWJMS and Rutgers
Industrial hygiene ergonomics; occupational safety and ergonomics
George Rhoads, Endowed Professor of Epidemiology and Associate Dean, UMDNJ-RWJMS; Ph.D., Harvard
Epidemiology of perinatal, environmental, and noninfectious health problems
Weichung Joe Shih, Professor and Director, Biometrics Division, UMDNJ-SPH; Director of Biometrics, CINJ; Ph.D., Minnesota
Statistical methodology in clinical trials; sequential design and analysis, incompletely data
Daniel Wartenberg, Professor of Environmental and Community Medicine, UMDNJ-RWJMS; SUNY (Stony Brook)
Epidemiologic methods; geographic patterns of disease
Clifford F. Weissel, Associate Professor of Environmental and Community Medicine, UMDNJ-RWJMS; Ph.D., Rhode Island
Human exposure to organic compounds and trace metals

Associate Members of the Graduate Faculty

Cande V. Ananth, Assistant Professor of Obstetrics and Gynecology, UMDNJ-RWJMS; Ph.D., North Carolina (Chapel Hill)
Perinatal epidemiology and development of statistical models in human reproduction
Ronald Cody, Professor of Environmental and Community Medicine, UMDNJ-RWJMS; Ph.D., E.J.S.
Statistical research design
Kathleen Demirescu, Assistant Professor of Epidemiology, UMDNJ-SPH; Ph.D., M.D., M.D., Addiss Ababa
Childhood asthma, perinatal epidemiology, breast cancer
Jane Lewis, Assistant Professor of Health Education and Behavioral Science, UMDNJ-SPH; Dr.P.H., Texas
Planning, implementation, and promotion of programs
Shou En Lu, Assistant Professor of Biometrics, UMDNJ-SPH; Ph.D., Johns Hopkins
Cohort case-control design and analysis; clustered-failure time data
Stephen Marcella, Assistant Professor of Environmental and Community Medicine, UMDNJ-RWJMS; M.D., New York
Cancer control epidemiology and children’s health
Jane Miller, Associate Professor of Urban Studies and Community Health, EJSBPP; Ph.D., Pennsylvania
Maternal and child health and nutrition; reproductive health; demography
Mark Robson, Associate Professor of Environmental and Community Medicine, UMDNJ-RWJMS; Ph.D., Rutgers
Pesticide use policy regulation and alternative pest control

Dona F. Schneider, Associate Professor of Urban Studies and Community Health, EJSBPP; Ph.D., Rutgers
Geographic distribution of mortality, disease, and high-risk behavior among children and young adults
Lynn Walshwell, Assistant Professor of Health Education and Behavioral Science, UMDNJ-SPH; Ph.D., Southern Illinois (Carbondale)
Needs assessment; multicultural issues; models of health behavior change
Bernadette M. West, Associate Professor of Health Education and Behavioral Science, UMDNJ-SPH; Ph.D., Rutgers
Community health assessment

Programs

Graduate study in public health has been developed as a joint-degree between the University of Medicine and Dentistry of New Jersey and Rutgers. Faculty members from both institutions, as well as scientists and administrators from industry, government, and public institutions, participate in the teaching program.

The Ph.D. degree requires 72 credit hours. The areas of concentration are environmental and occupational health, epidemiology, and quantitative methods, and health education and behavioral sciences.

To gain admittance to the courses listed below, Rutgers students must complete the Graduate Exchange Program Form, which is available from the registrar’s offices at UMDNJ-School of Public Health or from Rutgers. In addition to these graduate courses, other courses specific to the candidate’s specialty area are offered through various programs at Rutgers. Contact the Piscataway office of the graduate program in public health at UMDNJ for a listing of specific courses and other options in public health.

A master’s level program and a Dr.P.H. degree also are offered in public health through the Edward J. Bloustein School of Planning and Public Policy and UMDNJ-School of Public Health.

Graduate Courses

BIOM-0606-001. MODELING BINARY-RESPONSE DATA: REVIEW OF THE THEORY AND APPLICATIONS (3)
Ananth, Prerequisite Permission of instructor
Applications of regression models suitable for analyzing binary-response data. Models for polytomous and ordinal responses, models for clustered binary responses, and models for analyzing binary-crossover studies also presented.

BIOM-0654-001. BIOCOMPUTING I (3)
Cody, Prerequisite PHCO-0504-001; knowledge of M-S-DOS
Essential features and use of operating systems. Use of SAS to solve database and statistical problems. Spreadsheet and database packages.

BIOM-0611-001. BIOCOMPUTING II (3)
Cody, Prerequisite PHCO-0504-001, BIOM-0654-001.
Advanced uses of SAS and SPSSx, including reorganizing data files, and reading data from tapes and disks.

BIOM-0660-001. CLINICAL TRIALS: DESIGN AND ANALYSIS OF MEDICAL EXPERIMENTS (3)
Shih, Prerequisite: PHCO-0504-001, BIOM-0654-001, or equivalent
Concepts, process, logistics, statistical analysis methodology, and the reporting of results. Includes regulatory issues and the process by which a chemical becomes a medicine.

BIOM-0661-001. REGRESSION METHODS FOR PUBLIC HEALTH STUDIES (3)
Lu, Prerequisite PHCO-0501-001, BIOM-0654-001, or permission of instructor
Simple and multiple linear-regression models, including polynomial regression and analysis of variance (ANOVA) and covariance (ANCOVA) for design of experiments. Binary regression, including logistic regression and applications to case-control studies discussed. Extension to loglinear models for count data also covered. Model building and checking.

BIOM-0687-001. BIOSTATISTICS FOR ENVIRONMENTAL AND OCCUPATIONAL HEALTH (3)
Prerequisite PHCO-0504-001 and BIOM-0654-001.
Applied statistics for environmental/occupational problems.
ENOH-0552-001. PESTICIDES AND PUBLIC HEALTH (1)
Roban. Five-week course.
Introduction to the toxicological, health effects, exposure, and policy issues surrounding the use of pesticides in agricultural and residential settings.

ENOH-0588-001. HISTORY OF OCCUPATIONAL DISEASE AND ENVIRONMENTAL HEALTH (3)
Development of ideas and practices in the prevention of workplace exposures and occupational diseases.

ENOH-0594-001. ENVIRONMENTAL AND OCCUPATIONAL TOXICOLOGY (3)
Gallo. Prerequisite: Organic chemistry or biochemistry.
Basic language and principles of toxicology, and the mechanisms by which xenobiotics damage living systems at the molecular, cellular, tissue, and organ levels.

ENOH-0652-001. ENVIRONMENTAL AND OCCUPATIONAL EPIDEMIOLOGY (3)
Gochfeld, Kipen. Prerequisite: PHCO-0502-001.
Specific epidemiologic approaches to understanding the causation of occupational and environmental health diseases.

ENOH-0656-001. ENVIRONMENTAL RISK ASSESSMENT (3)
Gallo, Gochfeld. Prerequisite: PHCO-0504-001.
Concepts, language, and methods of risk assessment; role of risk assessment in individual and social decision making.

ENOH-0658-001. ADVANCED ENVIRONMENTAL HYGIENE MEASUREMENTS (4)
Werd, Prerequisites: 2 years college chemistry, PHCO-0504-001.
and a course in air sampling and analysis of principles of industrial hygiene.
Fundamental concepts of data interpretation, quality assurance, and hands-on use of equipment and monitoring procedures in the field.

ENOH-0659-001. OCCUPATIONAL HEALTH PRACTICES (2)
Practical experience leading to certification in spirometry/audiometry.

ENOH-0693-001. (S) ADVANCED PRINCIPLES OF OCCUPATIONAL HEALTH (3)
Gochfeld, Kipen
Workplace hazards, occupational diseases, industrial hygiene, and medical surveillance. Design, implementation, administration, and evaluation of programs.

ENOH-0695-001. ENVIRONMENTAL EXPOSURE MEASUREMENTS AND ASSESSMENT (2)
Lioy. Prerequisite: Calculus, biostatistics, principles of air pollution.
Development of skills for designing exposure studies and basic mathematical tools for estimating exposures.

ENOH-0699-001. PRINCIPLES OF INDUSTRIAL HYGIENE (3)
Lynch. Prerequisite: PHCO-0503-001.
Skill development for evaluating exposures causing occupational health problems. Emphasis on mathematical techniques to estimate exposures to chemicals, physical agents, and ergonomic hazards facing employees.

EPID-0552-001. INFECTIOUS DISEASE EPIDEMIOLOGY (3)
Rhoads
Properties, characteristics, and mechanisms of transmission of infectious disease; investigation of outbreaks of infectious disease.

EPID-0585-001. DISEASE CLUSTERS: SCIENCE AND POLICY (1)
Wartenberg. Prerequisites: PHCO-0504-001 and PHCO-0502-001.
History and context; methods of cluster investigations.

EPID-0651-001. EPIDEMIOLOGICAL RESEARCH METHODS (3)
Wartenberg
Methods and logistics in the design and conduct of epidemiological research.

EPID-0652-001. EPIDEMIOLOGY OF CHRONIC DISEASES (3)
Rhoads
Characteristics of selected chronic diseases. Students learn to design studies to investigate chronic diseases and approaches to primary and secondary prevention.

EPID-0655-001. SEMINAR IN SURVIVAL ANALYSIS (3)
Miller. Prerequisites: CORE-5541-001 and ENOH-0558-001.
Concepts and skills in the application of event history, including a review of life tables; estimation and interpretation of survival methods as applied to such issues as mortality, marriage, and nursing home admission.

EPID-0695-001. CLASSIC PAPERS IN PUBLIC HEALTH (1)
Schneider. Prerequisites: PHCO-0502-001, PHCO-0504-001.
Books, essays, journal articles, and public documents that have had a profound impact on public health.

HEBS-0651-001. HEALTH EDUCATION PLANNING AND EVALUATION (3)
Prerequisite: CORE-5550-001.
Introduction to development of health education and health promotion programs.

HEBS-0653-001. MODIFYING HEALTH BEHAVIORS: THEORY AND PRACTICE (3)
Prerequisite: PHCO-0505-001.
Concepts, strategies, and skills for modifying health-related behaviors and for influencing environments and cultures to provide more health support.

HEBS-0655-001. METHODOLOGIES AND MATERIALS IN HEALTH EDUCATION (3)
Lewis Prerequisites: PHCO-0505-001; HEBS 0651-001 or HEBS-0653-001.
Selection and evaluation of appropriate health education methodologies and materials for achieving program goals and objectives.

HEBS-0665-001. SURVEY RESEARCH METHODS (3)
Prerequisite: PHCO-0504-001.
Major methods and techniques in the use of surveys for program development, evaluation, and research.

HEBS-0679-001. HEALTH/RISK COMMUNICATION (3)
Lewis Prerequisite: PHCO-0505-001.
Concepts of public health communication and risk perception, and communication emphasis on media coverage of health-related information.

Hsap-0563-001. INTRODUCTION TO OUTCOMES RESEARCH (3)
Dimisie, Marcella
Study of patient outcomes, medical outcomes, and economics outcomes related to health and health care; quality-of-life issues and assessment tools; and measures of morbidity, mortality, treatment, and severity of disease.

Hsap-0617-001. HEALTH SERVICES RESEARCH EVALUATION (3)
Welt. Prerequisites: PHCO-0501-001, PHCO-0502-001, PHCO-0504-001.
Systematic approaches to the evaluation of health services programs, building on prior knowledge of research methods in biostatistics and epidemiology, and issues in health services administration.

Phco-0501-001. (F) HEALTH SYSTEMS AND POLICY (3)
Grau. Required core course.
Overview of health care in the United States; social, political, and economic issues; organization and financing of health-care services. Examines the private practice of medicine and health maintenance organizations; ethical, legal, and policy issues; trends in health-care organization in the U.S.

Phco-0502-001. (S) PRINCIPLES AND METHODS OF EPIDEMIOLOGY (3)
Schneider, community experts. Required core course.
Introduction to the definitions, language, and approaches of epidemiologists.
Certificate Program

Quaternary Studies gives students the chance to study the earth and its inhabitants over the last few million years. It is an interdisciplinary program that awards a certificate of achievement to students who are pursuing a master’s or doctoral degree in their major field. Participating graduate programs are anthropology, ecology and evolution, environmental sciences, geography, and geological sciences. Students must fulfill all degree requirements in their major program and take two courses in other participating programs that focus on the Quaternary period. In addition, the certificate requires enrollment for one term in 16:841:501 Quaternary Studies Seminar. If a thesis is required for the degree, it should focus on the late Cenozoic or Quaternary time period.

Graduate Courses

16:841:501. QUATERNARY STUDIES SEMINAR (3)
A multidisciplinary course focused on specific questions or problems related to the Quaternary time period. Participating faculties have specialties in geology, anthropology, biology, climatology, oceanography, paleontology, and soils.

16:841:503. PEDOLOGY (3)
General processes and paradigms of soil formation. Soil taxonomy, soil chemistry, clay mineralogy, and the importance of biological processes in soil genesis. Interpretation of paleoclimate from the soil record.

16:841:504. MODERN LINKS TO ANCIENT LIVES (3)
Using contemporary observations and laboratory and field experiments in a variety of habitats and ecosystems to understand the impact of humans and natural processes on the geological and archaeological record.

16:841:505. PALEONTOLOGY (3)
Morphology and taphonomy of fossil pollen, especially with reference to Quaternary sediments. Use of pollen analysis to reconstruct paleoenvironments. Emphasis on field sampling, laboratory analyses, and interpretation of results.

16:841:506. ISOTOPES IN THE PALEOENVIRONMENT (3)
Application of isotope geochemistry to paleoenvironmental studies in hydrology, geology, anthropology, ecology, and paleontology. Emphasis on understanding conceptual basis, limitations, and potential of isotopic studies.

16:841:507. HOLOCENE SEA LEVEL (3)
Coastal environments and processes and their relationship to the Holocene stratigraphic record; interpretation with respect to global climate change. Use of stratigraphic analyses to reconstruct coastal environments. Emphasis on field sampling, laboratory analyses, and data.

RUSSIAN, CENTRAL AND EAST EUROPEAN STUDIES 859

Program Offered: Certificate in Russian, Central and East European Studies
Director of the Certificate Program: Professor Jan Kubik,
Center for Russian, Central and East European Studies,
172 College Avenue, College Avenue Campus (732/932-8551)

Participating Faculty

The following members of the graduate faculty, identified more fully under the subject headings indicated, are among those who participate in the certificate program in Russian, Central and East European Studies:

Helmut Anheier, Sociology
Jerome Aumente, Communication, Information, and Library Studies
Seymour Becker, History
József Böröcz, Sociology
Certificate Program

Students with an interest in Russia or in central and eastern Europe may pursue a concentration in this area as part of their regular degree studies. Students who fulfill the following requirements may be awarded a Certificate in Russian, Central and East European Studies upon completion of their degree. In many cases, the certificate requirements may be used to satisfy the student’s own graduate-degree requirements.

Certificate Requirements

1. Completion of three courses (9 credits) in Russian, Central and East European subjects, with a grade of B or better. These courses must be taken in disciplines other than the student’s degree program. Of these three courses, no more than two can be in any one discipline. Only one can be in the 300-400 level, subject to approval by the program’s director.

2. Completion of a yearlong seminar (6 credits) offered by the Center for Russian, Central and East European Studies.

3. Completion of a major research paper under the guidance of two participating faculty members.

4. Proof of proficiency in one of the languages of the region.

Language tests are administered by the Center for Russian, Central and East European Studies.

Only students already admitted to a degree program in the Graduate School–New Brunswick may participate in the certificate program. Courses in Russian, Central and East European Studies are offered by participating faculty through their departments and graduate programs. Further information is available from the director of the certificate program.

Graduate Courses

16:859:501,502. RUSSIAN, CENTRAL AND EAST EUROPEAN STUDIES SEMINAR (3,3)

Yearlong seminar that examines the political, economic, and social transition in Russia and in Central and Eastern Europe from various perspectives. Theme of the seminar changes annually. Taught by Rutgers faculty members and visiting faculty from the region.

SOCIAL WORK 910

Degree Program Offered: Doctor of Philosophy

Director of Graduate Program: Professor Bernard Neugeboren, Associate Dean for Academic Affairs, School of Social Work, 536 George Street, College Avenue Campus (732/932-6967)

Members of the Graduate Faculty

Ann A. Abbott, Associate Professor of Social Work, SSW; Ph.D., Bryn Mawr College

Bryan Mawr College

PhD: Administration; Public administration; quantitative methodology

Eleanor L. Brilliant, Professor of Social Work, SSW; D.S.W., Columbia

Social policy, organizations, women, and international philanthropy

Michael J. Camasso, Associate Professor of Social Work, SSW; Ph.D., Pennsylvania State

Public welfare; social work knowledge development; quantitative methodologies

Stephen Crystal, Research Professor of Social Work and Sociology, SSW/HHHCPR; Ph.D., Harvard

AIDS; long-term care, homophobia; longitudinal data analysis

Mary Edna Davidson, Dean and Professor of Social Work, SSW; Ph.D., Brandeis

Child welfare advocacy research; equity analysis of public social policy

Donald T. Dickson, Professor of Social Work, SSW; Ph.D., Michigan

Law; child welfare; mental health; administration

Paul Glasser, Professor of Social Work, SSW; Ph.D., North Carolina

Family theory; marital and family therapy; small-group theory and practice

Raymond Sánchez Mayers, Associate Professor of Social Work, SSW; Ph.D., Brandeis

Financial management in nonprofits; administrative issues; Hispanic issues

David Mechanic, University Professor and Rene Dubos Professor of Behavioral Sciences, Ph.D., Stanford

Medical sociology; evaluation research and social policy

Bernard Neugeboren, Associate Dean for Academic Affairs and Professor of Social Work, SSW; Ph.D., Brandeis

Mental health policy; administration; environmental practice

Kathleen J. Potstick, Associate Professor of Social Work, SSW/HHHCPR; Ph.D., Michigan

Child and adolescent mental health and psychiatric service delivery systems

Jerome C. Wakefield, Professor of Social Work, SSW/HHHCPR; D.S.W., California (Berkeley)

Conceptual and theoretical foundations of mental health services

Allison Zipay, Assistant Professor of Social Work, SSW; Ph.D., California (Berkeley)

Poverty and employment policy; community development; social networks

Associate Members of the Graduate Faculty

Judith Baer, Assistant Professor of Social Work, SSW; Ph.D., Houston

Life-span development; adolescent development

Laura Curnan, Assistant Professor of Social Work, SSW; Ph.D., California (Berkeley)

Family and child policy and practice; welfare policy; social-welfare history; gender and sexuality

Antoinette Forner, Assistant Professor of Social Work, SSW; Ph.D., Pittsburgh

Parenting behavior; kinship care; AIDS knowledge and prevention; evaluation of social work practice

G. Lawrence Forner, Assistant Professor of Social Work, SSW; Ph.D., Florida International

Evaluation of social programs; psychological and psychiatric assessment; quantitative data analysis

Blanche Grosswald, Assistant Professor of Social Work, SSW; Ph.D., California (Berkeley)

Economics of social welfare and policy analysis

Chien-Chung Huang, Assistant Professor of Social Work, SSW; Ph.D., Columbia

Child support, social assistance, poverty, and income redistribution

Michael C. Lasala, Assistant Professor of Social Work, SSW; Ph.D., SUNY (Albany)

Clinical social work; gay and lesbian issues; marriage and family therapy

Shari Munch, Assistant Professor of Social Work, SSW; Ph.D., Michigan State

Health care; women's health care, perinatal ethics and bereavement

N. Andrew Peterson, Assistant Professor of Social Work, SSW; Ph.D., Missouri

Empowerment theory; community research methods and evaluation

Robert James Reid, Assistant Professor of Social Work, SSW; Ph.D., Columbia

Health care; women's health care, perinatal ethics and bereavement

Mark Schmitz, Assistant Professor of Social Work, SSW; Ph.D., Iowa

Mental health; social psychology; family; life course and aging sociology

Sharon H. Smith, Assistant Professor of Social Work, SSW; Ph.D., Pennsylvania

Social gerontology; methods of direct practice; child welfare

Paul W. Speer, Assistant Professor of Social Work, SSW/CAS; Ph.D., Missouri (Kansas City)

Community organizing; substance abuse prevention; individual and organizational empowerment

Lynn A. Warner, Assistant Professor of Social Work, SSW; Ph.D., Michigan

ATOD; mental health; epidemiology and social policy

Programs

The Graduate School–New Brunswick, in cooperation with the School of Social Work, offers programs leading to a Ph.D. in social work. Programs for students seeking a Master of Social Work are provided by the School of Social Work. Students may find descriptions of those courses in the catalog of that professional school.

The doctoral program in social work prepares students for advanced research in social work and for leadership roles in social-welfare organizations.

The program is designed for students who have earned an M.S.W. or a master’s degree in a closely related field. The program’s two tracks, direct practice and social policy and administration, emphasize theory development and research. Each track requires students to take courses in research and statistics, plus courses related to the specific track. Students also take electives and one or more courses in a cognate discipline outside social work. Finally, there are courses to help students become computer literate in social-science research and statistical analysis.
In addition to course work, students must complete a research internship, take a qualifying examination, and submit a dissertation. The research internship, which is done under the direction of a faculty member, prepares students to do the independent research needed for the dissertation. The qualifying examination ensures that a student has acquired the necessary background before starting dissertation research. Only when all other requirements are met do students register and write their dissertation under direction of a faculty member and a doctoral committee.

The curriculum policy of the doctoral program in social work gives students maximum latitude to design their own programs of study. Preparation includes 6 credits of graduate-level statistics courses, 6 to 9 credits in the social-work major, 6 to 9 credits of electives, and 3 credits in the social sciences or other courses outside social work. Once a student has completed satisfactorily 12 credits of course work, he or she may transfer as many as 18 credits from the prior master’s program.

Students take their qualifying examination after they have completed 30 credits of course work. Each is admitted to candidacy for the degree after his or her research proposal has won approval from the committee. While working on his or her dissertation, a student is required to register for 24 research credits. It takes 72 credits to earn a Ph.D.

The residency requirement calls for students to register for a minimum of 30 credits of approved course work. There are three ways of meeting this requirement. The most intensive plan calls for students to complete all their course work in one year of residency at the New Brunswick campus. Under this option, students take four courses each term and participate in a research internship during the summer of that year. Other requirements for the degree, such as the qualifying examination and dissertation, are completed after the first year, and do not require residency.

A two-year option is designed for people who want to obtain a doctorate in the middle of a career. Under this plan, students spend one full day each week on campus, completing the ten required courses in two years. Most students choosing this option require an additional term to take the qualifying examination and complete a dissertation proposal. While the time needed to complete a dissertation varies, most students take two to four years.

The program offers a post-M.S.W. honors option for students who complete the M.S.W. program with outstanding records but who lack practical experience after getting their advanced degree. These students are encouraged to do social work while in the doctoral program. This plan enables students, while working on a doctorate, to acquire the two years of post-M.S.W. experience needed to qualify for a faculty position.

Admission requirements include an M.S.W. or a closely related master’s degree. Two years of post-M.S.W. practice experience is preferred for all except those enrolled in the post-M.S.W. honors option.

Graduate Courses

16:910:637. (F) Quantitative Research Methods (3)
Knowledge and skills needed to carry out independent doctoral-level research in social work. Identification and study of state-of-the-art methods of design and measurement; qualitative and quantitative formulations; data gathering, processing, analysis, and interpretation.

Prerequisite: 16:910:637.

16:910:638. (F) Advanced Statistical Methods I (3)
Analytic and measurement strategies fundamental to multivariate model testing in policy, administration, and direct practice research. Topics include tabular and loglinear analysis, multiple regression, analysis of covariance, and analysis of variance in its principal forms. Multiple indicators and measurement approaches, such as exploratory and confirmatory factor analysis.

Prerequisite: 16:910:638.

16:910:639. (S) Advanced Statistical Methods II (3)
Use of multivariate, quantitative methods. Employing multiple dependent variables, nonlinear relationships, mediator effects, instrument variables, and multilevel analysis.

Prerequisite: 16:910:638.

16:910:640. (S) Qualitative Research Methods (3)
Examination of the methods of collecting, analyzing, presenting, and applying qualitative data. History and evolution of qualitative research methods; theoretical orientations; data-collection methods, including ethnography, participant observation, in-depth interviewing, focus groups, and archival analysis; methods of data analysis; and research applications, including theory development and program design and evaluation.

Prerequisite: 16:910:687.

16:910:644. (F) Current Perspectives (3)
Theories and models of intervention used in social work direct practice. Applications.

16:910:646. (S) Family Theory and Program Development (3)
Study of family theory and its relationship to program development at different levels of practice and social planning. Geared toward both a policy planning and intervention perspective, as well as a sociological interest in socialization and the study of deviance.

16:910:647. (F) Social Policy Analysis (3)
Paradigms, methods, and strategies for the analysis of policy from social work, economics, sociology, political science, public administration, policy sciences, and planning.

16:910:649. (F) Mental-Health Policy (3)
Major issues in mental-health policies and programs in socio-environmental context.

16:910:650. (S) Problems in Health and Social Policy (3)
Selected critical issues in the delivery of human services; application of social research to policy. The policy research process. Topics may include care of the aging and the health policy challenge posed by the AIDS epidemic.

Study in depth, and on an individualized basis, various areas of social policy, social planning, social administration, or direct intervention.

Provides an opportunity to specialize in a specific area of policy analysis, social planning, social administration, or direct intervention, on an individualized basis.

16:910:657. (S) Theory Development in Social Work Direct Practice (3)
The relative places and contributions of theoretical conceptualization, “practice wisdom,” and descriptive and prescriptive research.

16:910:659. (F) Social Work Organizations (3)
Applicability of organizational theories and concepts from the social sciences for analysis of human service organizations; strategies and performance with clients and constituents. Criteria and procedures for organizational assessment and case studies of public and private social welfare organizations. Use of various paradigms for critical analysis of organizational culture, environmental interactions, resource dependency, policy impact, and program implementation.

16:910:701, 702. Dissertation Research (BA,BA)
Independent research study related to proposed dissertation, with assistance of appropriate faculty. Dissertation seminar.

16:910:703, 704. Research Internship (BA,BA)
Independent research internship under guidance from the faculty adviser to develop a dissertation proposal.
SOCIAL WORK: ADMINISTRATION, POLICY AND PLANNING, AND DIRECT PRACTICE
(See the catalog of the School of Social Work for information about the M.S.W. degree.)

SOCIOLOGY 920

Degree Programs Offered: Master of Arts, Doctor of Philosophy
Director of Graduate Program: Professor Thomas Rudel,
Lucy Stone Hall, Livingston Campus (732/445-4030)

Members of the Graduate Faculty

Helmut K. Anheier, Associate Professor of Sociology, FAS–NB; Ph.D., Yale
Comparative sociology; social networks organizations

Marian Baskin, Assistant Professor of Sociology, FAS–NB; Ph.D., Wisconsin
Immigration; race; social networks

Karen S. Boardman, Professor of Education, FAS–NB, Ph.D., Johns Hopkins
Children; education; cross-national studies

Jerzy Borocz, Associate Professor of Sociology, FAS–NB/Institute for Hungarian Studies; Ph.D., Johns Hopkins
Historical; comparative economic; leisure migration; stratification

Christian Brooks, Professor of Sociology, FAS–NB, Ph.D., New York
International political economy; globalization; work and labor markets

Karen A. Cerulo, Associate Professor of Sociology, FAS–NB; Ph.D., Princeton
Culture; communications; deviance; methods

Lee Clarke, Associate Professor of Sociology, FAS–NB; Ph.D., SUNY (Stony Brook)
Organizations; technology and risk

Ira J. Cohen, Associate Professor of Sociology, FAS–N; Ph.D., Wisconsin
Social theory; sociology of everyday life

Jeanette Covingt, Associate Professor of Sociology, FAS–NB; Ph.D., Chicago
Deviance/criminology

Stephen Crystal, Professor of Social Work, SSW/IHHCPAR; Ph.D., Harvard
Social policy; social gerontology; AIDS

Nancy DiTomasso, Professor of Management, GGM; Ph.D., Wisconsin
Organizations; theory; economy and society

Lucile Duberman, Associate Professor of Sociology, FAS–N; Ph.D., Case Western Reserve
Marriage; family

William A. Firestone, Professor of Educational Policy, and Administration, GSE; Ph.D., Chicago
Education; policy implementation; qualitative methods; organizations

Judith J. Friedman, Associate Professor of Sociology, FAS–NB; Ph.D., Michigan
Urban communities; environment; demography

Judith M. Gerson, Associate Professor of Sociology, FAS–NB; Ph.D., Cornell
Gender; work; social theory

Ted G. Goertzel, Professor of Sociology, FAS–C; Ph.D., Washington
Political stratification; social welfare

Sherry Gorelick, Associate Professor of Sociology, FAS–NB; Ph.D., Columbia
Education; ethnicity

Cathy Greenblatt, Professor of Sociology, FAS–NB; Ph.D., Columbia
Research methods; survey; economic development

Stephen Hansell, Associate Professor of Sociology, FAS–NB/IHHCPAR; Ph.D., Chicago
Medical; social psychology; education

Clayton A. Hartjen, Professor of Sociology, FAS–NB; Ph.D., New York University
Criminology and deviant behavior

Allan V. Horwitz, Professor of Sociology, FAS–NB/IHHCPAR; Ph.D., Yale
Deviance and social control; mental illness; law

Ellen L. Idler, Professor of Sociology, FAS–NB/IHHCPAR; Ph.D., Yale
Health; aging; religion

John C. Leggett, Associate Professor of Sociology, FAS–NB; Ph.D., Michigan
Labor; gender; race; class; survey research; political culture

Donald Light, Professor of Sociology and Community Medicine, UMDNJ-SOM; Ph.D., Brandeis
Comparative health care; social policy; professions

John L. Martin, Assistant Professor of Sociology, FAS–NB; Ph.D., California (Berkeley)
Cultural belief; religion; numerical analysis of qualitative data

Leslie McCaff, Associate Professor of Sociology, FAS–NB; Ph.D., Wisconsin
Gender; work and labor markets theory

Paul McLean, Assistant Professor of Sociology, FAS–NB; Ph.D., Chicago
Historical-comparative economic; patronage networks

David Mechanic, University Professor and René Dubos Professor of Behavioral Sciences, IHHCPAR; Ph.D., Stanford
Medical; social psychology; psychiatry

Ann Mische, Assistant Professor of Sociology, FAS–NB; Ph.D., New School for Social Research
Political culture; social movements; social networks; micro-interaction; temporality

Martin Oppenheimer, Associate Professor of Sociology, FAS–NB; Ph.D., Pennsylvania
Social movements; American working class

Ann P. Parelius, Associate Professor of Sociology, FAS–NB; Ph.D., Chicago
Education; marriage and family

Robert J. Parelius, Associate Professor of Sociology, FAS–NB; Ph.D., Chicago
Education

Julie Phillips, Assistant Professor of Sociology, FAS–NB/IHHCPAR; Ph.D., Pennsylvania
Demography; crime migration; methods; urban geography; mortality

David Poppenoe, Professor of Sociology, FAS–NB; Ph.D., Pennsylvania
Family and community; comparative social systems

Patricia A. Roos, Professor of Sociology, FAS–NB; Ph.D., California (Los Angeles)
Stratification; work; gender

Sarah Rosenfield, Associate Professor of Sociology, FAS–NB/IHHCPAR; Ph.D., Texas
Medical sociology; mental illness

Thomas Rudel, Professor of Sociology, CC; Ph.D., Yale
Development; environment; human ecology

D. Randall Smith, Associate Professor of Sociology, FAS–NB; Ph.D., Johns Hopkins
Methodology; statistics

Shirley A. Smoyr, Professor of Urban Studies and Community Health, EJBSPP; Ph.D., Rutgers
Serious mentally ill adults and children

Arleen J. Stein, Associate Professor of Sociology, FAS–NB; Ph.D., California (Berkeley)
Gender and sexuality; culture; social movements

Megan Sweeney, Assistant Professor of Sociology, FAS–NB; Ph.D., Wisconsin
Family; life course; gender; demography

Jackson Toby, Professor of Sociology, FAS–NB; Ph.D., Harvard
Criminology/deviance; theory; education

Chaim I. Waxman, Professor of Sociology, FAS–NB; Ph.D., New School for Social Research
Religion; ethnicity; social welfare

Helene R. White, Professor of Sociology, FAS–NB/ICAS; Ph.D., Rutgers
Alcohol and drug deviance

Richard Williams, Associate Professor of Sociology, FAS–NB; Ph.D., SUNY (Binghamton)
Social construction of identities (race and ethnic); mass communications (television news)

Robert E. Wood, Associate Professor of Sociology, FAS–C; Ph.D., California (Berkeley)
Political economy of international development

Benjamin D. Zablocki, Professor of Sociology, FAS–NB; Ph.D., Johns Hopkins
Methodology; statistics; collective behavior

Eviatar Y. Zerubavel, Professor of Sociology, FAS–NB; Ph.D., Pennsylvania
Cognitive sociology; sociology of time; social memory; everyday life

Associate Members of the Graduate Faculty

Kevin A. Boyer, Associate Professor of Sociology, FAS–NB; Ph.D., Columbia
Criminology; law and society

Valerie B. Johnson, Associate Professor of Alcohol Studies, CAS; Ph.D., Rutgers
Alcohol and drug studies

Charles A. Nanny, Professor of Industrial Relations and Human Resources, SM/LR; Ph.D., Rutgers
Theory; work and occupations; communications

Karen M. O’Neill, Associate Professor of Human Ecology, FAS–NB; Ph.D., California (Los Angeles)
Land-use conflicts; social classes; the state

Adjunct Member of the Graduate Faculty

Carol A. Boyer, Assistant Research Professor, IHHCPAR; Ph.D., Yale
Mental health; health care

Programs

The program prepares students for research and for teaching. While it does offer an M.A. degree, the program is designed primarily for students who are seeking a Ph.D. The M.A. degree is seen as a steppingstone to the Ph.D.

Requirements for the Ph.D. include 21 research credits, a writing seminar worth 3 credits, and 48 credits of approved course work. To meet the course requirement, students may include courses that
were taken to satisfy requirements for the M.A. degree. Students may transfer as many as 24 credits from other institutions. Of the 48 credits, 6 must be in theory, 6 in methods, and 6 in statistics.

In addition to course work, students must complete three qualifying papers of publishable quality or submit two such papers and take a qualifying examination in one area of specialization. They also are required to take a writing seminar, defend and win approval of a dissertation proposal, and submit and defend a finished dissertation.

Students generally receive the M.A. degree when they have completed 30 credits of approved course work. Required courses include 3 credits in methods, 3 credits in statistics, and 6 credits in theory. Finally, they must submit one of the qualifying papers for the Ph.D. Upon approval, students may transfer as many as 12 credits earned from other institutions.

Applications for September admission should be submitted no later than February 1 by students seeking financial assistance. In other cases, the deadline is May 1. Official transcripts, a writing sample, and three letters of recommendation are required. The Graduate Record Examination (GRE) also is required, but applicants need not take the advanced test in sociology. Students for whom English is not the first language must take the TOEFL examination if their undergraduate degree was not obtained in the United States.

Graduate Courses

Logic, design, and implementation of research to test sociological hypotheses. First term: fundamentals of research design, sampling, and measurement. Second term: data collection, data management, and exploratory data analysis, including an introduction to computer techniques. Laboratory exercises required.

16:920:503,504. Selected Sociological Problems (3,3)
Prerequisite: Permission of instructor. For graduate students wishing to pursue advanced work. By arrangement.

Prerequisite: Permission of instructor. For graduate students wishing to pursue advanced work in fields where no advanced courses are provided. By arrangement.

16:920:511,512. Proseminar in Sociology (3,3)
Selected special topics in sociology.

16:920:515. Classical Sociological Theory (3)
Discussion of the major figures who shaped sociological theory from the mid-nineteenth century to the first three decades of the twentieth century.

16:920:516. Contemporary Sociological Theory (3)
Survey of the dominant lines of theoretical development in contemporary sociology.

16:920:520. Comparative and Historical Methods (3)
Philosophical, theoretical, and methodological issues involved in sociological explanations of the development of social systems over time.

16:920:521. Sociology of Education (3)
Analysis of the U.S. educational system and its relation to other social systems. Major focus on the ideology of the system, the interrelationship of various occupations, and special problems of urban schools.

16:920:523. Sociology of Health (3)
Social correlates of health and illness in the U.S.; major social roles and organizational structures concerned with health and medical care.

16:920:524. Sociology of Organizations (3)
Basic survey of the sociology of organizations, with emphasis on current developments.

16:920:527. Research Seminar in Political Sociology and Development (3)
Major theoretical frameworks of political sociology and development, and historical and contemporary debates within these fields.

16:920:528. Marriage and the Family (3)
Review of the basic concepts and research in the field of marriage and the family.

16:920:535. Professions (3)
Development and functions of professions in advanced industrial societies. Alternative theories of professionalism evaluated against the background of sociological studies of different professions, such as medicine, law, social work, psychology, education, nursing, engineering, management and planning, the clergy, and the artistic professions.

16:920:541-542. Analysis of Sociological Data I,II (3,3)
Prerequisite for 16:920:542: 16:920:541 or permission of instructor. Application of classical and modern statistical techniques to the analysis of sociological data. Problems of optimal fitting of technique to level and quality of data emphasized. First term: bivariate techniques, up to and including the analysis of variance. Second term: multivariate techniques, multiple regression, and the general linear model. Laboratory exercises required.

16:920:550. Practicum in Teaching Sociology (3)
Trains sociology graduate students to teach, with a specific emphasis on clear presentations, logical argument, and day-to-day pedagogical issues.

16:920:570,571,572,573. Special Topics in Sociology (3,3,3,3)

16:920:602. Culture, Symbols, and Social Interaction (3)
Examines several dimensions of the complex interaction between the social and cultural spheres. Focuses on the ways in which norms, gestures, and symbols structure interpersonal encounters; the symbol systems that make possible large-scale interaction between social members; the ways in which social structure orders social interactions; and the ways in which technology can mediate social interactions.

16:920:603. Sociology of Religion (3)
Religious belief systems and forms of social organization in historical and cross-cultural perspective; public religious behavior and private spiritual practice; old and new religious movements; relationship between religion and other major social institutions (especially the political and the economic).

16:920:607. Seminar in Organizations (3)
Development of theories and research models concerned with organizations.

16:920:611. Criminology and Corrections (3)
Theories of criminality and methods of treatment and prevention within the context of the general analysis of deviance and social control.

16:920:612. Social Deviance and Social Control (3)
Conditions under which people tend to conform or deviate; probable consequences of deviance and social control for both deviants and conformists.

16:920:613. The Sociology of Age (3)
Theory of age stratification, age structure of the society, aging of individuals, and connections between aging and various social processes and social institutions.

16:920:614. Seminar in Race and Ethnic Relations (3)
Analysis of race and ethnic relations from a comparative perspective; contemporary theory, issues, and problems.
16:920:615. **SEMINAR IN QUALITATIVE RESEARCH METHODS (3)**
Discussion and guided practice in the collection and analysis of qualitative data. Major attention on research designs employing participant observations and/or in-depth interviewing. Case studies reviewed; collection and analysis of data from a field research study.

16:920:616. **SEMINAR IN SOCIAL STRATIFICATION (3)**
Fundamental features of social stratification in both its structural and dynamic aspects and in terms of its consequences for society and for the individual.

16:920:618. **SOCIOLOGY OF GENDER (3)**
Cross-cultural and historical analysis of gender roles; gender in modern society; gender roles and social institutions; work, family, religion, politics, and education. A range of theoretical and empirical approaches included.

16:920:627. **SOCIOLOGY OF SOCIALIZATION (3)**
Study of socialization as a concept and as a process; the socialization of children and adults; variations in socialization among cultures, socioeconomic status groups, and types of social groups.

16:920:629. **DEVELOPMENT AND UNDERDEVELOPMENT (3)**
Interdisciplinary perspectives on processes of development, with focus on phenomena of class and politics.

16:920:631. **SOCIOLOGY OF MENTAL ILLNESS (3)**
Study of the epidemiology of psychiatric disorders, help-seeking processes for mental illness, social responses to the mentally ill, and social policy issues in the mental health field.

16:920:632. **SOCIOLOGY OF WORK (3)**
Meaning and organization of work; the division of labor: who does what and how; interactions among occupations; and the quality of work life in industrial societies.

16:920:633. **SEMINAR IN SOCIAL SCIENCE DATA ANALYSIS (3)**
Prerequisite 16:920:542 or permission of instructor. Advanced topics in quantitative reduction and analysis of data generated by research in the various social sciences. Topics chosen from, but not limited to, loglinear analysis, structural equations models, panel analysis, network analysis, time-series analysis, and continuous-time process models. Initial sessions focus on developing the basics of matrix algebra upon which most of these techniques rely.

16:920:640. **SOCIOLOGICAL PERSPECTIVES ON FEMINIST THEORY (3)**
Detailed examination of major feminist theories, with an emphasis on contemporary feminist thought.

16:920:645. **DRUGS AND SOCIETY (3)**
Examination of causes and consequences of illegal drug use; how drugs came to be criminalized; the current system of drug prohibition in the U.S.; and alternatives to prohibition, such as decriminalization and legalization.

16:920:646. **(S) COGNITIVE SOCIOLOGY (3)**
Social context of thinking, focusing on specific cognitive processes: classifying, framing, symbolizing, time-reckoning, perceiving, attending, remembering, and making sense. Draws on sociology of knowledge, phenomenological sociology, ethnomet hodology, sociology of science, symbolic interactionism, semiotics, symbolic anthropology, and linguistics.

16:920:701,702. **RESEARCH IN SOCIOLOGY (BA,BA)**
Prerequisite Candidacy for Ph.D. required of all students engaged in Ph.D. dissertation research.

16:920:703. **WRITING SEMINAR (3)**
Sharpen writing and publishing skills as professional sociologists. Writing and rewriting doctoral qualifying papers and dissertation proposals.

SPANISH 940

Degree Programs Offered: Master of Arts, Master of Arts for Teachers, Doctor of Philosophy

Director of Graduate Program: Professor Carlos Raúl Narváez

Carpender House, Douglass Campus (732/932-9323)

Members of the Graduate Faculty

Mary Lee Bretez, Professor of Spanish, FAS-NB; Ph.D., Maryland

Nineteenth- and twentieth-century Spanish literature

Frank N. Dauster, Professor Emeritus of Spanish, FAS-NB; Ph.D., Yale

Contemporary Spanish-American literature; drama; poetry

Mary S. Glossy, Associate Professor of Spanish, FAS-NB; Ph.D., Harvard

Golden-age prose, narrative, feminist theory; reader-response, psychoanalysis

Conrado Guardiola, Associate Professor of Spanish, FAS-NB; Doctor en Filosofía y Letras, Zaragoza

Medieval Spanish literature

Carl Kirschnere, Professor of Spanish, FAS-NB; Ph.D., Massachusetts

Spanish linguistic syntax; semantics; bilingualism in the United States

Jorge Marcone, Associate Professor of Spanish, FAS-NB; Ph.D., Texas

Latin American literature and environmentalism; theories of literacy; orality; hypermedia

Tomás Eloy Martínez, Professor of Spanish-American Literature, FAS-NB; M.A., Paris Institute

Contemporary Spanish-American narrative; Latin-American studies; film theory; colonial Spanish-American literature

Gabriela Mora, Professor Emerita of Spanish, FAS-NB; Ph.D., Smith

Nineteenth- and twentieth-century Spanish-American literature; literary theory

Carlos Raúl Narváez, Associate Professor of Spanish-American Literature, FAS-NB; Ph.D., Columbia

Twentieth-century Spanish-American and Caribbean literature; poetry; novel; contemporary literary theory

Margaret H. Persin, Professor of Spanish, FAS-NB; Ph.D., Indiana

Twentieth-century Hispanic poetry; literary theory

Marcy Schwartz, Associate Professor of Spanish, FAS-NB; Ph.D., Johns Hopkins

Twentieth-century Spanish-American literature; urban cultural studies; literary theory

Thomas M. Stephens, Associate Professor of Spanish, FAS-NB; Ph.D., Michigan

Hispanic ethnic- and sociolinguistics; lexicography

Phyllis Zatlin, Professor of Spanish, FAS-NB; Ph.D., Florida

Contemporary Spanish film and theater; novel; translation studies

Associate Members of the Graduate Faculty

César Braga-Pinto, Assistant Professor of Portuguese, FAS-NB; Ph.D., California (Berkeley)

Colombian Brazilian literature

José Camacho, Assistant Professor of Spanish and Linguistics, FAS-NB; Ph.D., Southern California

Spanish linguistics (syntax, phonology, semantics, and bilingualism)

Yeon-Soo Kim, Assistant Professor of Spanish, FAS-NB; Ph.D., Yale

Contemporary Spanish narratives and films

Lawrence La Fountain-Stokes, Assistant Professor of Spanish and Puerto Rican and Hispanic Caribbean Studies, FAS-NB; Ph.D., Columbia

Caribbean and Latino literature and culture

Yolanda Martínez-San Miguel, Assistant Professor of Spanish, FAS-NB; Ph.D., California (Berkeley)

Colonial Latin American literature; cultural representation of migration in the Hispanic Caribbean; cultural studies

Susan Martín-Márquez, Associate Professor of Spanish, FAS-NB; Ph.D., Pennsylvania

Modern peninsular novel; cinema; cultural studies

Ditmaris M. Otero-Torres, Associate Professor of Spanish, FAS-NB; Ph.D., California (San Diego)

Golden age literature and culture; gender studies and literary theory

Phillip Rothwell, Assistant Professor of Portuguese, FAS-NB; Ph.D., Cambridge

Interdisciplinary approach to Lusophone cultures; theoretical approaches

Lilia Sánchez, Assistant Professor of Spanish, FAS-NB; Ph.D., Southern California

Second-language acquisition; bilingualism; Quechua and Spanish syntax

Ben Sifuentes Jauregui, Assistant Professor of Spanish, FAS-NB; Ph.D., Yale

Twentieth-century Spanish-American literature and cultural studies; gender theory and psychoanalysis; U.S. Latino literature

Adela Snajdová, Associate Professor of Spanish, FAS-NB; Ph.D., Rutgers

Spanish-American literature

Camilla Stevens, Assistant Professor of Spanish, FAS-NB; Ph.D., Kansas

Twentieth-century Spanish-American literature; Hispanic Caribbean literature; literary and cultural studies; theater theory

Camilla Stevens, Adolf Snaidas, Assistant Professor of Spanish, FAS–NB; Ph.D., Yale

Assistant Members of the Graduate Faculty

Camilla Stevens, Adolf Snaidas, Assistant Professor of Spanish, FAS–NB; Ph.D., Yale
Programs

The department offers several options for advanced study. The M.A./Ph.D. option in Spanish prepares students for careers in research and teaching in Hispanic studies. The M.A. option in translation prepares students for careers in commerce, industry, and the judicial system. The M.A.T. program is designed for individuals already teaching Spanish at the secondary or junior college level. Both the M.A. option in translation and the M.A.T. are terminal degrees.

The M.A./Ph.D. program deals primarily with Spanish and Spanish-American literature and culture. It also may include course work in Luso-Brazilian literature and linguistics. This program is open to applicants with distinguished academic records and high GRE scores. Doctoral candidates are expected to complete 54 credits of course work beyond the bachelor’s degree, with 12 of those credits in a major field of concentration. Students have the option to declare a minor inside or outside the department. Candidates must pass a written qualifying examination and complete 24 credits of research. They are expected to submit their doctoral thesis proposals when they take their written examinations.

Candidates for the M.A. degree who elect to write a thesis may devote 6 of their required credits to a research problem. In this case, however, they are required to make an oral defense of their thesis. At this time, faculty members screen those M.A. candidates who wish to continue for a doctorate. Exceptional candidates nominated by the faculty have the option to bypass the master’s examination and proceed to the 24 credits of required Ph.D. course work.

Credit for graduate work taken at other institutions may be accepted in partial fulfillment of the course requirements. This normally may be no more than the equivalent of one year of course work (24 credits) at Rutgers. Candidates must demonstrate a reading knowledge of two foreign languages chosen from among German, Latin, and the Romance languages other than Spanish. This language requirement must be satisfied before the student is admitted to the qualifying examination.

The doctoral qualifying examination is a written examination based on reading lists covering the student’s major and minor fields of concentration and two more general areas of study. Once the student has fulfilled the course and language requirements and passed this qualifying examination, he or she is admitted to candidacy for the Ph.D. and may then proceed with the preparation of the dissertation.

The Master of Arts option in translation provides advanced training for translators and interpreters who are preparing for careers in legal, commercial, medical, technical, and social service fields. Applicants are admitted on the basis of academic record, GRE general test scores, and a personal statement submitted in English and in Spanish. The 24 credits of course work may include theory and practice of translation and interpretation, linguistics, literature, culture, and literary theory. There is a foreign language requirement and a 6-credit thesis, which is a translation dissertation.

The M.A.T. program is designed for individuals already teaching Spanish. Applicants are admitted on the basis of prior academic and/or professional performance. Scores from the GRE are not required for admission. The 30 credits of course work may include language, linguistics, methodology, literature, and culture.

Admission

To be admitted to the graduate program in Spanish and the Graduate School–New Brunswick, applicants must meet the following criteria: have a baccalaureate degree from an accredited institution; submit a completed application form; and present a minimum of three letters of recommendation. They also must submit supporting documentation, such as TOEFL scores, GRE scores, and/or a textual analysis. It is recommended that candidates have some life experience or study abroad in a Spanish-speaking environment.

Normally, students who seek entrance to the Spanish graduate programs have an undergraduate degree in Spanish. It is unusual, though not entirely impossible, for undergraduate majors of curricula other than Spanish to seek entrance. At times an individual without the conventional degree in Hispanic studies may seek admission to the graduate program. In such cases, the faculty may require that he or she take undergraduate or graduate courses on a nonmatriculated basis to make up for any deficiencies. The decision on admission is delayed until the student completes this remedial work. If the courses taken on a nonmatriculated basis were on the graduate level, and the student is subsequently accepted for admission to the program, those credits will count toward the graduate degree.

The Graduate School–New Brunswick must approve admission to the graduate program in the Department of Spanish and Portuguese. Normally, the department requires its candidates to have maintained a cumulative grade-point average of 3.0 or better during the junior and senior undergraduate years, and a grade-point average of 3.5 in the major field of study. GRE scores are required for admission to all programs except for the M.A.T. Foreign students also must submit TOEFL scores.

Graduate Courses

Approximately six courses from the following list are offered each term.

16:940:500. METHODS OF SPANISH LANGUAGE TEACHING
(K-12) (3)
Ph.D. students do not receive degree credit for this course. Credit not given for both this course and 16:617:500.

16:940:501. (F) METHODOLOGY OF TEACHING AND RESEARCH
(3)
Required of Ph.D. students and teaching assistants in Spanish. Ph.D. students do not receive degree credit for this course.

16:940:502. ADVANCED TRANSLATION
(3)
Zatlin. Required of all candidates for the M.A. translation option. Intensive practice in the translation of short texts in various fields from Spanish into English and English into Spanish, with emphasis on technical, legal, and literary translation. Discussion of translation theory and research methods, including use of the Internet.

16:940:503. ADVANCED GRAMMAR AND STYLISTICS
(3,3)
Ph.D. students do not receive degree credits for these courses.

16:940:505. (F) SPANISH CULTURE AND CIVILIZATION
(3)
Ph.D. students do not receive degree credit for this course.

16:940:506. (S) CULTURE AND CIVILIZATION IN LATIN AMERICA
(3)
Ph.D. students do not receive degree credit for this course. Emphasis on major sociological, geographical, and cultural factors.

16:940:507. THE SPANISH LANGUAGE ACROSS THE CURRICULUM
(K-12) (3,3)
Ph.D. students do not receive degree credit for these courses. Credit not given for both these courses and 16:617:507,508.

16:940:509. MAIN CURRENTS OF HISPANIC LITERATURE
(3,3)
Ph.D. students do not receive degree credit for these courses. Critical study of texts exemplifying the principal currents of Hispanic literature from the Middle Ages to the present.
16:940:511. (F) HISTORY OF THE SPANISH LANGUAGE (3)
Stephens
Development of the Spanish language from its origins to the present. Relationship of external history to linguistic development.

16:940:512. THE HISPANIC CHILD IN LITERATURE AND CULTURE (3)
Ph.D. students do not receive degree credit for this course.
Introduction to children's literature in Spanish. Hispanic oral tradition, music, theater, performance, games, storytelling, total-physical-response applications, multimedia technology, the bilingual child in the classroom. Practical and theoretical issues.

16:940:513,514. MEDIEVAL LITERATURE (3,3)
Guardiola
Major works of medieval literature, including epic poetry, _mester de clerecía_, prose, and lyric poetry.

16:940:517. (F) DRAMA OF THE GOLDEN AGE (3)
Otero-Torres
Development of dramatic literature from its origins through the seventeenth century.

16:940:520. (F) THE PICARESQUE GENRE IN SPAIN (3)
Gosy
Origins, growth, and decline; such works as El Lazarillo de Tormes, Mateo Alemán’s _Guzmán de Alfarache_, La Pícaro Justina, Quevedo’s _El Buzón_, Vincente Espinel’s _La Vida de Marcus de Obrégón_, Cervantes’ _Nuevas epíscas_.

16:940:521. (S) POETRY OF THE GOLDEN AGE (3)
Otero-Torres
The poetical world of the period. Analysis and literary significance of the most representative poets: Garcilaso, Fray Luis de León, Herrera, Lope de Vega, Góngora, and Quevedo.

16:940:522. (S) BALLADRY OF SPAIN (3)
Guardiola, Persián
How Spanish ballads originated, grew, and multiplied over the world. Different themes and styles. Their significance as sources of other literature. Analysis of several “romancers,” including Menéndez Pidal’s _Flor nueva de romances viéjos_.

16:940:523. (F) DON QUIXOTE (3)
Gosy
Critical study of Cervantes’ masterpiece; analysis of its importance within the Golden Age and across the centuries.

16:940:525. (S) NEOCLASSICISM (3)
Major works of the eighteenth century, including Feijóo, Jovellanos, Moratin, and Cadalso.

16:940:527. (F) ROMANTICISM (3)
Brétz
Poetry, prose, and theater of the romantic period. Relation of Spanish romanticism to other European literature.

16:940:529. (F) REALISM AND NATURALISM (3)
Brétz
Spanish literature of the latter part of the nineteenth century, with emphasis on the novel.

16:940:531. (S) SPANISH MODERNISM (3)
Brétz, Persián
Study of representative authors from early twentieth-century Spain and the problem of such classifications as “Generation of 1898,” “Modernismo,” and “Novecentismo.”

16:940:533. (F) PROSE FICTION OF THE TWENTIETH CENTURY (3)
Zatín
Selected novels and short stories of the pre- and post-Civil War period. The _vanguardistas_, social realism, the new novel.

16:940:535. (S) SPANISH POETRY OF THE TWENTIETH CENTURY (3)
Persián
Application of contemporary critical methods to poets of the Generation of 1927 and postwar period.

16:940:537. (F) TWENTIETH-CENTURY SPANISH THEATER (3)
Zatín
Benavente, Valle-Inclán, García Lorca, Buero Vallejo, Mihura, the Generación Realista, and the Nuevos Autores. Relationships to the Hispanic tradition and to currents in modern theater.

16:940:539. (S) SPANISH WOMEN WRITERS OF THE NINETEENTH AND TWENTIETH CENTURIES (3)
Brétz, Persián, Zatín
Application of contemporary feminist criticism to selected poetry, prose, and plays.

16:940:541. (F) MODERN SPANISH ESSAY (3)
Brétz
Study of the essay in Spain through representative writers from the eighteenth, nineteenth, and twentieth centuries.

16:940:542. SPANISH LITERATURE INTO FILM (3)
Zatín
Spanish novels and plays compared to their film counterparts. Theoretical consideration of narrative strategies of cinema and television in relation to narrative or theatrical techniques of the source texts.

16:940:543. (F) COLONIAL SPANISH-AMERICAN LITERATURE (3)
Mora
Regionalism, romanticism, and the Wars of Independence; precursors of modernism.

16:940:545. (S) NINETEENTH-CENTURY SPANISH-AMERICAN LITERATURE (3)
Mora
Development of new world literature as an independent entity.

16:940:547. (F) MODERNISM IN SPANISH AMERICA (3)
Mora
Development of modernism, with special emphasis on poetry. Dario, Parnassianism, and symbolism; French influence and the autochthonous contribution. The evolution of modernism toward postmodernism.

16:940:549. (F) CONTEMPORARY SPANISH-AMERICAN POETRY (3)
Narváez
Spanish-American poetry as an autonomous linguistic and artistic product incorporating literature in Spanish into modern world literature as part of a general renaissance in culture.

16:940:551,552. CONTEMPORARY SPANISH-AMERICAN NOVEL (3,3)
Marcone, Mora, Narváez, Schwartz, Sifuentes
Accepted masterpieces of contemporary writing in Spanish America. Relation of the American novel to the genre in Europe, and Spain in particular.

16:940:553. (S) CONTEMPORARY SPANISH-AMERICAN SHORT STORY (3)
Mora, Schwartz
Tendencies in the modern short story, with particular emphasis on the postmodern period. Realism and fantasy; the short story as a document and as a social instrument.

16:940:555. (S) CONTEMPORARY SPANISH-AMERICAN THEATER (3)
16:940:556. (S) SPANISH-AMERICAN THOUGHT FROM PRE-INDEPENDENCE THROUGH MODERNISM (3)
Consideration of texts that figure in the Spanish-American debate concerning the Enlightenment, the movement toward independence, and eventual development of Spanish-American modernism.

16:940:557. (S) TWENTIETH-CENTURY SPANISH-AMERICAN ESSAY (3)
Consideration of representative essayists of the twentieth century; their impact on literary and cultural development of Spanish America.

16:940:562. (S) APPROACHES TO THE TEACHING OF HISPANIC LITERATURE (3)
Bretz, Perin
Current approaches to literature and methods of teaching literature to introductory-level students.

16:940:563. (F) THEORY AND PRACTICE OF TRANSLATION (3)
Zaitlin. Prerequisite: 16:940:502 or equivalent, or permission of graduate director. Introduction to translation studies. Application of linguistic and literary theory to translation. Problems of equivalence. Translation quality assessment. Practice in nonliterary and literary translation, including narrative, poetry, and theater.

16:940:579. (F) TRANSLATION WORKSHOP (3)
Zaitlin. Prerequisite: 16:940:502 or equivalent, or permission of graduate director. Intensive practice in advanced translation, Spanish to English and English to Spanish. Nonliterary and literary texts. Individual and group projects, with emphasis on translation into the native tongue.

16:940:584. (S) SPANISH SYNTAX (3)
Kirchner
Structuralism, transformational-generative grammar, case grammar, and generative semantics.

16:940:585. (S) SPANISH PHONOLOGY (3)
Spanish phonetics, phonology, and morphology within the structuralist, generative, and natural generative frameworks.

16:940:586. (S) THE SPANISH LANGUAGE IN SOCIAL CONTEXTS (3)
Stephens
Theoretical issues of dialectology and bilingualism and applications to the Spanish of Spain, Spanish America, and the U.S. Spanish language contact areas throughout the world.

16:940:588,589. SEMINAR: TOPICS IN HISPANIC LINGUISTICS (3,3)
Ph.D. students normally do not receive degree credit for these courses. Recent developments in applied and theoretical linguistics; Topics include second language acquisition; applied phonetics and syntax; pedagogical implications of linguistics, language contact phenomena, and language variation.

16:940:590. (F) MAIN CURRENTS IN PORTUGUESE LITERATURE (3)
Critical study of texts exemplifying principal currents of Portuguese literature from the Middle Ages to the present.

16:940:591. (S) TOPICS IN PORTUGUESE LITERATURE (3)
Major sixteenth-century poets and writers, such as Gil Vicente, Luís De Camões, and Bernardino Ribeiro.

16:940:595. (S) MODERNISM IN BRAZILIAN LITERATURE (3)
Critical readings of the major poets and writers, such as Mario de Andrade, Oswald de Andrade, and Manuel Bandeira.

16:940:599. INDEPENDENT STUDY IN SPANISH (3)
Staff. Prerequisites: One term of course work. First-term students normally not eligible. Permission of the graduate director and the faculty member directing the study required. Students limited to one independent study course during their degree program.
Intensive study of a specific area of peninsular or Latin American literature or language not covered in regularly scheduled classes.

16:940:612. (S) SEMINAR: LITERARY THEORY (3)
Current critical theory applied to Hispanic texts, starting with Russian formalism and including phenomenological, structuralist, psychoanalytical, sociological-Marxist, reader-response, and deconstructionist, as well as other poststructuralist approaches.

16:940:613. (S) SEMINAR: MEDIEVAL LITERATURE (3)
16:940:617. (F) SEMINAR: DRAMA OF THE GOLDEN AGE (3)
16:940:619. (F) SEMINAR: NOVEL OF THE GOLDEN AGE (3)
16:940:620. (F) SEMINAR: NONFICTION OF THE GOLDEN AGE (3)
16:940:621. (F) SEMINAR: POETRY OF THE GOLDEN AGE (3)
16:940:623. (S) SEMINAR: CERVANTES (3)
16:940:629. (F) SEMINAR: REALISM AND NATURALISM (3)
16:940:631. (F) SEMINAR: GENERATION OF 1898 (3)
16:940:633. (S) SEMINAR: NOVEL OF THE TWENTIETH CENTURY (3)
16:940:635. (S) SEMINAR: POETY OF THE TWENTIETH CENTURY (3)
16:940:637. (S) SEMINAR: THEATER OF THE TWENTIETH CENTURY (3)
16:940:645. (F) SEMINAR: NINETEENTH-CENTURY SPANISH-AMERICAN LITERATURE (3)
16:940:647. (S) SEMINAR: MODERNISM IN SPANISH AMERICA (3)
16:940:649. (F) SEMINAR: POETRY OF SPANISH AMERICA (3)
16:940:651. (S) SEMINAR: NOVEL OF SPANISH AMERICA IN THE TWENTIETH CENTURY (3)
16:940:653. (S) SEMINAR: SHORT STORY OF SPANISH AMERICA IN THE TWENTIETH CENTURY (3)
16:940:655. (F) SEMINAR: CONTEMPORARY SPANISH-AMERICAN THEATER (3)
16:940:659,660. SEMINAR: ADVANCED TOPICS IN HISPANIC LITERATURE (3,3)
16:940:701,702. RESEARCH IN SPANISH (BA,BA)

Interdisciplinary Graduate Course
16:617,510. INTRODUCTION TO LITERARY THEORY (3)
Introduction to contemporary literary theory, including formalism, structuralism, poststructuralism, feminism, psychoanalysis, cultural studies, and other approaches. Readings of theoretical texts and applications to short literary texts from a variety of literatures.

STATISTICS 960
Degree Programs Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Professor Cunhui Zhang, 504 Hill Center for the Mathematical Sciences, Busch Campus (732/445-2693)

Members of the Graduate Faculty
Robert H. Berk, Professor of Statistics, FAS–NB; Ph.D., Harvard
Sequential methods, nonparametric statistics, quality control and large sample theory
Steven Buyske, Professor of Statistics, FAS–NB; Ph.D., Brown; Ph.D., Rutgers
Biostatistics, psychometrics, experimental design; tomography
Javier F. Cabrera, Associate Professor of Statistics FAS–NB; Ph.D., Princeton
Statistical computing and graphics, computer vision; directional data analysis
Arthur Cohen, Professor of Statistics, FAS–NB; Ph.D., Columbia
Statistical inference, decision theory, multivariate analysis, and linear models
Ramanathan Gnanadesikan, Professor Emeritus of Statistics, FAS–NB; Ph.D., North Carolina
Graphical methods, multivariate analysis, robust procedures
Richard F. Gundy, Professor of Statistics, FAS–NB; Ph.D., Indiana;
Ph.D., Chicago
Probability theory, harmonic analysis
Donald R. Hoover, Associate Professor of Statistics, FAS–NB; Ph.D., Stanford
Longitudinal methods, applied statistics and multiple comparisons
James H.B. Kemperman, Professor Emeritus of Mathematics and Statistics, FAS–NB; Ph.D., Amsterdam
Probability and statistics, mathematical analysis
Data I; and 16:960:590 Design of Experiments I, II. The program 16:960:582, 583 Theory of Statistics I, II; 16:960:586 Interpretation of Data I; and 16:960:590, 591 Design of Experiments I, II. The program also offers a biostatistics option for the Master of Science degree.

An entering Ph.D. student should have a good background in mathematics, including advanced calculus and linear algebra. These latter subjects, however, are not required to gain admission. Each student selects his or her program in conference with a department adviser. There is a wide range of course offerings and areas of research. These include statistical inference, estimation theory, operations research, hypothesis testing, decision theory, biostatistics, empirical Bayes and Bayes methods, regression analysis, analysis of variance, experimental design, multivariate analysis, nonparametric statistics, sequential analysis, quality-control theory, time-series analysis, applied probability, stochastic processes, and probability theory, including stopping rules and martingales. Information about recommended course sequences for degrees is available upon request from the office of the graduate director. See also Operations Research in this chapter.

Graduate Courses

16:960:501. (F) STATISTICAL THEORY FOR RESEARCH WORKERS I (3)
Not open to graduate students in statistics. Designed to strengthen the statistical backgrounds of research workers. Concepts of randomness and probability; frequency distributions; expectations, derived distributions, and sampling; estimation and significance testing.

16:960:502. (S) STATISTICAL THEORY FOR RESEARCH WORKERS II (3)
Prerequisite: 16:960:501 or 511. Not open to graduate students in statistics. Continuation of 16:960:501. Principles and practices of experimental design as applied to mathematical models; the analysis of variance; factorial designs; analysis of matched groups and repeated measurements on the same group; analysis of qualitative data.

16:960:511. (F) STATISTICAL METHODS IN SOCIAL WORK (3)
For students in the School of Social Work. Introduction to descriptive and inferential statistics. Frequency distributions and cross-classification techniques; analyzing qualitative and quantitative data; measures of central tendency and dispersion; measures of association, correlation, and regression; probability modeling, sampling distribution, confidence intervals, hypothesis tests.

16:960:531, 532. STATISTICAL METHODS IN EDUCATION (3,3)
Penfield. Students in the Graduate School of Education.
First term: graphing, descriptive measures of central tendency and variability, introduction to correlation and regression, probability theory, the normal curve, sampling, point estimation, interval estimation, and elementary hypothesis testing. Second term: principles and practices of experimental design; z-test, t-test, chi-square tests, F-test, and analysis of variance.

16:960:540. (F) STATISTICAL QUALITY CONTROL I (3)
Prerequisite: 01:960:484 or equivalent. Construction and analysis of control charts for variables and attributes; histogram analysis; use and evaluation of Dodge-Romig and Military Standards acceptance sampling plans.

16:960:541. (S) STATISTICAL QUALITY CONTROL II (3)
Prerequisites: 16:960:540, 582, 590. Introduction to state-of-the-art methods in statistical quality control, including economic design and Bayesian methods in process control, Taguchi's method and statistical tolerancing.
16:960:542. (F) LIFE DATA ANALYSIS (3)
Prerequisite: One year of calculus, 01:960:484 or equivalent.
Statistical methodology for survival and reliability data. Topics include life-table techniques; competing risk analysis; parametric and nonparametric inferences of lifetime distributions; regressions and censored data; Poisson and renewal processes; multistate survival models and goodness-of-fit test. Statistical software used.

16:960:545. STATISTICAL PRACTICE (3)
Prerequisite: 01:960:484 or equivalent.
Objectives of statistical collaboration, problem definition, formation of solutions, active consultation, tools of statistical practice, searching literature, data collection form design, codebook development, data entry and cleaning, documentation and presentation of statistical analysis.

16:960:553. CATEGORICAL DATA ANALYSIS (3)
Prerequisite: 01:960:484 or equivalent.
Two-by-two frequency tables, Fisher’s exact test, measures of association, general contingency tables, loglinear models, logistic regression, repeated categorical-response data, maximum likelihood estimation, tables with ordered categories, discriminant analysis.

16:960:554. APPLIED STOCHASTIC PROCESSES (3)
Prerequisite: Advanced calculus, 16:960:582 or equivalent.
Markov chains; recurrence; random walk; gambler’s ruin; ergodic theorem and stationary distribution; continuous time Markov chains; queuing problems; renewal processes; martingales; Markov processes; Brownian motion; concepts in stochastic calculus, Ito’s formula.

16:960:555. (F) NONPARAMETRIC STATISTICS (3)
Prerequisite: 16:960:582 or permission of instructor.
Introduction and survey of distribution-free approaches to statistical inference. Fisher’s method of randomization, distribution-free test procedures for means, variances, correlations, and trends; rank tests; relative efficiency, asymptotic relative efficiency, and normal-score procedures; binomial, hypergeometric distributions, and combinatorial run theory. Also, tests of goodness-of-fit, including the Kolmogorov-Smirnov and chi-square tests, contingency-table analysis, tolerance sets, and Tchebycheff-type inequalities. Emphasis on applications.

16:960:563. (S) REGRESSION ANALYSIS (3)
Prerequisite: 01:960:484 or equivalent.
Review of basic statistical theory and matrix algebra; general regression models, computer application to regression techniques, residual analysis, selection of regression models, response-surface methodology, nonlinear regression models, experimental-design models, analysis of covariance. Emphasis on applications.

16:960:567. (S) APPLIED MULTIVARIATE ANALYSIS (3)
Prerequisite: 01:960:484 or equivalent.
Methods of reduction of dimensionality, including principal components, factor analysis, and multidimensional scaling; correlation techniques, including partial, multiple, and canonical correlation; classification and clustering methods. Emphasis on data-analytic issues, concepts, and methods (e.g., graphical techniques) and on applications drawn from several areas, including behavioral management and physical and engineering sciences.

16:960:575. (F) ACCEPTANCE SAMPLING THEORY (3)
Prerequisite: 16:960:540 or 01:960:483:484, or permission of instructor.
Selection, operation, and statistical behavior of sampling plans. Dodge-Romig plans; continuous, chain, and skip-lot plans; variable sampling plans. Economic analysis and study of sampling systems.

16:960:576. (S) SURVEY SAMPLING (3)
Prerequisite: 16:960:582 or equivalent.
Introduction to the design, analysis, and interpretation of sample surveys. Sampling types covered include simple random, stratified random, systematical, cluster, and multistage. Methods of estimation described to estimate means, totals, ratios, and proportions. Development of sampling designs combining a variety of types of sampling and methods of estimation, and detailed description of sample size determinations to achieve goals of desired precision at least cost.

16:960:580. BASIC PROBABILITY (3)
Prerequisite: One year of calculus Credit given for only one of 16:960:580, 582, 592.
Discrete-probability spaces, combinatorial analysis, occupancy and matching problems, basic distributions, probabilities in a continuum; random variables, expectations, distribution functions, conditional probability and independence; coin tossing, weak law of large number, deMoivre-Laplace theorem.

16:960:582. INTRODUCTION TO METHODS AND THEORY OF PROBABILITY (3)
Prerequisite: One year of calculus Credit given for only one of 16:960:580, 582, 592.
Emphasis on methods and problem solving. Topics include probability spaces, basic distributions, random variables, expectations, distribution functions, conditional probability and independence, sampling distributions.

16:960:583. METHODS OF INFERENCE (3)
Prerequisite: 16:960:582 Credit not given for both this course and 16:960:593.
Theory of point and interval estimation and hypothesis testing. Topics include sufficiency, unbiasedness, and power functions. Emphasis on application of the theory in the development of statistical procedures.

16:960:584. (F) BIOSTATISTICS I (3)
Prerequisites: One year of calculus, 01:960:484 or equivalent.
Statistical techniques for biomedical data. Analysis of observational studies emphasized. Topics include measures of disease frequency and association; inferences for dichotomous and grouped case-control data; logistic regression for identification of risk factors; Poisson models for grouped data; Cox model for continuous data; life table analysis; and SAS used in analysis of data.

16:960:585. (S) BIOSTATISTICS II (3)
Prerequisite: 01:960:484 or equivalent.
Statistical techniques used in design and analysis of controlled clinical experiments. Topics include introduction to four phases of clinical trials; randomization, blocking, stratification, balancing, power, and sample-size calculation; data monitoring and interim analyses; baseline covariate adjustment; crossover trials; brief introduction to categorical and event-time data; and SAS used in analysis of data.

16:960:586,587. INTERPRETATION OF DATA I,II (3,3)
Prerequisite: 01:960:484 or equivalent.
Use of various computer-based techniques, including graphical, to understand and interpret data sets. Exposure to and intuitive understanding of basic techniques for the analysis of multivariate, categorical, and time-series data, as well as other miscellaneous applications of statistical procedures.

16:960:590. DESIGN OF EXPERIMENTS (3)
Prerequisite: 01:960:484 or permission of instructor.
Fundamental principles of experimental design; completely randomized variance component designs, randomized blocks, Latin squares, incomplete blocks, partially hierarchic mixed-model experiments, factorial experiments, fractional factorials, response surface exploration.
16:960:591. **ADVANCED DESIGN OF EXPERIMENTS (3)**
Strategy of experimentation, screening designs, factorial designs,
response surface methodology, evolutionary operation, mixture
designs, incomplete blocking designs, computer-aided experimental
designs, and design optimality criteria.

16:960:592. **THEORY OF PROBABILITY (3)**
Prerequisite: Advanced calculus or permission of instructor. Credit given
for only one of 16:960:580, 582, 592.
Emphasis on proofs and fundamental concepts. Topics include
probability spaces, basic distributions, random variables,
extpectations, distribution functions, conditional probability and
developmental designs, and sampling distributions.

16:960:593. **THEORY OF STATISTICS (3)**
Prerequisite: 16:960:592 or permission of instructor. Credit not given
for both 16:960:593 and this course.
Theory of point and interval estimation and hypothesis testing.
Topics include sufficiency, unbiasedness, Bayes methods, and
power functions. Emphasis on fundamental concepts underlying
the theory.

16:960:595. **INTERMEDIATE PROBABILITY (3)**
Prerequisite: Advanced calculus, 16:960:592 or equivalent.
Central limit theorem. Borel-Cantelli lemma, strong law of large
numbers; convolutions, generating functions, recurrent events,
random walks on line, plane and 3-space, ruin of a gambler, simple
time-dependent processes and/or Markov chains.

16:960:592. **ADVANCED THEORY OF STATISTICS I (3)**
Prerequisite: 16:960:593, real variables.
Theories of statistical inference and their relation to statistical
methods. Sufficiency, invariance, unbiasedness, decision theory.
Bayesian procedures, likelihood procedures.

16:960:593. **ADVANCED THEORY OF STATISTICS II (3)**
Prerequisite: 16:960:595.
Hypothesis testing, point and confidence estimation robustness,
sequential procedures.

16:960:654. **STOCHASTIC PROCESSES (3)**
Prerequisite: 16:960:595.
Selected topics from the theory of the Markov processes, queuing
theory, birth and death processes, martingale theory, and Brownian
motion and related topics. Measure-theoretic notations, as well as
ideas from classical analysis used as needed.

16:960:655. **ADVANCED NONPARAMETRIC STATISTICS (3)**
Prerequisite: 16:960:593, 595, or permission of instructor.
Rank-testing and estimation procedures for the one- and two-
sample problems; locally most powerful rank tests. Criteria for
unbiasedness; permutation tests. Exact and asymptotic distribution
theory; asymptotic efficiency. Rank correlation; sequential
procedures; the Kolmogorov-Smirnov test. Emphasis on theory.

16:960:663. **REGRESSION THEORY (3)**
Prerequisites: 16:960:593, vector spaces and matrices.
Least-squares methods of testing and estimation in multiple
regression; geometric interpretation of least-squares; Gauss-
Markov theorem. Confidence, prediction, and tolerance intervals
in regression. Orthogonal polynomials; harmonic regression.
Weighted least-squares. Analysis of variance; simultaneous infer-
ence procedures (multiple comparisons). Emphasis on theory.

16:960:666. **ADVANCED TOPICS IN REGRESSION AND
ANALYSIS (3)**
Prerequisite: 16:960:663.
Development of linear classification models; general results of
components of variance for balanced designs; polynomial regres-
sion models (response surfaces); crossed models for combined
qualitative and quantitative factors; reduced regression models;
nonlinear regression computational and statistical procedures.

16:960:667. **MULTIVARIATE STATISTICS (3)**
Prerequisite: 16:960:593, vector spaces and matrices; or permission of instructor.
Multivariate, marginal, and conditional distributions. Multivariate
normal; characterizations and parameter estimation. Wishart
distribution; Hotelling’s T2 statistic; multivariate linear model;
principal component analysis correlations. Multivariate classifica-
tion; matrices and discriminate methods. Emphasis on theory.

16:960:680. **ADVANCED PROBABILITY THEORY I (3)**
Prerequisite: Real variables or equivalent.
Measure of theoretic foundations of probability theory, conditional
expectations, sums of independent random variables, including the
strong law of large numbers, law of the iterated logarithm, and
Lindeberg-Levy theorem; Spitzer’s lemma.

16:960:681. **ADVANCED PROBABILITY THEORY II (3)**
Prerequisite: 16:960:680 or equivalent.
Selected topics may include theory of martingales and applications,
stationary processes, and the ergodic theorem; weak convergence
of probability distributions; Prokhorov’s theorems and Brownian
motion; invariance principle.

16:960:682,683. **INDIVIDUAL STUDIES IN STATISTICS (3,3)**

16:960:687,688. **SEMINAR IN APPLIED AND MATHEMATICAL
STATISTICS (3,3)**
Prerequisite: Permission of instructor.
Measurement, outer measures, and extensions. Measurable functions.
Integration on a measure space. Lesegeude and Radon-Nikodym
theorems, Hahn and Jordan decompositions. Product spaces
and Fubini’s theorem. Riesz representation theorem.
Conditional probability. Topological and especially metric spaces,

16:960:689. **SEQUENTIAL METHODS (3)**
Prerequisite: 16:960:593, 595.
Sequential probability ratio test; approximations for the stopping
boundaries, power curve, and expected stopping time; termination
with probability one, existence of moments for the stopping time;
Wald’s lemmas and fundamental identity; Bayes character and
optimality of the SPRT. Composite hypothesis: weight-function
and invariant SPRTs. Sequential estimation, including fixed-width
confidence intervals and confidence sequences.

16:960:690,691. **SPECIAL TOPICS (3,3)**
Prerequisite: Permission of instructor.
Topics, which change on a rotating basis, include large sample
theory, time series analysis, Bayesian statistics, robustness,
and sequential analysis.

16:960:693. **CURRENT TOPICS IN STATISTICS (1)**
Prerequisite: Permission of program director.
Topics change based on statistical research and applications of
faculty in and outside department.

16:960:701,702. **RESEARCH IN STATISTICS (BA,BA)**

THEATER ARTS

(See the catalog of the Mason Gross School of the Arts for information about
programs that lead to the Master of Fine Arts in acting, directing, playwriting,
design [scenic, costume, and lighting], stage management, and costume
technology.)
TOXICOLOGY 963

Degree Programs Offered: Master of Science, Doctor of Philosophy
Director of Graduate Program: Professor Kenneth R. Reuhl,
EOHSL Building, Busch Campus (732/445-6909)
Web Site: http://www.eohs.rutgers.edu

Members of the Graduate Faculty

Tamar Barkay, Assistant Professor of Biochemistry, CC; Ph.D., Maryland
Mercury and biocatalyst organisms
Merritt R. Chari, Associate Professor of Pharmacology, CP; Ph.D., Indiana
Molecular mechanisms of cell growth and differentiation
Joanna Burger, Professor of Biology, FAS-NB; Ph.D., Minnesota
Heavy metal dynamics in estuarine ecosystems
Suzie Chen, Associate Professor of Chemical Biology, CP; Ph.D., Albert Einstein
Cell biology of environmental and occupational medicine
John L. Colaiuzza, Professor of Pharmacy and Dean of the College of Pharmacy, CP;
Ph.D., Purdue
Pharmacokinetics
Allan H. Conney, New Jersey Professor of Pharmacology, CP; Ph.D., Wisconsin
Experimental therapeutics and drug metabolism
Keith R. Cooper, Professor of Microbiology, CC; Ph.D., Rhode Island
Xenobiotic metabolism in aquatic animals animal models
David T. Denhardt, Professor of Molecular and Cellular Biology, FAS-NB; Ph.D., California Institute of Technology
Mechanisms of mammalian cell signaling and regulation of gene expression
Emanuel M. D'Souza-Bloom, Associate Professor of Neuroscience and Cell Biology/Pediatrics, UMDNJ-RWJMS; M.D., Cornell
Pediatric neurology; neurogenetics
John L. Fagg, Professor of Psychology, FAS-NB; Ph.D., Illinois
Behavioral mechanisms and drugs of abuse animal models of alcoholism
Michael A. Gallin, Professor of Environmental and Community Medicine, UMDNJ-RWJMS; Ph.D., Albany Medical College
Food additives; phototoxins; cutaneous toxicology; dioxin; molecular biology of estrogen receptors
Herbert M. Geller, Professor of Pharmacology and Neurology, UMDNJ-RWJMS; Ph.D., Case Western Reserve
Developmental and cellular neurobiology
Donald R. Gercke, Assistant Professor of Pharmacology and Toxicology, CP; Ph.D., Harvard
Molecular biology of the extracellular matrix in skin
Michael Goedel, Professor of Environmental and Community Medicine, UMDNJ-RWJMS; Ph.D., CUNY (Queens); M.D., Albert Einstein
Environmental toxicology, behavioral development and occupational medicine
Marion K. Gordon, Research Assistant Professor of Pharmacology and Toxicology, CP; Ph.D., Rutgers
Gene expression of extracellular matrix molecules during development
William N. Hadi, Professor of Medicine and Pharmacology, UMDNJ-RWJMS; M.D., Ph.D., Medical College of Pennsylvania
Cancer research and multidrug resistance
Diane E. Heck, Assistant Research Professor of Pharmacology and Toxicology, CP; Ph.D., Rutgers
Biology of nitric oxide
Jun-Yan Hong, Associate Professor of Environmental and Community Medicine, UMDNJ-RWJMS; Ph.D., UMDNJ
Biochemistry
Michael M. Iba, Associate Professor of Toxicology, CP; Ph.D., Illinois
Metabolic and molecular basis of aryamine carcinogenesis
Sung-Hui Jang, Associate Professor of Pharmacy, CP; Ph.D., SUNY (Albany)
Mechanisms of liver injury; noninvasive biophysical probes
Stanley E. Katz, Professor of Microbiology, CC; Ph.D., Rutgers
Agricultural microbiology; pesticides; food additives
Frederick C. Kaufman, Professor of Pharmacology, CP; Ph.D., Illinois
Influence of intermediary metabolism on xenobiotic metabolism; neurotoxicology
Howard Kipen, Associate Professor of Environmental and Community Medicine, UMDNJ-RWJMS; M.D., California (San Francisco)
Occupational health
Ah-Ng Tony Kong, Professor of Pharmacology, CP; SUNY (Buffalo)
Pharmacokinetics, pharmacodynamics, and drug metabolism
Samuel Kuna, Visiting Professor of Toxicology, CP; Ph.D., New York Academy of Sciences
George H. Lambert, Associate Professor of Pediatrics, UMDNJ-RWJMS; M.D., Illinois
Pediatric and reproductive environmental health
Debra L. Laskin, Professor of Toxicology, CP; Ph.D., Medical College of Virginia
Immunology; immunotoxicology; monoclonal antibodies; flow cytometry
Jeffrey D. Laskin, Professor of Environmental and Community Medicine, UMDNJ-RWJMS; Ph.D., SUNY (Buffalo)
Carcinogenesis and differentiation in cell culture
Edmond J. LaViole, Professor of Medicinal Chemistry, CP; Ph.D., SUNY (Buffalo)
Metabolism and structure-activity studies of pharmacological agents
Paul J. Lisy, Professor of Environmental and Community Medicine, UMDNJ-RWJMS; Ph.D., Rutgers
Air pollution exposure, measurement, and assessment
Herbert E. Lowndes, Professor of Pharmacology and Toxicology, CP; Ph.D., Cornell
Neurotoxicology
William J. Nicklas, Professor of Neurology and Pharmacology, UMDNJ-RWJMS; Ph.D., Fordham
Carcinogenesis; mitochondrial toxicity; ischemia; animal models of alcoholism
Larissa A. Polascheck, Professor of Neuropharmacology, CAS; Ph.D., Chicago
Alcohol and psychological stress on brain monoamines and behavior
Ronald D. Poreetz, Professor of Biochemistry, CP; Ph.D., SUNY (Buffalo)
Inherited susceptibility to neurotoxins; drug delivery; cancer prevention and therapy
Kenneth R. Reuhl, Professor of Pharmacology and Toxicology, CP; Ph.D., Wisconsin
Developmental neuropathology and neurotoxicology
David J. Riley, Professor of Medicine, UMDNJ-RWJMS; M.D., Maryland
Respiratory physiology; respiratory toxicology; effects of oxidants on tissue metabolism and molecular biology
Mark Robinson, Associate Professor of Environmental and Occupational Health, UMDNJ-SPH; Ph.D., Rutgers
Public health; agrochemical toxicology
Joseph D. Rosen, Professor of Food Science, CC; Ph.D., Rutgers
Carcinogens; Agent Orange
Eric Rubin, Associate Professor of Medicine, UMDNJ-RWJMS; M.D., Tulane
Cancer therapeutics; drug transporters
Karen M. Schaich, Associate Professor of Food Science, CC; Sc.D., Massachusetts Institute of Technology
EPFs; studies of free radical lipid oxidation; co-oxidation of macromolecules
Robert Snyder, Chairperson and Professor of Pharmacology and Toxicology, CP; Ph.D., SUNY Upstate Medical Center (Syracuse)
Benzene bone marrow disease; drug metabolism; carcinogenesis
Patricia K. Sornalla, Associate Professor of Neurology, Psychiatry, and Pharmacology, UMDNJ-RWJMS; Ph.D., Utah
Neurotoxicology; monoaminergic and CNS function
Kevin S. Sweeder, Assistant Professor of Chemical Biology, CP; Ph.D., California Institute of Technology
DNA repair and replication of damage-containing DNA directly related to biochemical mechanisms of carcinogenesis
Paul E. Thomas, Professor of Chemical Biology and Pharmacogenetics, CP; Ph.D., Ohio State
Antibody probes of the regulation and membrane topology of cytochrome P-450
Theresa Thomas, Associate Professor of Molecular Genetics, UMDNJ-RWJMS; Ph.D., Indian Institute of Science
Hormones and breast cancer; cyclins; polyamines
Jay A. Tischfield, Professor of Genetics, FAS-NB; Ph.D., Yale Genetics
George Wagener, Professor of Pathology, FAS-NB; Ph.D., Chicago
Neural and behavioral toxicology
Judith Weiss, Professor of Zoology, FAS-NB; Ph.D., New York
Environmental factors; pollutants; estuarine organisms
Eric H. Weyand, Associate Professor of Medical Chemistry, CP; Ph.D., Virginia Polytechnic Institute
Drug metabolism
Lori White, Assistant Professor of Biochemistry and Microbiology, CC; Ph.D., Dartmouth Medical School; Wisconsin (Madison)
Carcinogenesis; mitochondrial dysfunction; effects of oxidants on tissue metabolism and molecular biology
Ronald E. Wick, Professor of Environmental and Community Medicine, UMDNJ-RWJMS; Ph.D., New York
Respiratory physiology; respiratory toxicology; effects of oxidants on tissue metabolism and molecular biology
Sheryl S. Yang, Associate Professor of Pharmacology, CP; Ph.D., Cornell
Nitroamines, carcinogenesis; molecular biology of cytochrome P-450
Remigia Zhou, Associate Professor of Chemical Biology, CP; Ph.D., California (Berkeley)
Development of the brain: function of growth factors and their receptors

Associate Members of the Graduate Faculty

Carol R. Gardner, Research Associate Professor of Pharmacology and Toxicology, CP; Ph.D., Texas Woman's
Immunotoxicology; immunology; radiobiology
Peter C. Kahn, Associate Professor of Biochemistry, FAS-NB; Ph.D., Columbia
Carcinogens; agent Orange
Gail Zeavol, Assistant Professor of Neurology, UMDNJ-RWJMS; Ph.D., CUNY
Molecular toxicology; energy metabolism; glutamate receptors; excitotoxicity; ischemia

198
Programs

The graduate program in toxicology is a cooperative effort between the Graduate School–New Brunswick and the Graduate School of Biomedical Sciences of the University of Medicine and Dentistry of New Jersey. Faculty members from both universities participate in the curriculum.

Students seeking the Master of Science degree must take a minimum of 29 course credits and submit a thesis based on a minimum of 6 research credits. Students are allowed to pursue an M.S. in toxicology on a part-time basis.

The program leading to a Doctor of Philosophy in toxicology offers a general curriculum in the first year. After that, students specialize in such tracks as biochemical toxicology, carcinogenesis, and molecular biology, neurotoxicology and developmental toxicology, environmental toxicology, and cell and immunotoxicology. The degree requires a minimum of 72 credits, with at least 35 of these credits taken in course work. A minimum of 24 credits is devoted to research. The program features a weekly invited speaker lecture series highlighted by the Annual Morton J. Rodman Distinguished Lectureship in Pharmacology, the Samuel Kuna Distinguished Lectureship in Toxicology, and the Scala Lecture-ship. The latter features advances in basic research by an industrial toxicologist. Doctoral students are required to complete at least two consecutive terms as full-time resident students.

Requirements for admission include the Graduate Record Examination general test, subject test scores for biology or chemistry, and completed course work in physical chemistry, organic chemistry, physics, biology, and calculus. Additional requirements may be imposed, depending upon the applicant’s background.

Graduate Courses

16:963:501,502. GENERAL TOXICOLOGY I,II (2,2)
Cooper, J. Prerequisites: 16:915:503,504; 16:761:501,502; or equivalent. Basic principles of toxicology, organ toxicology, toxicology of specific chemicals and radiation, and overview of environmental and industrial toxicology and safety evaluation.

16:963:504. (S) GENERAL TOXICOLOGY LABORATORY (2)
Introduction to the basic laboratory activities in toxicology. Emphasis on state-of-the-art techniques for toxicity evaluation of chemicals.

16:963:505. (F) BIOCHEMICAL TOXICOLOGY (4)
Iba, Witz, Yang. Prerequisite: 16:915:503,504, permission of instructor. Metabolism and electrophilic reactions of subsequent toxic metabolites studied with emphasis on kinetics, mutagenesis, carcinogenesis, and organ toxicity.

16:963:601,602. SEMINAR IN TOXICOLOGY (1,1)
Students present reports on current topics in toxicology; during the first two years, a minimum of two reports a year required, and thereafter, one per year.

16:963:603. ADVANCED PROBLEMS IN TOXICOLOGY (BA)
Prerequisites: Permission of advisor and graduate director.

16:963:605,606. ADVANCED GENERAL PHARMACOLOGY I,II (4,4)
Cooper, Ruhl. Stresses morphological effects of chemical agents in cells and organs. Includes chemical and pathological correlates in laboratory animal models.

16:963:632. (S) NEURAL INJURY AND REPAIR (3)
Lownde, Sorallia (BA) Mechanisms by which the nervous system is damaged by chemicals, trauma, and other agents. Neurobiological basis for its response to injury.

16:963:701,702. RESEARCH IN TOXICOLOGY (BA,BA)

Related Graduate Courses

16:001:815. CELLULAR AND MOLECULAR PHARMACOLOGY: PRINCIPLES OF DRUG ACTION AND TARGETING (3)
16:115:556. ETHICAL SCIENTIFIC CONDUCT (1)
16:215:555. ECOLOGICAL RISK ASSESSMENT (3)
16:761:501,502. MAMMALIAN PHYSIOLOGY (3,3) (BA)

URBAN PLANNING AND POLICY DEVELOPMENT 970

Degree Program Offered: Doctor of Philosophy
Director of Graduate Program: Professor Susan S. Fainstein, Edward J. Bloustein School of Planning and Public Policy (EJBSPPP), 33 Livingston Avenue (732)/932-3822
Web Site: http://www.policy.rutgers.edu

Members of the Graduate Faculty

Hooshang Amirahmadi, Professor of Urban Planning, EJBSPPP; Ph.D., Cornell
Third world development (regional/national); global economic restructuring

Clifford D. Andrews, Assistant Professor of Urban Planning, EJBSPPP; Ph.D., Massachusetts Institute of Technology
Energy and environmental planning; regulatory reform; planning methods

Richard K. Brassil, Professor of Urban Planning, EJBSPPP; Ph.D., North Carolina
Transportation; computer applications; quantitative analyses

Robert W. Burchell, Professor, CUPR; Ph.D., Rutgers
Empirical analysis in housing; land use; municipal finance

Robert A. Castlin, Professor of Public Policy, EJBSPPP; Ph.D., Illinois Institute of Technology
Planning history and theory; housing and community development

Salah El-Shakhs, Professor of Urban Planning, EJBSPPP; Ph.D., Harvard
Comparative urbanization and urban development

Susan S. Fainstein, Professor of Urban Planning, EJBSPPP; Ph.D., Massachusetts Institute of Technology
Urban political economy; planning theory; urban redevelopment

Norman J. Glickman, State of New Jersey Professor of Urban Planning, EJBSPPP; Ph.D., Pennsylvania
Urban and regional economics and policy

Michael R. Greenberg, Professor of Urban Studies and Community Health, EJBSPPP; Ph.D., Columbia
Environmental planning; public health

Briavel Holcomb, Professor of Urban Studies and Community Health, EJBSPPP; Ph.D., Colorado
Environment and behavior; urban revitalization

James W. Hughes, Professor of Urban Planning and Dean, EJBSPPP; Ph.D., Rutgers
Housing; demographic and economic analysis

Donald A. Kresser, Professor of Urban Planning, EJBSPPP; Ph.D., Pennsylvania
Quantitative urban analysis; history and theory

Robert W. Lake, Professor of Urban Planning, EJBSPPP; Ph.D., Chicago
Urban spatial structure; locational conflict; race and housing

David Listokin, Professor of Urban Planning, CUPR; Ph.D., Rutgers
Housing; land use finance

Anton Nelessen, Associate Professor of Urban Planning, EJBSPPP; M.A., Harvard
Urban design; site and master planning media presentations

Frank Prepper, Professor of Urban Studies and Community Health, EJBSPPP; Ph.D., Harvard
Land use and environmental planning; U.S. regional development

John R. Pucher, Associate Professor of Urban Planning, EJBSPPP; Ph.D., Massachusetts Institute of Technology
Urban transportation; urban and public-sector economics

Lisa J. Servon, Associate Professor of Urban Planning, EJBSPPP; Ph.D., California (Berkeley)
Institute of Technology
Urban design; site and master planning media presentations

Peter Simmons, Professor of Law, SL-N; LL.B., California (Berkeley)
Transportation; urban and public-sector economics

Meredith Turshen, Professor of Urban Studies and Community Health, EJBSPPP; Ph.D., Sussex
Political economy of health; third world social policy

Carl Edward Van Horn, Professor of Public Policy, EJBSPPP; Ph.D., Ohio State
American political institutions; public policy

http://www.policy.rutgers.edu
Lyna L. Wiggins, Associate Professor of Urban Planning, EJBSPPP; Ph.D., California (Berkeley)
GIS; computer applications in planning

Associate Members of the Graduate Faculty
Jerome Aumente, Professor of Journalism and Communications, SCILS, and Director, Journalism Resources Institute M.S., Columbia Mass communications information planning and policy
Frank Fischer, Professor of Political Science and Public Administration, FAS-N; Ph.D., New York Science, technology, and environmental policy
Cathy Stein Greenblatt, Professor of Sociology, FAS-NB; Ph.D., Columbia Qualitative methods visual sociology, ethnographic and photographic research
John Van Til, Professor of Urban Planning, FAS-C; Ph.D., California (Berkeley) Voluntary action and citizen participation; urban futures; energy

Program
The Doctor of Philosophy degree in urban planning is designed for students seeking a career in university teaching and research, advanced-policy research in the public sector, or basic research in the private sector. The faculty admits only exceptional students who can be expected to complete the program. There is no full-time residency requirement for doctoral students and no language requirement unless the faculty decides otherwise.

Applicants should have a master’s degree, although some exceptional students are admitted directly after earning a bachelor’s degree. In general, however, applicants who have not completed work on an advanced degree are admitted to the program only after they have completed satisfactorily 24 credits in the master’s program. Until they are admitted to the doctoral program, students are considered to be enrolled only in the master’s program.

Students with a master’s degree must complete a minimum of 48 credits of course work and 24 credits of thesis research. If the faculty approves, students may transfer as many as 24 credits from their master’s program. Students entering the program without a master’s degree must complete a minimum of 63 credits of course work.

Applicants to the Ph.D. program must provide evidence of their research abilities and a full résumé in addition to the normal application requirements. Evaluation of applicants will be performed by those faculty members on the Committee on Doctoral Programs (C.D.P.).

Students may transfer as many as 24 credits from graduate courses completed at other institutions. All transfers are subject to conditions outlined in this catalog and to the judgment of the C.D.P. Normally, students are not permitted to transfer credits from studio-type courses, independent or directed studies, or master’s thesis research.

While studying for the doctoral degree, the student works closely with the faculty adviser he or she has selected and meets often with the C.D.P., which evaluates the student’s progress. Program participants must take at least 9 credits of planning-theory courses, including 16:970:624 and 625 Planning and Social Theory I.II. Other course requirements include 9 credits of methods of advanced-analysis courses, including 16:970:626 Advanced Planning Analysis.

Graduate Courses

16:970:511,512. (S) HISTORY OF PLANNING THOUGHT (3,3)
Crueckshank
Major ideas in city and regional planning since the early nineteenth century. Topics include utopian thought, European models of city planning, urban technology, the City Beautiful movement, garden cities, housing reform, zoning, regional planning, theories of urban design, national planning, and others. Impact of these ideas on the evolution of planning and urban development in the context of broader intellectual, social, and technological changes.

16:970:612. (S) RESEARCH STRATEGIES IN PLANNING (3)
Andrews. Prerequisite 34:970:515 or permission of instructor
Development of research strategies for both public policy and scholarly issues. Emphasis on conceptual problem solving, data gathering, and writing. Methods covered include survey research, social indicators, interviewing, secondary data analysis, case studies, data presentation, and research-proposal writing and editing.

16:970:622. (F) THEORY AND POLICY FOR URBAN REDEVELOPMENT (3)
Fainstein
Analysis of the evolution of urban redevelopment activities in the U.S., with comparisons to Western Europe; nature and process of urban decline; role of real estate industry; public-private partnerships; and theoretical interpretations of urban redevelopment.

16:970:624. (F) PLANNING AND SOCIAL THEORY I (3)
Fainstein. Required for the Ph.D.; open to others with permission of instructor
Examination of contemporary social theory as it applies to planning. Theories of modernity and economic restructuring; planning and the market; role of the state; development policy; and possibilities for planned social change.

16:970:625. (S) PLANNING AND SOCIAL THEORY II (3)
Fainstein. Required for the Ph.D.
Review of literature in several broad topics in urban and regional studies. Theories of development; regulation theory; urban social movements; pluralism; and other topics.

16:970:626. (F) ADVANCED PLANNING ANALYSIS (3)
Kruzieenberg. Prerequisite Permission of instructor
Doctoral-level study of the urban-focused research methods or to those undertaking a dissertation. Topics include social science methodology, the application of statistical techniques, and the structure of planning and policy research.

16:970:698,699. SPECIAL STUDIES IN URBAN PLANNING (BA,BA)
Crueckshank. Prerequisite Permission of graduate director
Field or library independent study projects, guided by a faculty member, leading to the presentation of an essay for the master’s degree or for Ph.D. students who have not yet qualified for candidacy.

16:970:701,702. RESEARCH IN URBAN PLANNING (BA,BA)
Thesis research.

The following courses are offered by the Edward J. Bloustein School of Planning and Public Policy in support of its program leading to the degree of Master of City and Regional Planning. They include many courses that form all or part of the curriculum for Ph.D. students in urban planning. For further information, consult the publications of the Edward J. Bloustein School of Planning and Public Policy.

34:970:501 Development and Theory of Urban Planning (3)
34:970:508 Elements of Physical Planning (3)
34:970:509 Urban Economy and Spatial Patterns (3)
34:970:510 Graduate Planning Studio (3 or 6)
34:970:512 History of Planning Thought (3)
34:970:513 Introduction to Urban Design and Site Planning (3)
34:970:515 Methods of Planning Analysis I (3)
34:970:516 Methods of Planning Analysis II (3)
34:970:517 Survey of Planning Law Principles (3)
34:970:521 Historic Preservation (3)
34:970:523 Legal Aspects of Environmental Planning (3)
34:970:525 Property Theory and Policy (3)
34:970:527 Advanced Multivariate Methods (3)
34:970:528 Housing Economics and Markets (3)
34:970:529 Principles of Housing (3)
34:970:537 International Comparative Planning (3)
34:970:541 Planning for New Communities (3)
34:970:555 Urban Transportation Policy Analysis (3)
34:970:556 Urban Transportation Planning (3)
34:970:557 International Transport Policy and Planning (3)
34:970:558 Public Transit Policy (3)
34:970:561 Urban Poverty Theory and Policy (3)
34:970:562 Local Economic Development (3)
34:970:563 Community Development (3)
34:970:571 Industrial Ecology (3)
34:970:575 Locational Conflict (3)
34:970:581 Gender and International Development (3)
34:970:583 Gender and Policy Planning (3)
34:970:585 Tourism Planning (3)
34:970:591 Computer Applications in Urban Planning and Development (3)
URBAN PLANNING, CITY AND REGIONAL
(See the catalog of the Edward J. Bloustein School of Planning and Public Policy for information about degree programs in this area.)

VISUAL ARTS
(See the catalog of the Mason Gross School of the Arts for information about the program leading to the Master of Fine Arts in visual arts.)

WIRELESS COMMUNICATIONS CERTIFICATE
Program Offered: Certificate in Wireless Communications
Director of the Certificate Program in Wireless Communications: Professor Christopher Rose, Rutgers University, WINLAB, 73 Brett Road, Piscataway, New Jersey 08855-0909 (732/445-5250)

Participating Faculty
The following members and associate members of the graduate faculty, identified more fully under the electrical and computer engineering section, represent part of the faculty who participate regularly in the certificate program in wireless communications:

David G. Daut
Narayanan Mandayam
Christopher Rose
Roy Yates

Certificate Program
In response to the demand for qualified engineers in the wireless-networking community, the Wireless Information Network is offering a Certificate in Wireless Communications.

The program provides a background in telecommunications combined with specialized instruction in wireless communications. The curriculum is flexible to meet individuals' different educational needs. Some may wish to take the two electives as preparation for the two required courses, while others will take the electives for more specialized training. The graduate courses are applied toward advanced-degree programs, subject to the program’s requirements. Participating faculty are drawn from members of the graduate faculty in electrical engineering.

WINLAB is an industry/university collaborative venture aimed at furthering the interests of the wireless networking community. Its activities include research, technology evaluation, and education. The Rutgers Department of Electrical and Computer Engineering offers education in wireless networking at the bachelor's, master's, and Ph.D. levels. A student pursuing an advanced degree will be admitted to the certificate program upon approval of the director. Four courses with a minimum GPA of 3.0 are required for the certificate.

Required Courses
Four courses (two required courses and two electives) with a minimum GPA of 3.0 are required.

Elective Courses
16:332:543 Communications Networks I (3) or 14:332:423 Telecommunication Networks (3)
14:332:___ Wireless Communications Technologies (proposed) or 14:332:426 Wireless Personal Communications Systems

Elective Courses
14:332:321 Probability and Random Processes (3) (if not previously completed)
14:332:322 Principles of Communication Systems (3) (if not previously completed)
14:332:421 Communications Engineering (3) (if not previously completed)
14:332:481 Electromagnetic Waves (3) (if not previously completed)
16:332:541 Stochastic Signals and Systems (3)
16:332:544 Communications Networks II (3)
16:332:545 Communication Theory (3)
16:332:547 Digital Communications I (3)
16:332:548 Digital Communications II (3)
16:332:601 Special Problems: Wireless Communications Project (BA)

WOMEN’S AND GENDER STUDIES 988
Programs Offered: Master of Arts in Women’s and Gender Studies; Certificate in Women’s and Gender Studies; Ph.D. (pending)
Director of the Graduate Program in Women’s and Gender Studies: Professor Jennifer Jones, Ruth Dill Johnson Crockett Building, Douglass Campus (732/932-9331)
Web Site: http://womens-studies.rutgers.edu

Members of the Graduate Faculty
Louise Barnett, Professor of English, FAS-NB; Ph.D., Bryn Mawr College
American literature
Emily Bartels, Associate Professor of English, FAS-NB; Ph.D., Harvard
Comparative literature
Frances Bartkowski, Associate Professor of English, FAS-NB; Ph.D., Iowa
Comparative literature
Mia Elisabeth Bay, Associate Professor of History, FAS-NB; Ph.D., Yale
American intellectual and cultural history
Mary Lee Brete, Professor of Spanish, FAS-NB; Ph.D., Maryland
Nineteenth- and twentieth-century Spanish literature
Eleanor Brilliant, Professor of Social Work, SSW; D.S.W., Columbia
Community planning, organizational behavior, and social policy
women's leadership
Ethel Brooks, Assistant Professor of Women’s and Gender Studies and Sociology, FAS-NB; Ph.D., New York
Gender and labor; critical political economy; globalization
Charlotte Bunch, Professor of Women's and Gender Studies, FAS-NB and director of the Center for Women’s Global Leadership; B.A., Duke
Gender and development; women's human rights; violence against women; women’s global leadership
Albena Bash, Associate Professor of English and Women's and Gender Studies, FAS-NB; D.Phil., Oxford
Black African women in British and American fiction
Barbara Callaway, Professor of Political Science, FAS-NB; Ph.D., Boston
Comparative politics (Africa); women and politics

201
Susan Carroll, Professor of Political Science and Women's and Gender Studies, FAS–NB; Ph.D., Stanford

Sandra Harris, Professor of Political Science and Women's and Gender Studies, FAS–NB; Ph.D., Indiana

Women and politics; mass politics

Christine Chism, Assistant Professor of English, FAS–NB; Ph.D., Duke

Medieval literature, drama, women's and gender studies, cultural studies, historiography

Susan Cobbie, Professor of Labor Studies and Women's and Gender Studies, SMU; Ph.D., Stanford

Women and work; labor history, union leadership

Ed Cohen, Associate Professor of English and Women's and Gender Studies, FAS–NB; Ph.D., Stanford

Literary and social theory; gay and gender studies; late Victorian culture

Ann Baynes Creso, Associate Professor of English, FAS–NB; Ph.D., Maryland

Renaisance and seventeenth-century literature

Barbara Cooper, Associate Professor of African Studies, History, and Women's and Gender Studies, FAS–NB; Ph.D., Boston

African history; Muslim women

Drewella Cornell, Professor of Political Science and Women's and Gender Studies, SL–N; J.D., California (Los Angeles)

Feminist jurisprudence; critical theory

Sheila Kosinski, Associate Professor of Sociology and Anthropology, FAS–C; Ph.D., Brandeis

Cultural and medical anthropology; ethnic relations; Mesoamerica; Africa

Jeanette Covingston, Associate Professor of Sociology, FAS–NB; Ph.D., Chicago

Development/anthropology

Susan Crane, Professor of English, FAS–NB; Ph.D., California (Berkeley)

Medieval studies

Cynthia Daniels, Associate Professor of Political Science, FAS–NB; Ph.D., M. Massachusetts (Amherst)

Women and public policy; productive politics; political economy of gender

Harriet A. Davidson, Associate Professor of English and Women's and Gender Studies, FAS–NB; Ph.D., Vanderbilt

Modern and contemporary poetry; critical theory

Belinda Davis, Associate Professor of History, FAS–NB; Ph.D., Michigan

(Ann Arbor)

Modern European history; Germany; women's history

Marianne DeVoeKoven, Professor of English and Women's and Gender Studies, FAS–NB; Ph.D., Stanford

Modernism; women's and gender studies

Elin Diamond, Professor of English, FAS–NB; Ph.D., California (Davis)

Drama and dramatic theory; feminist and literary theory

M. Josephine Diamond, Professor of French and Women's and Gender Studies, FAS–NB; Ph.D., Cornell

Nineteenth- and twentieth-century literature; critical theory

William C. Donahue, Associate Professor of German, FAS–NB; Ph.D., Harvard

Nineteenth- and twentieth-century literature; German-Jewish studies

Kate Ellis, Associate Professor of English, FAS–NB; Ph.D., Columbia

Women's and gender studies; eighteenth-century fiction

Leela Fernandes, Associate Professor of Political Science and Women's and Gender Studies, FAS–NB; Ph.D., Chicago

Women's and gender studies; comparative politics; political economy and cultural studies; South Asia

Jenny Flieger, Professor of French, FAS–NB; Ph.D., California (Berkeley)

Twentieth-century literature; critical theory; women's and gender studies and feminist theory

Sandy Flitterman-Lewis, Associate Professor of English, FAS–NB; Ph.D., California (Berkeley)

Feminist cultural analysis with an emphasis on film and literature

Lora D. Garrison, Professor of History and Women's and Gender Studies, FAS–NB; Ph.D., California (Irvine)

Women and reform movements; recent United States history

Judith Gerson, Associate Professor of Sociology and Women's and Gender Studies, FAS–NB; Ph.D., Cornell

Gender; work; social theory

Mary Gibson, Associate Professor of Philosophy, FAS–NB; Ph.D., Princeton

Social/political/feminist Marxist philosophy; reproductive practices autonomy

John Gilliss, Professor of History, FAS–NB; Ph.D., Stanford

Modern European social history and British history

Sherry Gorelick, Associate Professor of Sociology and Women's and Gender Studies, FAS–NB; Ph.D., Columbia

Education; ethnicity

Mary Glossy, Associate Professor of Spanish and Women's and Gender Studies, FAS–NB; Ph.D., Harvard

Golden-age prose, narrative, feminist theory; reader-response, psychoanalysis

Cathy Greenblat, Professor of Sociology, FAS–NB; Ph.D., Columbia

Research methods; simulation; sexuality; development

Sandrea Harris, Professor of Psychology, FAS–NB/GSAPP; Ph.D., SUNY (Buffalo)

Autism

Mary S. Hartman, Professor of History, FAS–NB; Ph.D., Columbia

Nineteenth-century France; women's history

Mary E. Hawkesworth, Professor of Women's and Gender Studies, FAS–NB; Ph.D., Georgetown

Political philosophy; feminist theory

Nancy Hewitt, Professor of History and Women's and Gender Studies, FAS–NB; Ph.D., Pennsylvania

American Women; nineteenth-century United States history

Dorothy Hodgson, Associate Professor of Anthropology, FAS–NB; Ph.D., Michigan

Cultural anthropology; politics of development; culture and power; gender

Briavell Holcomb, Professor of Urban Studies, EJBSPP; Ph.D., Colorado

Urban revitalization; environment and behavior; women

Jennifer Jones, Associate Professor of History, FAS–NB; Ph.D., Princeton

Medieval and early modern European; France, old regime and revolution; European women's history

Jane Junn, Associate Professor of Political Science, FAS–NB; Ph.D., Chicago

Methodology

Samara Kawash, Assistant Professor of English, FAS–NB; Ph.D., Duke

Nineteenth- and twentieth-century minority and African-American literature; cultural theory; race and ethnicity

Dorothy Ku, Associate Professor of History and Women's and Gender Studies, FAS–NB; Ph.D., Stanford

Premodern Chinese women's history

Renée Larrivee, Associate Professor of French, FAS–NB; Ph.D., Columbia

African and Caribbean literature in French

Barbara Lee, Professor of Human Resource Management and Dean, GSAPP; Ph.D., Ohio; J.D., Georgetown

Employment discrimination; disability and work

Barbara Lewis, Associate Professor of Political Science, FAS–NB; Ph.D., Northwestern

Comparative politics (Africa); women and politics

Phyllis Mack, Professor of History and Women's and Gender Studies, FAS–NB; Ph.D., Cornell

Early modern French and English history; women's history

Ruth Mandel, Board of Governors Professor of Politics and Director of the Eagleton Institute of Politics; Ph.D., Connecticut

Women's participation in American politics

Umbrerto Mariani, Professor of Italian, FAS–NB; Dott. in Lettere, Pavia

Nineteenth- and twentieth-century literature

Joan Martee, Professor of Art History, FAS–NB; Ph.D., Delaware

Modern art; twentieth-century art; gender studies; museum studies

Leslie McCullar, Assistant Professor of Sociology and Women's and Gender Studies, FAS–NB; Ph.D., Wisconsin

Gender; work and labor markets; theory

Meredith McGill, Assistant Professor of English, FAS–NB; Ph.D., Johns Hopkins

Nineteenth-century women's poetry; women and the literary marketplace

Gabriela Morea, Professor Emerita of Spanish, FAS–NB; Ph.D., Smith

Nineteenth- and twentieth-century Spanish-American literature; literary theory

Jennifer Morgan, Assistant Professor of History and Women's Studies, FAS–NB; Ph.D., Duke

Early American history; African-American women's history

Alicia Ostriker, Professor of English, FAS–NB; Ph.D., Harvard

American and modern literature criticism

Ann Parcellus, Associate Professor of Sociology, FAS–NB; Ph.D., Chicago

Education

Gerald Pirot, Associate Professor of Slavic Languages and Literatures, FAS–NB; Ph.D., Yale

Slavic languages and literatures

Jasbir Puar, Assistant Professor of Women's Studies and Geography, FAS–NB; Ph.D., California (Berkeley)

Gender and globalization; diaspora; tourism; queer theory; transnational sexuality

Joanna Regulska, Professor of Geography and Women's and Gender Studies, FAS–NB; Ph.D., Colorado

Critical theory: fiction

Donald T. Roden, Associate Professor of History, FAS–NB; Ph.D., Wisconsin

Modern Japanese social and intellectual history

Patricia Rosen, Professor of Sociology, FAS–NB; Ph.D., California (Los Angeles)

Stabilization; work; gender

Sarah Rosenfield, Associate Professor of Sociology, FAS–NB; Ph.D., Texas

Medical sociology; mental illness

Louisa Schein, Assistant Professor of Anthropology and Women's and Gender Studies, FAS–NB; Ph.D., California (Berkeley)

Cultural politics; ethnicity; gender; transnational issues; China

Nomini C. Smith, Professor of History and Women's and Gender Studies, FAS–NB; Ph.D., Rochester

Modern European history; women's history

Carol Smith, Professor of English, FAS–NB; Ph.D., Pittsburgh

The novel; critical theory

Judith Stern, Professor of Psychology, FAS–NB; Ph.D., Rutgers

Sexual and maternal behaviors in animals and women
Antonia Tripolitis, Associate Professor of Religion, FAS–NB; Ph.D., Pennsylvania
Hellenic Greek literature and thought; patriarchy, Neoplatonism
Meredith Tsunen, Associate Professor of Urban Planning, EJSPPP;
Ph.D., Sussex
Political economy of health; third world social policy
Cheryl Wall, Professor of English, FAS–NB; Ph.D., Harvard
American and African-American literature
Michael D. Warner, Professor of English, FAS–NB; Ph.D., Johns Hopkins
Colonial and nineteenth-century American literature; queer theory; social theory
Carmen Whalen, Assistant Professor of Puerto Rican and Hispanic Caribbean Studies, FAS–NB; Ph.D., Rutgers
U.S. immigration; women's history
Deborah White, Professor of History and Women's and Gender Studies, FAS–NB;
Ph.D., Illinois
African-American history; women's history
Carolyn S. Williams, Associate Professor of English, FAS–NB; Ph.D., Virginia
Victorian literature; women's studies, cultural studies
Virginia Yans-McLaughlin, Professor of History, FAS–NB; Ph.D.,
SUNY (Buffalo)
United States cultural history; women's history; history of immigration

Adjunct Member of the Graduate Faculty
Barbara Balliet, Associate Director of Women's and Gender Studies, FAS–NB;
Ph.D., New York
U.S. social history; women's history

Programs
The M.A. program in women's and gender studies emphasizes global and multicultural perspectives in the study of women and gender. The core curriculum in women's and gender studies is supplemented by graduate courses offered by other departments of the university. The master's program draws upon faculty members from some twenty departments that offer gender-related courses. In addition to course work in the field, each student must complete a 6-credit thesis or practicum.

Some students will be able to complete the 30-credit program in one calendar year, with course work concentrated in the fall and spring terms, completing the final thesis or practicum in the summer. It also is possible to attend part time and complete the degree in a maximum of four years.

Certificate Program
Rutgers is unusual in offering both a graduate certificate in women's and gender studies and Ph.D. concentrations on women and gender in several major disciplines: English, history, sociology, and political science. Students in a graduate program with a women's and gender studies track and those whose programs lack a women's and gender studies area can take a special concentration in women's and gender studies as part of their regular, advanced-degree program. Upon receiving that advanced degree, these students also will get a graduate certificate in women's and gender studies. The special requirements for the certificate, many of which also may be used to satisfy the student's graduate degree requirements, are as follows: one feminist theory course, two 988 (women's and gender studies) courses, plus one approved cognate course.

Graduate Courses in Women's and Gender Studies

16:988:510. TECHNOLOGIES AND POETICS OF GENDER AND SEXUALITY (3)
Prerequisite Permission of instructor.
Technologies and politics through which sexuality and gender are constructed; the ways in which cross-culturally and historically the gendered and sexed body has been socially and culturally produced.

16:988:520. AGENCY, SUBJECTIVITY, AND SOCIAL CHANGE (3)
Prerequisite Permission of instructor.
The relationship between women, gender, and movements for social, political, and cultural changes in historical and cross-cultural contexts.

16:988:525. COLOQUIUM IN WOMEN'S AND GENDER STUDIES (3)
Prerequisite Permission of instructor.
Topic varies according to specialization of instructor.

16:988:530. GENDERED BORDERS/CHANGING BOUNDARIES (3)
Prerequisite Permission of instructor.
Social, political, and epistemological role of gender in the construction of boundaries and borders in a global, transnational context.

16:988:582. FEMINIST GENEALOGIES: HISTORICAL, THEORETICAL, AND POLITICAL PERSPECTIVES (3)
Prerequisite Permission of instructor.
Development of modern feminist thought since the eighteenth century. Exploration of key modern theories that underlie feminist thought, including liberalism, Marxism, psychoanalysis, and existentialism.

16:988:583. CONTEMPORARY FEMINIST THEORIES (3)
Prerequisite Permission of instructor.
Contemporary feminist theories and debates in local and global contexts. Explores the connection of feminist theory since 1945 with intellectual movements, ranging from structuralism and cultural studies to postmodernism.

16:988:584,585. PRACTICUM IN WOMEN'S AND GENDER STUDIES (3,3)
Prerequisite Permission of instructor.
Field work for M.A. degree candidates.

16:988:590. INDEPENDENT STUDY: WOMEN'S AND GENDER STUDIES (3)
Prerequisite Permission of instructor.

16:988:602. FEMINIST METHODOLOGIES (3)
Prerequisite Permission of instructor.
Feminist knowledge production; philosophical, methodological, theoretical, and disciplinary traditions. Key debates over processes and terms of feminist knowledge production.

16:988:603. FEMINIST KNOWLEDGE PRODUCTION (3)
Prerequisite Permission of instructor.
Introduces a broad range of interdisciplinary feminist research methods to enable students to develop and design their own independent-research projects.

16:988:701,702. RESEARCH IN WOMEN'S AND GENDER STUDIES (3,3)
Prerequisite Permission of instructor.

Graduate Courses in Other Programs
Descriptions for the courses listed below can be found elsewhere in this catalog or in that of one of the professional schools. Students should inquire at the office of the graduate program offering a particular course to determine the specific topic of the course that term.

Anthropology
16:070:511. ANTHROPOLOGY OF GENDER (3)
16:070:516. SEXUALITY IN A CROSS-CULTURAL PERSPECTIVE (3)
16:070:518. CORPORATE AND PERSONAL VIOLENCE (3)
16:070:521. ANTHROPOLOGY OF INDUSTRIAL SOCIETY: TRANSNATIONALISM (3)
16:070:524,525. WORLD ETHNOGRAPHIC AREAS I,II (3,3)
16:070:527. THE ETHNOLOGY OF INEQUALITY: RACE, CLASS, AND ETHNICITY (3)
16:070:550. ECONOMIC ANTHROPOLOGY (3)

Art History
16:082:655 PROBLEMS IN TWENTIETH-CENTURY ART (3)

Comparative Literature
16:195:502. WOMEN AND WRITING: FEMINIST THEORY (3)
16:195:515. STUDIES IN CONTEMPORARY LITERATURE (3)
16:195:516. Topics in Comparative Literature (3)
16:195:521. Topics in Non-Western Literature (3)
16:195:611. Psychoanalytic Approaches to Literature (3)
16:195:612. Literature and the Social Order (3)
16:195:613. Minority Literatures (3)
16:195:615. East/West Literary Relations (3)
16:195:617. Topics in Advanced Literary Theory (3)
English
16:350:508. Critical Methodologies (3)
16:350:510. Critical Theory (3)
16:350:514. Literature and Politics (3)
16:350:526. Literary Criticism: The Major Texts (Feminist Texts) (3)
16:350:527. Psychoanalytic Criticism (3)
16:350:572. Victorian Fiction (3)
16:350:602. Readings in British and American Literature (3)
16:350:629. Seminar: Topics in Eighteenth-Century Literature and Culture (3)
16:350:659. Seminar: Literary Criticism and Social Critique (3)
16:350:698. Seminar (3)
16:352:692. American Writers (3)
French
16:420:651. French Literature of the Nineteenth Century (3)
16:420:668. Studies in French Literature of the Twentieth Century (3)
16:420:671. Studies in Francophone Literature (3)
16:420:682. Perspectives of Contemporary Criticism (3)
Geography
16:450:515. Population Migration (3)
16:450:520. Women in the Urban Environment (3)
16:450:606. Geography Seminar (3)
History
16:510:519. Colloquium in Intellectual History (3)
16:510:523. Colloquium in Migration, Community, and Identity (3)
16:510:525. Colloquium in Political History (3)
16:510:527. Topics in the History of Religion (3)
16:510:529. Topics in the History of Sexuality (3)
16:510:539. Colloquium in the History of Women (3)
16:510:541. Colloquium in World History (3)
16:510:549. Seminar in the History of Women (3)
Labor and Industrial Relations
38:578:541. Women and Work (3)
38:578:562. Seminar in Comparative Labor Movements (3)
Political Science
16:790:531. Problems in American Politics (3)
16:790:578. Feminism in Postmodernity (3)
16:790:584. Themes in Feminist Theory in Politics (3)
16:790:587. Proseminar in Women and Politics (3)
16:790:588. Gender and Mass Politics (3)
16:790:591. Gender and Public Policy (3)
16:790:593. Gender and Comparative Politics (3)
16:790:594. Women's Movements in Comparative Perspective (3)
16:790:596. Advanced Topics in Women and Politics (3)
Public Policy
34:833:592. Public Policy Formation (3)
34:833:593. Policy Analysis and Evaluation (3)
34:833:680. Seminar in Public Policy: Race, Politics, and Media (3)
Social Work
16:910:564. Women's Issues (3)
Sociology
16:920:512. Proseminar in Sociology (3)
16:920:570. Special Topics in Sociology (3)
16:920:572. Special Topics in Sociology (3)
16:920:573. Special Topics in Sociology (3)
16:920:618. Sociology of Gender (3)
16:920:632. Sociology of Work (3)
16:920:640. Sociological Perspectives on Feminist Theory (3)
Spanish
16:940:539. Spanish Women Writers of the Nineteenth and Twentieth Centuries (3)
16:940:547. Modernism in Spanish America (3)
16:940:637. Seminar (3)
16:940:655. Seminar (3)
16:940:660. Seminar: Advanced Topics in Hispanic Literature (3)
Urban Planning and Policy Development
34:970:581. Gender and International Development (3)
34:970:585. Tourism Planning (3)
34:970:652. Seminar in Urban Planning (3)
34:970:658. Seminar in Urban Planning (3)
Research Centers, Bureaus, and Institutes

The university sponsors many centers, bureaus, and institutes that are the loci of its mission-oriented research. Many of these contain the principal offices of members of the graduate faculty, whose research activity takes place under their auspices. Students enrolled in the Graduate School—New Brunswick may find that their own research activity is located at and funded through these centers, bureaus, and institutes. This chapter lists those that are likely to be sites of graduate student research at the Graduate School—New Brunswick.

Biotechnology Center for Agriculture and the Environment (BIOTECH)

Foran Hall
59 Dudley Road, Cook Campus
New Brunswick, NJ 08901-8520
Telephone: 732/932-8165; Fax: 732/932-6535
biotech@njaes.rutgers.edu
Peter R. Day, Director

The Biotechnology Center for Agriculture and the Environment (BIOTECH) is an integral part of the New Jersey Agricultural Experiment Station. BIOTECH carries out research and training in molecular biology applied to agriculture and the environment and transfers new discoveries into practice and product development. Research on plant systems is concerned with fungal and viral disease resistance, sulfate metabolism, natural products and the regulation of plant development, turfgrass transformation, and the use of plants to remedy heavy metal and radionuclide pollution. Bioremediation research also seeks new tools and methods to degrade industrial and other toxic wastes using aerobic and anaerobic microorganisms to minimize pollution on land, freshwater, coastal, and offshore marine environments.

Center for Advanced Biotechnology and Medicine (CABM)

679 Hoes Lane, Busch Campus
Piscataway, NJ 08854-5627
Telephone: 732/235-5300; Fax: 732/235-4850
Aaron J. Shatkin, Director

The Center for Advanced Biotechnology and Medicine (CABM) is administered jointly by Rutgers, The State University of New Jersey, and the University of Medicine and Dentistry of New Jersey. It is designated by the New Jersey Commission on Science and Technology as one of the state’s advanced technology centers. In addition to the two universities and the commission, the center’s constituencies include the New Jersey pharmaceutical and related biotechnology industries; the National Institutes of Health; the National Science Foundation; and private organizations that support science and technology, including the Howard Hughes Medical Institute. The mission of CABM is the advancement of knowledge in the life sciences for the improvement of human health. To improve the understanding of fundamental life processes, CABM performs basic research in the areas of cell and developmental biology, molecular genetics, and structural biology. Researchers interact with clinical scientists to bring laboratory discoveries to patient care. CABM faculty train undergraduate, graduate, and postdoctoral students for leadership in science and technology. CABM serves the public interest by enhancing economic development through corporate collaborations in research and education, by technology transfers, and through consultations.

Center for Advanced Food Technology (CAFT)

Nabisco Institute for Advanced Food Technology
65 Dudley Road, Cook Campus
New Brunswick, NJ 08901-8520
Telephone: 732/932-8306; Fax: 732/932-8690
kokini@aesop.rutgers.edu
Jozef L. Kokini, Director

The Center for Advanced Food Technology (CAFT) is a unique, cooperative venture between the food industry, academia, and government. It strives to create and enhance applications of scientific knowledge and technologies that address product, process, and manufacturing needs for the delivery of high-quality, health-promoting foods and food materials to consumers. Research programs involve about thirty faculty members, staff, and students from ten university departments. In the Cooperative Research and Technology Transfer Program, multidisciplinary teams carry out precompetitive and targeted research in the areas of materials science, flavor science, safety and health promotion in processed foods, and nutraceuticals. In the Advanced Manufacturing and Outreach Program, multidisciplinary teams research, develop, demonstrate, and assist in commercialization of packaged food manufacturing technologies using a full-scale demonstration manufacturing plant. The CAFT Instrumentation Support Facilities Program provides research, development, and training activities focused upon mass spectrometry and chromatography, spectroscopy and calorimetry, and rheological measurements and extrusion cooking. Economic and human-resource development are integrated with the discovery of new knowledge and the transfer of technologies throughout CAFT programs.

Center for Advanced Information Processing (CAIP)

CoRE Building
96 Frelinghuysen Road, Busch Campus
Piscataway, NJ 08854-8008
Telephone: 732/445-3443; Fax: 732/445-0547
James Flanagan, Director

The Center for Advanced Information Processing (CAIP) is a multidisciplinary Advanced Technology Center sponsored by the New Jersey Commission on Science and Technology; Rutgers, The State University of New Jersey; and twenty-one industrial and corporate sponsors. CAIP conducts computer applications research in the areas of parallel and distributed computing, machine vision, speech processing, computer-aided design, scientific visualization and quantification and multimedia information
systems, and facilitates industry-university technology transfer. CAIF’s research mission is to apply the technologies of high-speed scientific computing to the solution of industrial problems. Computational resources include:

- Sun Microsystems Enterprise 10000, Sun’s highest-end multiprocessor server: 128 CPUs, 512 MB per processor, and approximately ½ TB of disk storage
- IBM SP2 multiprocessor system: 8 CPUs
- 20 Sun SparcServer-20/62s, each with 2 CPUs and between 192 MB and 512 MB of RAM
- A Beowolf cluster in The Applied Software Systems Lab (TASSL): 8 dual processor Pentium IIs

Center of Alcohol Studies (CAS)

Simators Hall
607 Allison Road, Busch Campus
Piscataway, NJ 08854-8001
Telephone: 732/445-2190; Fax: 732/445-3500
http://www.rdi.rutgers.edu/~cas2
Robert J. Pandina, Director

The Center of Alcohol Studies (CAS), the world’s oldest alcohol research center, is a multidisciplinary institute dedicated to acquisition and dissemination of knowledge on psychoactive substance use and related phenomena. Its primary emphasis is on alcohol use and consequences. The center’s core program of basic and applied research is conducted by scientists drawn chiefly from the biological sciences (principally biochemistry and neuropharmacology), psychology (clinical and experimental), and sociology. Faculty members of the Basic Sciences Division (comprised of three distinct laboratories), the Clinical Division, and the Prevention Research and Services Division are the principal contributors to this center’s focus. The Information Services Division houses the center’s extensive research library, and a collection of more than 100,000 research and professional materials on all aspects of alcohol use and abuse. It also publishes the internationally recognized Journal of Studies on Alcohol. The Education and Training Division conducts continuing professional-education seminars throughout the academic year and two-weeklong summer programs. The center offers graduate courses in alcohol studies to students enrolled in advanced-degree programs at Rutgers who wish to pursue a special concentration in alcohol or other substance use/abuse studies. Additionally, a number of research opportunities are available with center faculty, with the extensive network of interdisciplinary visiting professors to the center, or with one of the center’s collaboration institutions. Further information may be found online.

Malcolm G. McLaren Center for Ceramic Research (MGMCCR)

607 Taylor Road, Busch Campus
Piscataway, NJ 08854-8065
Telephone: 732/445-5900; Fax: 732/445-5595
Dale E. Niesz, Director

The Malcolm G. McLaren Center for Ceramic Research (MGMCCR) is an Advanced Technology Center of the New Jersey Commission on Science and Technology and a National Science Foundation Industry/University Cooperative Research Center. It serves as a resource center in ceramic science and engineering for the state of New Jersey and member companies. The center is dedicated to developing advanced ceramic science and engineering and ensuring that emerging science and engineering technology is used for commercial and technological development in New Jersey and beyond. The center conducts research in a broad area of ceramic science, engineering, and technology. It focuses on the synthesis of advanced materials with the microstructures and nanostructures needed to fulfill the property requirements as well as cost, shape, and reliability requirements of emerging applications.

Center for Cognitive Science (RuCCS)

Psychology Building Addition
152 Frelinghuysen Road, Busch Campus
Piscataway, NJ 08854-8020
Telephone: 732/445-0635; Fax: 732/445-6715
http://ruccs.rutgers.edu
Ernest Lepore, Director

The Rutgers Center for Cognitive Science (RuCCS) fosters research activities in cognitive science, focusing on the nature of certain symbolic processes that are constitutive of intelligent performance. The center’s goal is to understand such aspects of intelligent performance as perception, language processing, planning, problem solving, reasoning, and learning, in terms of both the computational processes that underwrite these skills and the computational mechanisms that may instantiate them. The center’s research, which is multidisciplinary, is carried on in its own facilities as well as facilities throughout the university. RuCCS also contributes to graduate training through the certificate program in cognitive science.

Center for the Critical Analysis of Contemporary Culture (CCACC)

8 Bishop Place, College Avenue Campus
New Brunswick, NJ 08901-8530
Telephone: 732/932-8426; Fax: 732/932-8683
theccacc@aol.com
George Levine, Director

The Center for the Critical Analysis of Contemporary Culture (CCACC) was established to foster interdisciplinary research and scholarly exchange in the humanities and social sciences. Each year, the center focuses on a topic of broad interdisciplinary interest and appoints as many as twenty fellows from the full range of university disciplines. The center sponsors lecture series, colloquia, and conferences on important topics of interdisciplinary concern.

Center for Discrete Mathematics and Theoretical Computer Science (DIMACS)

CoRE Building
96 Frelinghuysen Road, Busch Campus
Piscataway, NJ 08854-8018
Telephone: 732/445-5928; Fax: 732/445-5932
http://dimacs.rutgers.edu
Fred S. Roberts, Director

The Center for Discrete Mathematics and Theoretical Computer Science (DIMACS) is a National Science Foundation Science and Technology Center. It also is supported by the New Jersey Commission on Science and Technology, and is a consortium of Rutgers and Princeton universities and AT&T Labs–Research, Bell Labs, Telcordia Technologies, and NEC Research. DIMACS offers workshops, seminars,
Eagleton Institute of Politics (EIP)
191 Ryders Lane, Douglass Campus
New Brunswick, NJ 08901-8557
Telephone: 732/932-9384; Fax: 732/932-6778
http://www.eagleton.rutgers.edu
Ruth B. Mandel, Director
The Eagleton Institute of Politics (EIP) explores state and national politics through research, education, and public service. It also links the study of politics with its day-to-day practice. The institute focuses on how contemporary political systems work, how they change, and how they might work better. Eagleton’s faculty, centers, and programs specialize in the study of state legislatures; public opinion polling and survey research; women’s participation in politics; race and politics; campaigns, elections, and political parties; civic education and political engagement; and New Jersey politics. The institute includes the Center for the American Woman and Politics (CAWP) and the Center for Public Interest Polling (CPIP), both established in the early 1970s. For Rutgers graduate and undergraduate students, Eagleton offers a range of education programs, including an undergraduate certificate, graduate fellowships, research assistantships and internships, and opportunities to interact with political practitioners. The institute also convenes conferences and other forums for the general public. In addition, Eagleton undertakes projects to enhance political understanding and involvement, often in collaboration with politicians, government agencies, the media, nonprofit groups, and other academic institutions.

Thomas A. Edison Papers
16 Seminary Place, College Avenue Campus
New Brunswick, NJ 08901-1108
Telephone: 732/932-8511; Fax: 732/932-7554
taep@rci.rutgers.edu
http://edison.rutgers.edu
Robert Rosenberg, Director
The Thomas A. Edison Papers is an institute devoted to the selective publication of the more than five million pages of notebooks, correspondence, patent materials, and legal records of Thomas A. Edison and his associates. The Edison Papers is cosponsored by Rutgers, The State University of New Jersey, the National Park Service, the New Jersey Historical Commission, and the Smithsonian Institution. Ten full-time faculty members associated with the institute do research on Edison and also a broad range of historical issues from the nineteenth and twentieth centuries.

Environmental and Occupational Health Sciences Institute (EOHSI)
170 Frelinghuysen Road, Busch Campus
Piscataway, NJ 08854-8020
Telephone: 732/445-0200; Fax: 732/445-0131
Robert Snyder, Ph.D., Acting Director
Brian Buckley, Ph.D., Acting Executive Director
The Environmental and Occupational Health Sciences Institute (EOHSI) is sponsored jointly by Rutgers, The State University of New Jersey, and the University of Medicine and Dentistry of New Jersey–Robert Wood Johnson Medical School. The institute houses a select group of scientists, physicians, educators, and policy researchers who focus on the serious health effects of environmental pollutants. Institute members investigate ways in which people are exposed to chemicals, study how chemicals react in the body, educate the public about risks from chemical exposure, and help formulate policies to protect human health. EOHSI is comprised of six divisions: toxicology, public education and risk communication, occupational health, exposure measurement and assessment, environmental health, and environmental policy. In 1988, EOHSI became the site of the first National Institutes of Health (NIH) center of excellence in New Jersey, one of only twenty such centers funded by NIH to facilitate multidisciplinary research on health problems posed by environmental exposures.

Fiber Optic Materials Research Program (FOMRP)
607 Taylor Road, Busch Campus
Piscataway, NJ 08854-8065
Telephone: 732/445-4729; Fax: 732/445-4545
sigel@alumina.rutgers.edu
George H. Sigel, Jr., Director
The Fiber Optic Materials Research Program (FOMRP) conducts various research projects ranging from the synthesis of new optical materials by chemical vapor deposition to advanced optical signal transmission and processing. It emphasizes research that focuses on future and advanced applications of optical fibers, particularly those that extend beyond telecommunications. Key projects include research on fiber optics for biomedical applications, design and fabrication of fiber optic sensors, fabrication of fiber optic lasers and optical amplifiers, and the development of infrared transmitting fibers based on halide and chalcogenide glasses as well as crystals and hollow waveguides. The FOMRP seeks to conduct generic research on a cooperative basis with industry and government and to provide a mechanism for technology transfer of its activities.

Institute for Health, Health Care Policy, and Aging Research (IHHCPAR)
30 College Avenue, College Avenue Campus
New Brunswick, NJ 08901-1293
Telephone: 732/932-8413; Fax: 732/932-6872
David Mechanic, Director
The Institute for Health, Health Care Policy, and Aging Research (IHHCPAR) was established to consolidate and focus the resources of the university on critical health and aging issues facing the nation. It facilitates collaboration among scholars who represent many disciplines, providing them with opportunities to pool their knowledge and...
expertise in examining multifaceted health problems. The institute has three units: its division on health, health policy, and aging; its Center for Research on the Organization and Financing of Care for the Severely Mentally Ill; and the Center for State Health Policy, which examines critical state and regional health-policy issues. Each division of the institute provides research and training opportunities to predoctoral students enrolled in degree-granting programs elsewhere in the university, to fellows enrolled in the institute’s postdoctoral program, and to undergraduates. Although the institute has broad scope, it focuses its research efforts in areas where it has analytic strength and where it can build on the excellence of academic departments and professional schools at the university.

Rutgers Center for Historical Analysis (RCHA)
88 College Avenue, College Avenue Campus
New Brunswick, NJ 08901-8542
Telephone: 732/932-8701; Fax: 732/932-8708
Deborah Gray White, Director

The Rutgers Center for Historical Analysis (RCHA) is a multidisciplinary research center and an affiliate of the history department at Rutgers—New Brunswick. It provides a setting to discuss issues of broad contemporary relevance in historical perspective. Organizing its annual activities around major themes of inquiry or research projects, the center each year welcomes visiting senior and postdoctoral fellows chosen through an open, international competition, along with several faculty and graduate fellows from Rutgers. In addition to weekly seminars, the center hosts a variety of public conferences and related cultural events, sponsors the Institute for High School Teachers, and houses the Journal of the History of Ideas.

IEEE History Center
39 Union Street, College Avenue Campus
New Brunswick, NJ 08901-8538
Telephone: 732/932-1066; Fax: 732/932-1193
Michael N. Geselowitz, Director

The IEEE History Center is a joint venture between Rutgers, The State University of New Jersey, and the Institute of Electrical and Electronics Engineers, Inc. The center undertakes research, public outreach, and archival work in all aspects of the history of electrical, electronic, and computing technology and their social, political, and cultural contexts. IEEE also awards an annual fellowship and historical paper prize.

Institute of Marine and Coastal Sciences (IMCS)
71 Dudley Road, Cook Campus
New Brunswick, NJ 08901-8521
Telephone: 732/932-6555; Fax: 732/932-8578
J. Frederick Grasse, Director

The Institute of Marine and Coastal Sciences (IMCS) conducts and integrates research efforts on estuarine, marine, and coastal processes for New Jersey and the surrounding region. Current research themes include establishment of Long-Term Ecosystem Observatories (LEOs), fish and shellfish biology and ecology, estuarine and nearshore ecology, biogeochemistry, aquaculture, genetics of marine populations, coastal physical oceanography, coastal geology, hydrothermal vent research, pinelands ecology, and deep-sea research. The institute features advanced field and laboratory facilities such as a real-time satellite remote sensing laboratory; high-performance computers; a coastal observation network; and annular and racetrack flumes for studies of interactions among flow, sediment geochemistry and transport, and organism behavior and growth. IMCS faculty advise students in oceanography, environmental sciences, ecology and evolution, geology, and several areas of engineering.

Center for Nanostructured Materials (CNM)
School of Engineering
98 Brett Road, Busch Campus
Piscataway, NJ 08854-8058
Telephone: 732/445-2888; Fax: 732/445-3229
Thomas Tsakalakos, Director
William E. Mayo, Codirector

The Center for Nanostructured Materials (CNM) is jointly supported by the New Jersey Commission on Science and Technology, Rutgers, The State University of New Jersey, and several industry members. CNM’s mission is to support forefront research in advanced materials areas and to promote industry-university interactions. Research areas include chemical and physical synthesis of nanostructured materials, ultrafine powder thin-film technology, and advanced characterization. Equipment at CNM is consolidated into six major facilities: chemical synthesis, physical synthesis, X-ray, ion beam, electron microscopy, and modeling and computer simulations.

Center for Packaging Science and Engineering
137 Winchester Road, Busch Campus
Piscataway, NJ 08854-8029
Telephone: 732/445-3224; Fax: 732/445-5636
James D. Idol, Director

The Center for Packaging Science and Engineering consists of a research division with four laboratories and an information center for packaging and related fields. The major research thrusts of the center are in packaging science and technologies, covering food and beverage packaging; pharmaceutical, medical, and health care packaging; industrial hard and soft goods packaging; and materials science related to packaging processes and products. The Distribution Packaging Laboratory evaluates package performance in the distribution environments. The Permeation/Leakage Laboratory studies barrier properties of packaging materials. The Materials/Package Laboratory studies mechanical, physical, and chemical properties and performance of packaging materials. The Packaging Machinery Laboratory studies packaging machinery design, operation, and interactions of packaging machinery and packaging materials.

Institute for Research on Women (IRW)
160 Ryders Lane, Douglass Campus
New Brunswick, NJ 08901-8555
Telephone: 732/932-9072; Fax: 732/932-0861
Bonnie G. Smith, Director

Founded in 1976 to provide an exchange of ideas and information among scholars on the New Brunswick campuses, the IRW has taken a leading role regionally and nationally in enabling and disseminating new research and writing on women and gender. The institute brings together
several hundred university faculty members and graduate students who are working on gender-related subjects; organizes interdisciplinary lectures, seminars, and conferences; and hosts visiting scholars in a range of disciplines. The institute sponsors a weekly graduate student/faculty seminar. With the financial support of the Rockefeller Foundation, it is the site of a project on gender, race, and ethnicity. The IRW also sponsors an annual graduate student conference.

Laboratory for Surface Modification (LSM)

Serin Physics Laboratory
136 Frelinghuysen Road, Busch Campus
Piscataway, NJ 08854-8019
Telephone: 732/445-5185; Fax: 732/445-4991
Theodore E. Madey, Director

The Laboratory for Surface Modification (LSM) provides a focus for research in basic and applied studies of high-technology surfaces and interfaces. Its activities involve multidisciplinary research in the disciplines of physics, chemistry, ceramics, materials science, and electrical engineering. Surface modification encompasses a broad spectrum of phenomena that occur at the atomic level on the surface of solids, and advances in this technology have a fundamental impact on the fields of telecommunications, petroleum, superconductivity, computer science, minerals, and chemicals. Research is supported with extensive, state-of-the-art, ultrahigh vacuum instrumentation, electronics, and computational facilities. In addition, the laboratory operates a 1.7 MV Tandetron accelerator, complete with Rutherford backscattering and ion channeling capabilities. Another laboratory facility is a Kratos XSAM Surface Analysis system containing X-ray photoelectron spectroscopy, Auger electron spectroscopy, and ion-scattering spectroscopy.

Center for Urban Policy Research (CUPR)

33 Livingston Avenue, Suite 400
New Brunswick, NJ 08901-1982
Telephone: 732/445-3060; Fax: 732/445-5735
Robert W. Burchell, Codirector
David Listokin, Codirector

The Center for Urban Policy Research (CUPR) specializes in housing, land use, economic development, and urban-poverty issues. It is concerned with both the academic quality of urban research and the practical application of research results to policy formulation and implementation. CUPR conducts research for federal agencies, major private foundations, and state and local governments. Its faculty hold joint appointments in the sociology, economics, geography, urban planning and policy development, and urban studies departments. Major projects include housing studies for the U.S. Department of Housing and Urban Development; a Community Outreach Partnership Center in Newark (also for the U.S. Department of Housing and Urban Development); an evaluation of New Brunswick’s Hope VI program; program evaluations for the U.S. Economic Development Administration; and costs of sprawl studies for several states; and costs and benefits of historic preservation for federal and state agencies and major foundations. In other work, CUPR’s Rutgers Economic Advisory Service (R/ECON™) prepares economic forecasts and analyses for businesses and governments, and its Project Community provides direct services and technical assistance to community-based organizations and nonprofit groups engaged in neighborhood revitalization. The center publishes a quarterly newsletter; monographs and working papers are published through the CUPR Press.

Laboratory of Vision Research (LVR)

Psychology Building Addition
152 Frelinghuysen Road, Busch Campus
Piscataway, NJ 08854-8020
Telephone: 732/445-6660; Fax: 732/445-6715
Thomas Papathomas, Associate Director

The Laboratory of Vision Research (LVR) has three major objectives: to conduct advanced interdisciplinary research in vision, to establish undergraduate and graduate courses in visual perception and related areas, and to serve as a consulting body to New Jersey and national institutions. Research is focused on early vision, such as texture, stereoscopic depth, and motion perception and some higher processing states, such as the role of focal attention in visual tasks. Practical applications of research conducted in the laboratory include the diagnosis and prevention of stereo blindness, invention of new ways to match large databases to the heuristics of the human observer, and the development of image-compression techniques based on the properties of the human visual system.

Waksman Institute of Microbiology (WIM)

190 Frelinghuysen Road, Busch Campus
Piscataway, NJ 08854-8020
Telephone: 732/445-3060; Fax: 732/445-5735
Joachim Messing, Director

The Waksman Institute of Microbiology (WIM) is an internationally recognized center of excellence in molecular genetics. Using microbial, plant, and animal genetic models, members of the institute are studying gene expression and signal transduction controlled by a number of environmental and developmental stimuli. A new focus on structural and computational biology complements these areas of interest. Nineteen laboratories arranged around four groups (microbial, plant, and developmental genetics; structural biology) equipped with state-of-the-art equipment provide graduate students the opportunity to learn the latest techniques in molecular genetics. In addition, the Waksman Institute houses the Molecular Biology Computing Lab.
Administration

Officers

Holly M. Smith, Ph.D., Professor of Philosophy, Dean of the Faculty of Arts and Sciences and Dean of the Graduate School–New Brunswick

Ziva Galili, Ph.D., Professor of History and Vice Dean of the Graduate School–New Brunswick

Harvey Waterman, Ph.D., Associate Professor of Political Science and Associate Dean for Academic Affairs of the Graduate School–New Brunswick

Evelyn S. Evenfrich, Ph.D., Assistant Dean for Recruitment and Retention of the Graduate School–New Brunswick

David S. Pickens, M.A., Assistant Dean for Publications and Special Projects of the Graduate School–New Brunswick

Lisa Estler, Business Manager

Teresa Delcorso, Program Development Specialist in External Funding

Amber Carpenter LaGattuta, Administrator for Academic Support and Student Services

Barbara Sirman, Administrator for Degree Certification

Executive Council of the Graduate School–New Brunswick 2001–2002

Dates in parentheses indicate expiration of term of membership.

The dean, vice dean, and associate deans of the Graduate School–New Brunswick

Michael Adas, Professor of History (2002)

Roni Avissar, Professor of Environmental Sciences (2002)

Haym Benaroya, Professor of Mechanical and Aerospace Engineering (2001)*

Richard Brail, Professor of Urban Planning (2001)*

Susan Crane, Professor of English (2003)

Richard DeLisi, Professor of Educational Psychology (2001)*

Dale Haidvogel, Professor of Marine and Coastal Sciences (2003)

Jack Harris, Professor of Anthropology (2002)

Briavel Holcomb, Professor of Urban Planning and Policy Development (2004)

Paul Kantor, Professor of Library and Information Studies (2003)

Jerome A. Langer, Professor of Molecular Genetics and Microbiology (2004)

Richard Lockwood, Associate Professor of French (2004)

Barbara Ryder, Professor of Computer Science (2004)

Robert Snyder, Professor of Toxicology (2001)*

Judith Storch, Professor of Nutritional Sciences (2002)

Alison Zippay, Associate Professor of Social Work (2001)*

Student Representatives

To be announced

Graduate School–New Brunswick Representatives to the University Senate 2001–2002

Dates in parentheses indicate expiration of term of membership.

Mia Bay, Assistant Professor of History (2003)

Lee Cronk, Associate Professor of Anthropology (2004)

Douglas DeCarlo, Assistant Professor of Computer Science (2003)

Elin Diamond, Professor of English (2001)

Monica Driscoll, Associate Professor of Biochemistry (2004)

Bradley Hillman, Associate Professor of Plant Pathology (2003)

Mark Plummer, Associate Professor of Cell Biology and Neurosciences (2004)

Deborah Silver, Associate Professor of Electrical and Computer Engineering (2003)

Peter Strom, Associate Professor of Environmental Sciences (2002)

Andrew Vershon, Associate Professor of Microbiology and Molecular Genetics (2002)

New Brunswick Faculty Council 2001–2002

Carolyn Williams, Associate Professor of English (2004)

Stanley Dunn, Professor of Biomedical Engineering (2003)

Administrative Offices

Office of the Graduate School–New Brunswick, 25 Bishop Place, College Avenue Campus (732/932-7034)

Office of Graduate and Professional Admissions, 18 Bishop Place, College Avenue Campus (732/932-7711)

Cashier, Records Hall, College Avenue Campus (732/932-7044)

Office of the Graduate Registrar, Administrative Services Building, Busch Campus (732/445-2104, 3556)

Cashier, Administrative Services Building, Busch Campus (732/445-3008)

* Appointed by the dean.
Governance of the University

State of New Jersey
Donald T. DiFranco, Acting Governor of the State

Rutgers Board of Governors 2001–2002
Chair:
Gene O'Hara
Vice Chair:
Albert R. Gamper, Jr.
Members:
Joan L. Bildner, Louis T. DiFazio, Frederick D. DeSanti, Anthony J. DePetris, Thomas G. Dallessio, Clinton C. Crocker, Mary J. Chyb, C.K. Chu, John Herbert Carman, Ruben Cardona, Liam P. Brohan, Michael A. Bogdonoff, Joan L. Bildner, Old Bridge

Rutgers Board of Trustees 2001–2002
Chair:
Duncan L. MacMillan, Princeton
Vice Chair:
Leslie E. Goodman, Lawrenceville
Members:
Jeffrey Barist, Short Hills
Henry E. Bartoli, Far Hills
Michael T. Beachem, Old Bridge
Joan L. Bildner, Short Hills
Michael A. Bogdonoff, Philadelphia
Liam P. Brohan, Easton, PA
Ruben Cardona, Morganville
John Herbert Carman, Somerville, ME
Judith T. Caruso, Gillette
C.K. Chu, Westport, CT
Mary J. Chyb, North Brunswick
Clinton C. Crocker, Tinton Falls
Thomas G. Dallessio, Hopewell
Anthony J. DePetris, Camden
Frederick D. DeSanti, Brookside
Louis T. DiFazio, Mantoloking
Milita B. Dolan, Pembridge Pines, FL
Michael R. Dressler, Creskill
Robert P. Eichert, Edison
Bruce G. Freeman, Princeton

行政官员

州立大学的治理

新泽西州
唐纳德·T·迪弗兰科，代主政州长

鲁特gers董事会的成员 2001-2002
主席：
盖恩·O·哈拉
副主席：
阿尔伯特·R·甘派尔，Jr.
成员：
琼·L·比尔德纳，路易斯·T·迪法齐奥，弗雷德里克·D·德桑蒂，安东尼·J·德彼力斯，托马斯·G·达利西亚，克林顿·C·克罗克，蒂顿·法林，玛丽·J·切比，C·K·丘，约翰·赫伯特·卡曼，鲁本·卡多纳，利亚姆·P·布罗汉，迈克尔·A·博根多夫，琼·L·比尔德纳，奥尔德桥

鲁特gers董事会的信托 2001-2002
主席：
邓肯·L·麦克米兰，普林斯顿
副主席：
莱斯利·E·古德曼，劳伦斯维尔
成员：
杰弗里·巴里斯特，短 hil
亨利·E·巴托利，法尔浩
迈克尔·T·比奇姆，老桥
乔安·L·比尔德纳，短桥
迈克尔·A·博根多夫，费城
利亚姆·P·布罗汉，东安
鲁本·卡多纳，莫根维尔
约翰·赫伯特·卡曼，森威利，ME
朱蒂丝·T·卡鲁索，吉莉特
C·K·丘，韦斯特波特，CT
玛丽·J·切比，北布伦瑞克
克林顿·C·克罗克，蒂顿·法林
托马斯·G·达利西亚，霍佩维尔
安东尼·J·德彼力斯，卡门
弗雷德里克·D·德桑蒂，布鲁克赛德
路易斯·T·迪法齐奥，曼托拉基
米利塔·B·多兰，皮姆布鲁克平恩，FL
迈克尔·R·德里斯勒，克里斯基尔
罗伯特·P·伊切特，艾德森
布鲁斯·G·弗里曼，普林斯顿

行政官员

州立大学的治理

新泽西州
唐纳德·T·迪弗兰科，代主政州长

鲁特gers董事会的成员 2001-2002
主席：
盖恩·O·哈拉
副主席：
阿尔伯特·R·甘派尔，Jr.
成员：
琼·L·比尔德纳，路易斯·T·迪法齐奥，弗雷德里克·D·德桑蒂，安东尼·J·德彼力斯，托马斯·G·达利西亚，克林顿·C·克罗克，蒂顿·法林，玛丽·J·切比，C·K·丘，约翰·赫伯特·卡曼，鲁本·卡多纳，利亚姆·P·布罗汉，迈克尔·A·博根多夫，琼·L·比尔德纳，奥尔德桥

行政官员

州立大学的治理

新泽西州
唐纳德·T·迪弗兰科，代主政州长
Divisions of the University

ACADEMIC DIVISIONS

Rutgers, The State University of New Jersey, provides educational and research services throughout the state on campuses located in Camden, Newark, and New Brunswick. The principal university center is located in New Brunswick, where Rutgers originated two centuries ago.

Camden

Camden offers programs at three undergraduate colleges and at five graduate schools. With an enrollment of 5,000 students, it offers exceptional educational opportunities in addition to providing the advantages and resources associated with a major state university.

Faculty of Arts and Sciences-Camden
Margaret Marsh, Ph.D., Dean
Established in 1983 as a result of academic reorganization of the Camden campus, the Faculty of Arts and Sciences–Camden offers academic programs for undergraduate and graduate work in twenty-three arts and sciences disciplines and in a variety of interdisciplinary areas.

School of Business-Camden
Milton Leontiades, Ph.D., Dean
Established in 1988, the School of Business–Camden sets major requirements and teaches all courses leading to the Bachelor of Science degree in the professional areas of accounting and management. The School of Business also sets the major requirements and teaches all courses leading to a Master of Business Administration degree.

Camden College of Arts and Sciences
Margaret Marsh, Ph.D., Dean
A coeducational, liberal arts college, CCAS is the successor institution to the College of South Jersey, which was established in 1927 and became part of the state university in 1950.

University College-Camden
Margaret Marsh, Ph.D., Dean
University College–Camden is an evening college of liberal arts and professional studies serving part-time students since 1950.

Graduate School-Camden
Margaret Marsh, Ph.D., Dean
Graduate programs in the liberal arts were started in Camden in 1971 under the jurisdiction of the Graduate School–New Brunswick. The Graduate School–Camden was established as an autonomous unit in 1981.

School of Law-Camden
Rayman L. Solomon, J.D., Ph.D., Dean
Founded in 1926, the School of Law–Camden joined the university in 1950 as the South Jersey division of the School of Law–Newark. It became an independent unit of the university in 1967. The law school offers a curriculum leading to the degree of Juris Doctor, including advanced study in special areas.

Summer Session-Camden
Thomas Venables, Ed.D.
The Summer Session, begun in 1913 and established as a division of the university in 1960, offers a wide variety of graduate and undergraduate courses during three sessions in the summer months.

Newark

Newark offers programs at three undergraduate colleges and at four graduate schools. With an enrollment of approximately 10,000 students, it offers strong academic programs, excellent facilities, and an outstanding faculty.

Faculty of Arts and Sciences-Newark
Steven J. Diner, Ph.D., Dean
The Faculty of Arts and Sciences–Newark was established in 1985 to expand and strengthen the instructional program for undergraduate students at the Newark campus. The combined faculties of Newark College of Arts and Sciences and University College–Newark offer courses and academic programs in more than sixty subject areas.

Newark College of Arts and Sciences
Steven J. Diner, Ph.D., Dean
Founded in 1930 as Dana College, this undergraduate, coeducational, liberal arts college became part of Rutgers when the University of Newark was integrated into the state university in 1946.

College of Nursing
Hurdis Margaret Ann Griffith, Ph.D., Dean
The College of Nursing was established in 1956 as an expansion of the university’s offerings in the former School of Nursing of the Newark College of Arts and Sciences. Its graduate program is conducted through the Graduate School–Newark.
University College–Newark
Steven J. Diner, Ph.D., Dean

University College–Newark is an evening and weekend college of liberal arts and professional studies serving part-time students since 1934. Within the context of the liberal arts tradition, University College students are offered a full range of courses and curricula, including programs in business and preparation for the professions leading to the degrees of Bachelor of Arts and Bachelor of Science.

Faculty of Management
Howard Tuckman, Ph.D., Dean

Established in 1993, the Faculty of Management encompasses the Graduate School of Management and the School of Management. The School of Management is an upper-division undergraduate school, founded in 1993, that offers the Bachelor of Science degree jointly with either the Newark College of Arts and Sciences or University College–Newark. Degree programs are available in accounting, finance, management, and marketing. The Graduate School of Management, founded in 1929 as the Seth Boyden School of Business and incorporated into Rutgers in 1946, offers three programs. Two of these programs, management and professional accounting, lead to the Master of Business Administration degree. The third program offers the Ph.D. degree in management jointly with the Graduate School–Newark and the New Jersey Institute of Technology.

Graduate School–Newark
Norman Samuels, Ph.D., Dean

The Graduate School–Newark was established as a separate instructional division of the university with degree-granting authority in 1976.

School of Criminal Justice
Leslie W. Kennedy, Ph.D., Dean

The School of Criminal Justice, which opened in 1974, offers a graduate program that provides students with a sound foundation for work in teaching, research, or criminal justice management. The Master of Arts degree is offered through the school, and the Ph.D. degree is offered in conjunction with the Graduate School–Newark.

School of Law–Newark
Stuart L. Deutsch, J.D., Dean

The university’s graduate programs in law originated in other institutions. The New Jersey School of Law, founded in 1908, and the Mercer Beasley School of Law, founded in 1926, merged in 1936 to become the University School of Newark, which became part of Rutgers in 1946.

Summer Session–Newark

The Summer Session, begun in 1913 and established as a division of the university in 1960, offers a wide variety of graduate and undergraduate courses during three sessions in the summer months.

New Brunswick

The New Brunswick campus is the largest and most diversified of the university’s three campuses, with 16 academic units, 1,800 faculty, and 33,000 students enrolled in undergraduate and graduate programs.

Faculty of Arts and Sciences–New Brunswick
Holly M. Smith, Ph.D., Executive Dean

Established in 1981 as a result of academic reorganization of the New Brunswick campus, the Faculty of Arts and Sciences–New Brunswick teaches all arts and science courses for undergraduate and graduate students in degree-granting units and sets the major requirements for all arts and science majors. Organized into disciplines and departments, it offers forty-four undergraduate major programs and twenty-nine graduate programs, which are administered by the Graduate School–New Brunswick.

Douglass College
Linda Stamato, Acting Dean

Founded in 1918 as the New Jersey College for Women, Douglass is the largest women’s college in the nation. While maintaining rigorous standards of instruction in the fundamental disciplines of the liberal arts, Douglass supports and develops programs that link major courses of study to future careers. The college also implements special programs as well as independent activities designed to help women students develop the qualities required for achievement in any field of endeavor.

Livingston College
Arnold Hyndman, Ph.D., Dean

Livingston College opened in 1969 as a coeducational institution dedicated to serving a diverse student body reflecting the racial, ethnic, and socioeconomic composition of today’s society. As a college of the liberal arts and professions, Livingston is committed to a multidisciplinary program that brings together a diverse group of students, faculty, and staff in a cosmopolitan community dedicated to learning.

Rutgers College
Carl Kirschner, Ph.D., Dean

Rutgers College was chartered in 1766 and is the original nucleus around which the university developed. Formerly an undergraduate college for men, it is now coeducational. Dedicated to the promotion of excellence in undergraduate education, Rutgers College provides its students with clear guidelines in the pursuit of a liberal arts education.
University College–New Brunswick
Emmet A. Dennis, Ph.D., D°
University College–New Brunswick is an evening college of liberal arts and professional studies serving part-time students since 1934. Within the context of the liberal arts tradition, University College–New Brunswick students are offered a full range of courses and curricula, including programs in business and preparation for the professions leading to the degrees of Bachelor of Arts and Bachelor of Science.

Cook College
Ian L. Maw, Ph.D., Acting D°
A coeducational and residential college, Cook offers undergraduate programs in various applied disciplines with an emphasis on environmental, agricultural, food, and marine sciences. Formerly the College of Agriculture and later the College of Agriculture and Environmental Science, Cook College adopted its present name in 1973. Graduate programs are offered through the Graduate School–New Brunswick.

College of Pharmacy
John L. Colaizzi, Ph.D., D°
First organized in 1892 and incorporated into the state university in 1927, the College of Pharmacy offers a six-year professional program leading to the Doctor of Pharmacy (Pharm.D.) degree and a graduate program offering a post-B.S. Pharm.D. degree (both traditional two-year and nontraditional). Other graduate programs leading to advanced degrees through the Graduate School–New Brunswick are available. In addition, the college sponsors a continuing education program for the benefit of practicing pharmacists throughout the state.

Mason Gross School of the Arts
George B. Stauffer, Ph.D., D°
This branch of Rutgers opened in July 1976. The school grants both undergraduate and graduate degrees. Formed to provide an education in the arts of the highest professional caliber, the school offers an M.F.A. degree in visual arts and theater arts; D.M.A., A.Dpl., M.M., and B.Mus. degrees in music; and a B.F.A. degree in visual arts, dance, and theater arts.

School of Business–New Brunswick
Howard Tuckman, Ph.D., D°
Approved by the New Jersey Department of Higher Education in 1986, the School of Business–New Brunswick offers both undergraduate and graduate degrees. On the undergraduate level, it is a two-year, upper-division school offering programs in accounting, finance, management, and marketing. The school admits students from Douglass, Livingston, Rutgers, and University colleges in their junior year. The Bachelor of Science degree is jointly awarded by the School of Business–New Brunswick and the undergraduate college. The school’s graduate program offers the Master of Accounting degree.

School of Communication, Information and Library Studies
Gustav Friedrich, Ph.D., D°
This school was formed in 1982 by a merger of two schools to provide academic programs that focus on various facets of communication and information science. The school offers undergraduate programs of study in communication, and journalism and mass media. Students are admitted to the school in their junior year from the five residential undergraduate colleges in New Brunswick: Cook, Douglass, Livingston, Rutgers, and University colleges. Bachelor of Arts degrees are awarded jointly by the School of Communication, Information and Library Studies and the undergraduate college. At the graduate level, programs are offered that lead to the degree of Master of Library Service, the Master of Communication and Information Studies, and, jointly with the Graduate School–New Brunswick, the Doctor of Philosophy degree. Courses for in-service librarians also are provided.

School of Engineering
Michael T. Klein, Sc.D., D°
Instruction in engineering began at Rutgers in 1864, when New Jersey designated Rutgers College to be the State College for the Benefit of Agriculture and Mechanic Arts. The College of Engineering became a separate unit in 1914 and was renamed the School of Engineering in 1999. The school is dedicated to the sound technical and general education of the student. It offers a Bachelor of Science degree in seven disciplines as well as a curriculum in applied sciences. Its graduate programs are conducted through the Graduate School–New Brunswick.

Edward J. Bloustein School of Planning and Public Policy
James W. Hughes, Ph.D., D°
Founded in 1992, the Edward J. Bloustein School of Planning and Public Policy provides focus for all of Rutgers’ programs of instruction, research, and service in planning and public policy. The school offers undergraduate programs in urban studies and public health, each leading to the baccalaureate degree. On the graduate level, the school confers Master of City and Regional Planning, Master of City and Regional Studies, Master of Public Affairs and Politics, Master of Public Policy, Master of Public Health, and Doctor of Public Health degrees; the latter two degrees are offered jointly with the University of Medicine and Dentistry of New Jersey–School of Public Health. A dual-degree program in public health and applied psychology leading to the Master of Public Health and Doctor of Psychology degrees is offered with the Graduate School of Applied and Professional Psychology. A program also is offered that leads to the Doctor of Philosophy degree in urban planning and policy development; this degree is conferred by the Graduate School–New Brunswick. In addition, the school offers joint-degree programs with Rutgers’ two law schools, with the Graduate School of Management, and with the Graduate School–New Brunswick.
School of Management and Labor Relations
Barbara A. Lee, Ph.D., J.D., Dean

The School of Management and Labor Relations, formed in 1994, provides undergraduate instruction in labor studies and employment relations. At the graduate level, programs are offered that lead to the degrees of Master of Science in Human Resource Management, Master of Arts in Labor and Employment Relations, and Doctor of Philosophy in Industrial Relations and Human Resources.

Graduate School–New Brunswick
Holly M. Smith, Ph.D., Dean

Graduate programs in the arts and sciences have been offered since 1876. The Graduate School–New Brunswick awards advanced degrees in more than sixty disciplines and is responsible for all Doctor of Philosophy degrees at Rutgers–New Brunswick. The faculty is drawn from virtually all academic divisions of the university.

Graduate School of Applied and Professional Psychology
Stanley B. Messer, Ph.D., Dean

The GSAPP was established in 1974 to train direct-service psychologists who have a special commitment to community involvement. It offers the Doctor of Psychology (Psy.D.) degree in professional psychology with specializations in the areas of clinical psychology, school psychology, and organizational psychology. The GSAPP also awards the Master of Psychology (Psy.M.) degree en passant to the doctorate; the Psy.M. is not offered as a terminal degree.

Graduate School of Education
Louise C. Wilkinson, Ed.D., Dean

Courses in education were first offered by Rutgers College in the late nineteenth century. A separate school offering its own curricula was organized in 1924. The GSE offers programs leading to the degrees of Master of Education, Specialist in Education, and Doctor of Education.

School of Social Work
Mary E. Davidson, Ph.D., Dean

Established in 1954 to prepare students for professional social work practice, the SSW offers a two-year graduate curriculum leading to the Master of Social Work degree. Jointly with the Graduate School–New Brunswick, it offers a program leading to the Doctor of Philosophy degree, and its faculty also teaches an undergraduate social work program.

Summer Session–New Brunswick
Thomas A. Kujawski, Ed.M.

The Summer Session, begun in 1913 and established as a division of the university in 1960, offers a wide variety of graduate and undergraduate courses during three sessions in the summer months.

ACADEMIC CENTERS, BUREAUS, AND INSTITUTES

Advanced Food Technology, Center for. Nabisco Institute for Advanced Food Technology, Cook Campus

Advanced Information Processing, Center for. CoRE Building, Busch Campus

Agricultural Experiment Station, New Jersey. Martin Hall, Cook Campus

Alcohol Studies, Center of. Smithers Hall, Busch Campus

American Woman and Politics, Center for the. Wood Lawn, Douglass Campus

Art Museum, Jane Voorhees Zimmerli. College Avenue Campus

Biological Research, Bureau of. Nelson Biology Laboratories, Busch Campus

Biodiversity Institute for. Hill Center, Busch Campus

Biotechnology Center for Agriculture and the Environment. Cook Campus

Ceramic Research, Malcolm G. McLaren Center for. 607 Taylor Road, Busch Campus

Coastal and Environmental Studies, Center for. Doolittle Hall, Busch Campus

Computer Science Research, Laboratory for. Hill Center, Busch Campus

Controlled Drug-Delivery Research Center. Pharmacy Building, Busch Campus

Crime Prevention Studies, Center for. S.I. Newhouse Center for Law and Justice, Newark Campus

Criminological Research, Institute for. Lucy Stone Hall, Livingston Campus

Critical Analysis of Contemporary Culture, Center for the. 8 Bishop Place, College Avenue Campus

Discrete Mathematics and Theoretical Computer Science, Center for. CoRE Building, Busch Campus

Eagleton Institute of Politics. Wood Lawn, Douglass Campus

Economic Research, Bureau of. New Jersey Hall, College Avenue Campus

Edison Papers, Thomas A. 16 Seminary Place, College Avenue Campus

Engineered Materials, Institute for. Engineering Building, Busch Campus

Engineering Research, Bureau of. Engineering Building, Busch Campus

Fiber Optic Materials Research Program. 607 Taylor Road, Busch Campus

Fisheries and Aquaculture Technology Extension Center. Martin Hall, Cook Campus

Government Services, Center for. Edward J. Bloustein School of Planning and Public Policy, 33 Livingston Avenue, College Avenue Campus

Health, Health Care Policy, and Aging Research, Institute for. 30 College Avenue, College Avenue Campus

Historical Analysis, Rutgers Center for. 88 College Avenue, College Avenue Campus

Human Evolutionary Studies, Center for. 131 George Street, College Avenue Campus

215
International Business Education, Center for. Janice H. Levin Building, Livingston Campus
International Conflict Resolution and Peace Studies, Center for. Hickman Hall, Douglass Campus
International Faculty and Student Services, Center for. 180 College Avenue, College Avenue Campus
Jazz Studies, Institute of. Dana Library, Newark Campus
Jewish Life, Center for the Study of. 12 College Avenue, College Avenue Campus
Journalism Resources Institute. 185 College Avenue, College Avenue Campus
Marine and Coastal Sciences, Institute of. 71 Dudley Road, Cook Campus
Materials Synthesis, Center for. Engineering Building, Busch Campus
Mathematical Sciences Research, Center for. Hill Center, Busch Campus
Metropolitan Studies, Joseph C. Cornwall Center for. Smith Hall, Newark Campus
Molecular and Behavioral Neuroscience, Center for. Aidekman Center, Newark Campus
Negotiation and Conflict Resolution, Center for. Edward J. Bloustein School of Planning and Public Policy, 33 Livingston Avenue, College Avenue Campus
Neighborhood and Brownfields Redevelopment, National Center for. Edward J. Bloustein School of Planning and Public Policy, 33 Livingston Avenue, College Avenue Campus
Operations Research, Center for. Hill Center, Busch Campus
Packaging Science and Engineering, Center for. Engineering Building, Busch Campus
Physics Research, Bureau of. Serin Physics Laboratories, Busch Campus
Rutgers Cooperative Extension. Martin Hall, Cook Campus
Surface Modification, Laboratory for. Serin Physics Laboratories, Busch Campus
Transportation Center, Alan M. Voorhees. Edward J. Bloustein School of Planning and Public Policy, 33 Livingston Avenue, College Avenue Campus
Urban Policy Research, Center for. 33 Livingston Avenue, College Avenue Campus
Waksman Institute of Microbiology. 190 Frelinghuysen Road, Busch Campus
Walt Whitman Center for the Culture and Politics of Democracy. Hickman Hall, Douglass Campus
Wireless Information Network Laboratory. Electrical Engineering Building, Busch Campus
Women, Institute for Research on. 160 Ryders Lane, Douglass Campus
Women's Leadership, Institute for. 162 Ryders Lane, Douglass Campus
Workforce Development, John J. Heldrich Center for. Edward J. Bloustein School of Planning and Public Policy, 33 Livingston Avenue, College Avenue Campus

Centers Operated Jointly
Biotechnology and Medicine, Center for Advanced:\nEnvironmental and Occupational Health Sciences Institute:\nHazardous Substance Management Research Center.

UNIVERSITY LIBRARY SYSTEM

Alcohol Studies Library. Smithers Hall, Busch Campus
Annex. Annex Building, Busch Campus
Archibald Stevens Alexander Library. 169 College Avenue, College Avenue Campus
Art Library. Hamilton Street, College Avenue Campus
Bailey B. Pepper Entomology Library. John B. Smith Hall, Georges Road and Jones Street, Cook Campus
Blanche and Irving Laurie Music Library. Douglass Library, Chapel Drive and George Street, Douglass Campus
Chemistry Library. Wright Chemistry Laboratory Building, Busch Campus
Chrysler Herbarium Library. Nelson Biology Laboratories, Busch Campus
Criminal Justice Library. S.I. Newhouse Center, 15 Washington Street, Newark Campus
East Asian Library. Alexander Library, College Avenue Campus
Institute of Jazz Studies Library. Bradley Hall, Newark Campus
John Cotton Dana Library. 185 University Avenue, Newark Campus
Kilmer Area Library. Avenue E, Livingston Campus
Library of Science and Medicine. Bevier Road, Busch Campus
Mabel Smith Douglass Library. Chapel Drive and George Street, Douglass Campus
Mathematical Sciences Library. Hill Center, Busch Campus
Media Services. Kilmer Area Library, Livingston Campus
Paul Robeson Library. 300 North Fourth Street, Camden Campus
Physics Library. Serin Physics Laboratories, Busch Campus
School of Law-Camden Library. Fifth and Penn Streets, Camden Campus
School of Law-Newark Library. S.I. Newhouse Center, Washington Street, Newark Campus
School of Management and Labor Relations Library. Ryders Lane, Cook Campus
SERC Reading Room. Science and Engineering Resource Center, Frelinghuysen Road, Busch Campus
Special Collections and University Archives. Alexander Library, College Avenue Campus
Stephen and Lucy Chang Science Library. Foran Hall, Cook Campus
Abbreviations (List of), 40-41
About the University, 3
Academic Calendars, 2
Academic Integrity Summary, Policy on, 27-28
Academic Policies and Procedures, 22-33
Academic Programs, 6-7, 39-204
Academic Standing, 26-27, 34, 36, 37
Activation of Registration, 10
Add/Drop, 23
Administration: of the Graduate School, 210; of the University, 211
Admission, 8; to the Ph.D. Candidacy, 34-35
Advisers, 37
Aerospace Engineering, 141-145
Aesthetics. See Philosophy
Agricultural Economics, 41-42
Agricultural Engineering. See Bioresource Engineering
Alcohol Studies, 42
Alumni Relations, 21
American Language Studies. See English as a Second Language
American Politics. See Political Science
Anatomy. See Cell and Developmental Biology
Animal Sciences, 42-43. See also Cell and Developmental Biology; Nutritional Sciences
Anthropology, 44-47
Apartment, 16
Appeals, Academic, 26-27
Application: for Admission, 8; for Conferal of Degrees, 35, 38; for Financial Aid, 12
Applied Chemistry. See Biochemistry; Chemical and Biochemical Engineering
Archaeology. See Anthropology; Classics
Architectural History. See Art History
Art History, 47-51
Artificial Implants. See Biomedical Engineering
Artificial Intelligence. See Computer Science
Asian Studies, 51
Assault, Verbal, Policy against, 30-31
Assistantships, 11-12
Astronomy, 166-169
Athletic Facilities, 20
Athletic Ticket Policies, 21
Athletics Disclosure Act Reports, Equity in, 31
Attendance, 25
Auditing Courses, 24
Bacteriology. See Microbiology and Molecular Genetics
Bills, 9
Biochemical Engineering, 54-58
Biochemistry, 51-54
Bioinstrumentation. See Biomedical Engineering
BioMaPS, 54
Biomechanics. See Biomedical Engineering; Mechanical and Aerospace Engineering
Biomedical Engineering, 54-58
Bioresource Engineering, 58
Biostatistics. See Public Health; Statistics
Biotechnology, 58-59
Board of Governors, 211
Board of Trustees, 211
Botany. See Plant Biology
Bureaus, 205-209, 215-216
Calendars: Academic, 2; for Ph.D., 35-36; for M.Phil., 36; for M.A./M.S., 38;
Summary of Time Limits, 36, 38
Cancellation of Classes, 25
Cancellation of Registration, 10
Candidacy. Application, 24-35
Career Services, 17
Cell and Developmental Biology, 59-62
Cellular and Molecular Pharmacology. See Pharmacology, Cellular and Molecular
Center for Latino Arts and Culture, 20
Centers, Academic and Research, 205-209, 215-216
Ceramic and Materials Science and Engineering, 62-66
Certificate Programs, 7
Change of Program, 24
Change of Registration, 23
Change of Status, 24
Chemical and Biochemical Engineering, 66-69
Chemistry, 69-72
Child Care, 19
Civil and Environmental Engineering, 72-75
Class Schedules and Hours, 25
Classical Archaeology. See Art History; Classics
Classics, 75-77
Code of Student Conduct, 28-29
Cognitive Science, 78
Combined M.D./Ph.D. Degree, 6-7
Committees, 37
Communication, Information, and Library Studies, 78-81
Comparative Literature, 81-83
Complaints about Grades, 27
Complaints about Grades, 27
Composition, 106-107
Computer Engineering. See Electrical and Computer Engineering
Computer Facilities, 15
Computer Science, 83-87
Concerts, Dramatic Productions, and Lectures, 21
Cooperative Exchange Program, 23
Core Curricula, 7
Costs, 9-10
Counseling Services, 17-18
Counselorships, 13
Course Codes, 40
Course Notations, 40
Course Information, 22-24, 39-41
Course Numbers, Explanation of, 39-40
Courses, 41-204
Courses "Not for Credit," 23-24
Credit Prefixes, 25
Credit, Transfer of, 23, 34, 37
Cultural Activities, 21
Day-Care Centers, 19
Deadlines: for Applications, 8; for Ph.D. Program, 34-35; for Master’s Program, 38
Defamation, Policy against, 30-31
Degree Application, 35, 38, 39
Degree Programs, 6-7
Degree Requirements, 33-39; for Ph.D., 33-36; for Master’s, 36-39
Developing Countries, Planning for. See Urban Planning and Policy Development
Developmental Biology. See Cell and Developmental Biology
Dining Services, 16
Diploma Application, 35, 38, 39
Disabled Students, Assistance for, 18
Disruption Procedures, 29-30
Dissertation (Ph.D.), 35; Preparation of, 38-39; Publication of, 35
Divisions of the University, 212-215
Doctor of Philosophy, 33-36
Drop/Add, 23
Due Process, 26
Eagleton Institute of Politics. See Political Science
Ecology and Evolution, 87-89. See also Anthropology; Microbiology and Molecular Genetics
Economics, 89-92. See also Agricultural Economics
Education, 92-95
Educational Opportunity Fund (EOF), 12
Electrical and Computer Engineering, 95-100
Employment, 13; Career Development, 17
Endocrinology. See Animal Sciences
Engineering Science. See Chemical and Biochemical Engineering
English, Literatures in, 101-107
English as a Second Language, 107
Entomology, 107-108
Environmental Change, Human Dimensions of, 108-109
Environmental Economics. See Agricultural Economics
Environmental Health. See Environmental Sciences; Public Health
Environmental Sciences, 109-113
Epidemiology. See Public Health
Epistemology. See Philosophy
Evolution, 87-89. See also Anthropology; Microbiology and Molecular Genetics
Examinations: Language, 34; Master’s, 38; Ph.D. Final, 35; Ph.D. Qualifying, 34-35; Doctorate Examination used for Master’s, 38
Programs, Faculty, and Courses, 39-204
Prohibited Conduct, 27-31
Psychological Counseling, 17-18
Public Health, 184-186
Public Law. See Political Science
Public Policy, 186
Publication of Dissertation and Academic Data, 39
Qualifying Examination for Ph.D., 34-35; Used for Master's Degree, 38
Quaternary Studies, 186. See also Geological Sciences
Radiation Science. See Environmental Sciences
Readmission, 24-25
Real Estate. See Urban Planning and Policy Development
Records and Privacy Rights, 31-32
Refund Policy, 10
Registration, 10, 22-24
Religious Observance, Absence Due to, 25
Requirements for Admission, 8
Research Centers, 33, 205-209, 215-216
Research Policy and Research Centers, 33
Residency Requirements, 33
Residency for Tuition Purposes (New Jersey), 32-33
Responsibility to Keep Informed, 22
Restoration of Active Status, 24-25
Restrictions on Financial Aid and Employment, 14
Robert Wood Johnson Medical School (UMDNJ), Joint Programs with, 6-7
Robeson Cultural Center, 20
Robotics. See Industrial and Systems Engineering
Russian, Central and East European Studies, 186
Rutgers-Princeton Cooperative Exchange Program, 23
Rutgers, The State University of New Jersey: Divisions of, 212-216; Governance of, 211; Graduate Study at, 4, 5; History of, 3; Location, 5
Rutgers University Foundation, 21
Safety and Security, 29
Schedules and Hours, 25
Scholarships, 11-12
Scholastic Standing, 26-27, 34, 36, 37
Sexual Assault Services and Crime Victim Assistance, 17
Sexual Harassment Policy, 30-31
Simultaneous Degrees, 7
Social Work, 187-188
Sociology, 189-191
Spanish, 191-194
Statistics, 194-197
Status: Change of, 24; Restoration of, 24-25
Student Academic Appeals, 26-27
Student Fee, 9
Student Government, 20
Student Information and Assistance, 18, 19
Student Records and Privacy Rights, 31-32; Transcripts, 25-26
Student Review, 26
Student Services, 15-21
Student Welfare, 19
Style Guide for Thesis and Dissertation Preparation, 35, 37, 39
Subject Codes, Summary of, 40
Submission of the Thesis, 37
Summer Registration, 22-23
Systems Engineering. See Industrial and Systems Engineering
Teaching Assistant Project (TAP), 16
Term Bills, 9
Termination of Registration, 10
Termination of Studies, 26
Test of English as a Foreign Language (TOEFL), 8
Tests, 8
Thesis (Master's), 37; Preparation of, 38-39
Time Limits for Degrees, 36, 38
Toxicology, 198-199. See also Pharmacology
Transcripts, 25-26
Transfer of Credit, 23, 34, 36, 37
Transportation, 19-20
Tuition and Fees, 9
UMDNJ-RWJMS Exchange, 23
Undergraduate Courses, 24
Undergraduate Enrollment in Graduate Courses, 24
Urban Planning and Policy Development, 199-201
Verbal Assault, Defamation, and Harassment Policy, 30-31
Veterans Benefits, 14
Virology. See Microbiology and Molecular Genetics; Plant Biology
Wireless Communications Certificate, 201
Withdrawal, 23
Women's and Gender Studies, 201-204. See also English; History; Political Science
Work Study Program, 13
Writing Requirement, 36
Zoology. See Cell and Developmental Biology